Θεωρία Συνόλων - Set Theory
|
|
- Ê Ελευθερίου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρία Συνόλων - Set Theory Ἐπισκόπηση γιὰ τὶς ἀνάγκες τῶν Πρωτοετῶν Φοιτητῶν τοῦ Τµήµατος Διοίκησης, στὸ µάθηµα Γενικὰ Μαθηµατικά. Ὑπὸ Γεωργίου Σπ. Κακαρελίδη, Στὸ Τµῆµα Διοίκησης ΤΕΙ Δυτικῆς Ἑλλάδος Παρουσίαση Βασισµένη στὸ Mathematical Analysis for Decision Making, by A.K.McAdams, 1970, Macmillan Co καὶ στὶς σηµειώσεις τῶν Α. Αργυροῦ & Μ. Παπαδοπούλη τοῦ Πανεπιστηµίου Κρήτης, Ἀκαδ. Ἔτος ΠΡΟΣΟΧΗ! ΣΕ ΚΑΜΜΙΑ ΠΕΡΙΠΤΩΣΗ ΤΟ ΠΑΡΟΝ ΔΕΝ ΥΠΟΚΑΘΙΣΤΑ ΒΙΒΛΙΑ, ΣΗΜΕΙΩΣΕΙΣ ἤ ΑΛΛΑ ΒΟΗΘΗΜΑΤΑ. ΑΠΟΤΕΛΕΙ ΕΝΔΕΙΚΤΙΚΗ ΚΑΙ ΜΟΝΟΝ ΠΕΡΙΛΗΨΗ ΤῼΝ ΟΣΩΝ ΕΛΕΧΘΗΚΑΝ ΚΑΤΑ ΤΗΝ ΘΕΩΡΙΑ. ΥΦΙΣΤΑΤΑΙ ΑΠΟΠΟΙΗΣΗ ΕΥΘΥΝΗΣ ΓΙΑ ΚΑΘΕ ΤΥΠΟΓΡΑΦΙΚΟ ἤ ΑΛΛΟ ΛΑΘΟΣ 1
2 Περὶ Συνόλων about SETS #1 Ἕνα σύνολο (Set) εἶναι µιὰ, ΚΑΛΑ ΟΡΙΣΜΕΝΗ, συλλογὴ ΞΕΧΩΡΙΣΤΩΝ (διακεκριµένων) ἀντικειµένων, ποὺ ὀνοµάζονται ΣΤΟΙΧΕΙΑ. Συµβολισµὸς: S = {6, 2, 8, 4} ἢ S={x: x εἶναι θετικὸς, ἅρτιος ἀκέραιος µικρότερος τοῦ 10} Ὁµοίως {{2, 1}, {3}, {3, 2, 1}, S}, {1, 2, 3, }, {x R -3 < x < 6}, { Τὰ πάγια στοιχεῖα τῆς Ἑταιρείας Τάδε} ΠΡΟΣΟΧΗ! {1,2} {{1,2}} ΠΡΟΣΟΧΗ!! Τὰ στοιχεῖα συνόλων ΔΕΝ εἶναι διατεταγµένα, ἐκτὸς ἄν ὁρισθεῖ διάταξη 2
3 Περὶ Συνόλων #2 Καλὰ Ὁρισµένη: Δοθέντος στοιχείου x µία καὶ µόνον µία ἀπὸ τὶς ἀκόλουθες, εἶναι ὀρθὴ: εἲτε τὸ στοιχεῖο x ἀνήκει στὸ σύνολο (x S ), ἤ τὸ στοιχεῖο x δὲν ἀνήκει στὸ σύνολο ( x S) Διακεκριµένων : δὲν ὑπάρχουν δύο ἴδια στοιχεῖα στὸ σύνολο 3
4 Περὶ Συνόλων #3, Ἰσχύς, Ἰσότητα Συνόλων S : πληθικὸς ἀριθµὸς ἢ ἰσχύς τοῦ S (cardinal number) εἶναι τὸ πλῆθος τῶν στοιχείων τοῦ S. π.χ. =0, {1,2,3} = 3, {a,b} = 2, {{1,2,3},{4,5}} = 2 Ἰσότητα Συνόλων: Δύο (µὴ διατεταγµένα) σύνολα λέγονται ΙΣΑ, ἐὰν καὶ µόνον ἐὰν ἐµπεριέχουν ΑΚΡΙΒΩΣ τὰ ἴδια στοιχεῖα. 4
5 Εἰδικὰ σύνολα #1, Κενὸ σύνολο (Empty, Null Set) Ἕνα Σύνολο ΧΩΡΙΣ στοιχεῖα, ὀνοµάζεται ΚΕΝΟΝ καὶ συµβολίζεται µὲ ἤ { } ΠΡΟΣΟΧΗ! { 0 } { }, { 0 }, 0 καὶ 0 5
6 Εἰδικὰ σύνολα #2, Ὑποσύνολο (SUBSET) Σύνολο A εἶναι ὑποσύνολο συνόλου B, (καὶ γράφεται A B, ὅταν x, x A x B. A εἶναι γνήσιο ὑποσύνολο B, ὅταν A εἶναι ὑποσύνολο τοῦ B καὶ x B γιὰ τὸ ὁποῖο x A. Ὁπτικὴ ἀναπαράσταση: µέσῳ διαγραµµάτων Venn. Προσοχὴ στὰ (ἐµπεριέχεσθαι) καὶ (ἀνήκειν). 6
7 Εἰδικὰ σύνολα #3 Δυναµοσύνολο, Powerset Τό Δυναµοσύνολο τοῦ A, συµβολίζεται µὲ P (A), εἶναι τὸ σύνολο ὉΛΩΝ τῶν ὑποσυνόλων τοῦ A. P(Α) : {x xα} Θεώρηµα: Ἄν A B, τότε P (A) P (B). Θεώρηµα: Ἄν τὸ σύνολο A ἔχει n στοιχεῖα, τότε τὸ P (A) ἔχει 2 n στοιχεῖα. Προσοχη! Περιλαµβάνονται καὶ τὸ Α καὶ τὸ Προκύπτει ότια: P(Α) > Α, e.g. P(N) > N. Υπάρχουν άπειρα σύνολα µε διαφορετικά µεγέθη! 7
8 Εἰδικὰ σύνολα #3 Δειγµατικὸς Χῶρος, Ὑπερσύνολο, Universe ἤ Population Set Ὁρίζεται ὡς τὸ σύνολο ΟΛΩΝ τῶν στοιχείων, σχετικῶν µὲ ἑνα πρόβληµα, συζήτηση, ἔρευνα. Σηµαίνει τὴν ὁλικότητα τῶν ὑπὸ θεώρησιν στοιχείων. Μπορεῖ νὰ εἶναι ἐξαιρετικὰ µεγάλο, ὁπὸτε ἐνασχόληση µὲ ὑποσύνολὸ του ἤ δεῖγµα εἶναι προσφορότερη. Συµβολίζεται µὲ U 8
9 Πράξεις Συνόλων #1 Ὁρισµοὶ Ἔστω A & B ὑποσύνολα of a universal set U. Ἕνωση Συνὀλων (Union Set) A B = {x U x A ἤ x B } ὅπου ἤ = or = Τοµὴ Συνόλων (Intersection Set) A B = {x U x A καὶ x B } ὅπου καὶ=and= Διαφορὰ Συνόλων (Difference Set) : B A = {x U x B and x A } Συµµετρικὴ διαφορὰ A B : (AUB) (A B) (ἕνωση µεῖον τοµὴ) Συµπλήρωµα Συνόλου ((Complement Set) A c = {x U x A } (συµβολίζεται καὶ Α ) Ἱσότητα Δύο Συνόλων (Equal Sets) A = B A B and B A 9
10 Πράξεις Συνόλων#2 Venn Diagrams A B A B A B A B 10
11 Πράξεις Συνόλων #3- Πορίσµατα Ἔστω A & B ὑποσύνολα of a universal set U. ἡ ἕνωση AB δύο συνόλων Α, Β ἀποτελεῖ ὑπερσύνολο καὶ τοῦ A καὶ τοῦ B (εἶναι τὸ µικρότερο δυνατὸ) : A, B: (AB A) (AB B) ὅπου = καὶ ἡ τοµὴ A B δύο συνόλων Α, Β εἶναι ἓνα ὑποσύνολο καὶ τοῦ A καὶ τοῦ B (τὸ µέγιστο τέτοιο ὑποσύνολο) : A, B: (A B A) (A B B) Μεταβατικότητα ὑποσυνόλων: (A B B C) A C Σηµαντικό: AB = A + B A B 11
12 Ταυτότητες, νόµοι Συνόλων #1 Άντιµεταθετικὴ: A B = B A καὶ A B = B A Προσεταιριστικὴ: (A B) C = A (B C) καὶ (A B) C = A (B C) Ἐπιµεριστικὴ: A (B C) = (A B) (A C) καὶ A (B C) = (A B) (A C) Τοµὴ, Ἕνωση µὲ τὸ Ὑπερσύνολο: A U = A καὶ A U = U 12
13 Ταυτότητες, νόµοι Συνόλων #2 Συµπλήρωµα Συµπληρώµατος: (A c ) c = A Αὐτοδυναµίας: A A = A καὶ A A = A Νόµος DeMorgan s: (A B) c = A c B c καὶ (A B) c = A c B c Νόµος Ἀπορρόφησης: A (A B) = A καὶ A (A B) = A Ἐναλλακτικὴ διατύπωση διαφορᾶς: A B = A B c Τοµὴ & Ἕνωση µὲ ὑποσύνολο: ἄν A B, τότε A B = A καὶ A B = B 13
14 Περὶ κενοῦ συνόλου (συνέχεια) S = {x R x 2 = -1}. X = {1, 3}, Y = {2, 4}, C = X Y. Τὸ κενὸν σύνολο δὲν ἔχει στοιχεῖα. Τὸ { } εἶναι ὑποσύνολο παντὸς συνόλου. Θεώρηµα: Ὑπάρχει ἀκριβῶς 1 κενὸ σύνολο. Ἰδιότητες τοῦ κενοῦ συνόλου: A = A, A = A A c =, A A c = U U c =, c = U 14
15 Διαµέριση Συνόλων- Partinioning Δύο σύνολα λέγονται ΞΕΝΑ ἤ διαζευγµένα ἐὰν δὲν ἔχουν κοινὰ στοιχεῖα ἤτοι (A B= ) πχ {a,b,c} {2,3} = Θεώρηµα: τὰ A B καὶ B εἶναι ξένα. Αν Α, Β ξένα σύνολα, τότε: AB = A + B Μία συλλογὴ συνόλων A 1, A 2,, A n καλεῖται ἀµοιβαἰως ξὲνη ὅταν οἱοδήποτε ζεῦγος στοιχείων (συνόλων) αὐτῆς, αὐτὰ εἶναι ξένα. Μία συλλογὴ µή-κενῶν συνόλων {A 1, A 2,, A n } καλεῖται διαµέριση συνόλου A ἄν ἡ ἕνωση αὐτῶν τῶν συνόλων δίδει τὸ A καὶ ἡ συλλογὴ αὐτὴ ἀποτελεῖται ἀπὸ ἀµοιβαίως ξένα σύνολα. 15
16 Διατεταγµένα Σύνολα Ordered Sets Ὁρισµὸς: Τὸ σύνολο Α καλεῖται διατεταγµένο ἐάν, γιὰ κάθε δύο στοιχεῖα x καὶ y στὸ Α, καθορίζεται ἐπακριβῶς ὅτι: εἴτε τὸ x προηγεῖται τοῦ y, εἴτε τὸ y προηγεῖται τοῦ x Ἐὰν ἔνδιαφέρει ἡ διάταξη τότε τὸ διατεταγµένο σύνολο ἀπεικονίζεται µὲ παρενθέσεις Πχ S={3,2,4,1}, S={1,2,3,4}, ἀλλὰ S=(1,2,3,4) 16
17 Ἀρίθµηση Νὰ ὁρισθῇ ὁ ἀριθµὸς τῶν στοιχείων συνόλου Α. Τρόπος: Ἐκκινοῦµε ἀπὸ ἕνα στοιχεῖο τοῦ Α,στὸ ὁποῖο ἀντιστοιχοῦµε τὸν ἀριθµὸ 1 Έπιλέγουµε ἑπὸµενο καὶ ἀντιστοιχοῦµε τὸν ἀριθµὸ 2 Συνεχίζουµε ἕως ὅτου ἐξαντληθοῦν ὅλα τὰ στοιχεῖα τοῦ συνόλου Α. Ἡ διαδικασία αὐτὴ περιγράφεται µὲ δύο σύνολα: τὸ Α καὶ τὸ σύνολο τῶν θετικῶν ἀκεραίων Ι + 17
18 Αντιστοίχιση Ἑνὸς πρὸς Ἕνα - One to One Correspondence Ὁρισµός: Δύο σύνολα εὑρίσκονται σὲ ἀντιστοιχία ἑνὸς πρὸς ἕνα, ἐὰν τὰ στοιχεῖα τους συνδυἀζονται κατὰ τέτοιο τρόπο ὥστε κάθε στοιχεῖο τοῦ πρώτου συνόλου συνδυάζεται µὲ ἕν καὶ µόνον ἓν στοιχεῖο τοῦ δευτέρου καὶ κάθε στοιχεῖο τοῦ δευτέρου συνόλου συνδυάζεται µὲ ἕν καὶ µόνον ἓν στοιχεῖο τοῦ πρώτου. Ισοδυναµία Συνόλων: Α<->B Δύο σύνολα εἲναι ἰσοδύναµα ἐὰν µποροῦν νὰ τεθοῦν σὲ ἀντιστοιχία ἑνὸς πρὸς ἕνα. 18
19 Ζεύγη Pairs, Καρτεσιανὸ Γινόµενο, Ὁρισµός: Ζεῦγος εἶναι ἓνα σύνολο ἐκ ΔΥΟ στοιχείων Καρτεσιανὸ Γινόµενο Σύνολο ἐκ δύο συνόλων: Τὸ Καρτεσιανὸ Γινόµενο (παραγόµενο) δύο συνόλων Α καὶ Β, εἶναι τὸ σύνολο ὃλων τῶν διατεταγµένων ζευγῶν (x, y), διὰ τὰ ὁποῖα x A καὶ x B Τὸ Καρτεσιανὸ Γινόµενο (Cartesian Product Set of two sets) εἶναι σύνολο καὶ συµβολίζεται ὡς A B : {(a, b) aabb}. π.χ. {a,b} {1,2} = {(a,1),(a,2),(b,1),(b,2)} Σηµείωση: A B = A B ἀλλὰ A,B: A B B A 19
20 Σχέσεις - Relations Ὁρισµός: Ἕνα ὑποσύνολο τοῦ καρτεσιανοῦ γινοµένου καλεῖται ΣΧΕΣΗ Πχ τὸ πραγµατικὸ ἐπίπεδο εἶναι τὸ καρτεσιανὸ γινόµενο RxR τοῦ συνόλου τῶν πραγµατικῶν άριθµῶν R. Τὸ 1 ο τεταρτηµόριο, ὥς ὑποσύνολο ὃλου τοῦ πραγµατικοῦ ἐπιπέδου ἀποτελεῖ σχέση. Σηµείωση: ἡ σχέση εἶναι σύνολο! 20
21 Συναρτήσεις - Functions Ὁρισµός: Δοθέντων δύο συνόλων Α καὶ Β καὶ, ἑνὸς κανόνος, ὁ ὁποῖος ἀντιστοιχεῖ γιὰ κάθε ἓνα στοιχεῖο x τοῦ Α, ἕνα µοναδικὰ προσδιοριζόµενο στοιχεῖο y τοῦ Β, τότε αὐτὸς ὁ κανὼν καθορίζει ἓνα σύνολο, f, ἀπὸ διατεταγµένα ζεύγη καὶ αὐτὸ τὸ σύνολο καλεῖται συνάρτηση ἀπὸ τὸ Α στὸ Β. Ἡ συνάρτηση f γράφεται ὡς f = { (x,y) } : γιὰ ὂλα τὰ x Α ὑπάρχει µοναδικὸ y B 21
22 Συναρτήσεις..συνέχεια 1η Μία συνάρτηση εἶναι σύνολο. Συµβολίζεται µὲ f ὅταν ἡ ἔµφαση εἶναι στὰ συναρτησιακὰ χαρακτηριστικὰ καὶ µὲ F στὰ τῶν συνόλων Τὸ στοιχεῖο y µπορεῖ νὰ ἀποδοθῇ καὶ ὡς f(χ) Τὸ σύνολο Α καλεῖται πεδίο Ὁρισµοῦ (Domain) τῆς f. Τὸ σύνολο B καλεῖται πεδίο Τιµῶν (Range) τῆς f Ἡ διαδικασία δηµιουργίας µιᾶς ἀντιστοιχίας, δηλαδὴ τῶν διατεταγµένων ζευγῶν, λέγεται ἀπεικόνιση (mapping) ἤ µετασχηµατισµὸς τοῦ Α στὸ Β καὶ συµβολίζεται A B Ἄν ἡ ἀπεικόνιση αὐτὴ ἐξαντλῇ ὅλα τὰ στοιχεῖα τοῦ Β, τότε τὸ Α εἶναι συνάρτηση Ἐπὶ τοῦ Β. 22
23 Συναρτήσεις..συνέχεια 2α Τὸ καρτεσιανὸ γινόµενο SXT δύο συνόλων S, T, ὅπου τὸ S περιέχει n στοιχεῖα καὶ τὸ Τ m, ἀποτελεῖται ἀπὸ n x m διατεταγµένα ζεύγη Μία σχέση εἶναι ὑποσύνολο τοῦ καρτεσιανοῦ γινοµένου. Μπορεῖ νὰ διατρέχη ἤ µἠ, ὅλα τὰ στοιχεὶα τοῦ S καὶ ὅποιο στοιχεῖο του µπορεῖ νὰ διαταχθῆ µὲ ἕνα ἠ περισσότερα στὸ Τ. Μία συνάρτηση εἶναι ἐπίσης ὑποσύνολο τοῦ καρτεσιανοῦ γινοµένου. Πρέπει ὅµως νὰ ἐξαντλήση ὅλο τὸ πεδίο ὁρισµοῦ της, ὄχι ὅµως κατ ἀνάγκην καὶ τὸ τιµῶν. Στὴν τελευταία περίπτωση καλεῖται ἀµφιµονοσήµανρη (ἕν πρὸς ἕν) συνάρτηση 23
24 Συναρτήσεις..συνέχεια 3η Προσοχὴ: ὁ κανών µιᾶς συνάρτησης µπορεῖ νὰ ἐκφρασθῆ ὥς ἐξίσωση. Ἡ ἐξίσωση ὅµως ΔΕΝ εἶναι ἡ συνάρτηση. Ἡ έξίσωση παρέχει τὸ στοιχεῖο στὸ πεδίο Τιµῶν ποὺ ταιριάζει σὲ µία συγκεκριµένη τιµὴ ἀπὸ τὸ πεδίο ὁρισµοῦ. Μπορεῖ ὅµως νὰ ὑποδεικνύη καὶ τιµὲς ποὺ δὲν ἀποτελοῦν τµῆµα τῆς συνάρτησης. Δεδοµένου ὅτι ἡ συνἀρτηση εἶναι σύνολο διατεταγµὲνων ζευγῶν, αὐτὸ µπορεῖ νὰ ἐπιτευχθῇ καὶ µὲ γράφηµα, πίνακες, διαγράµµατα, προφορικοὺς κανὀνες κτλ. 24
25 Συναρτήσεις..συνέχεια 4η Συνάρτηση σηµείου : ὃταν ὁ κανών µιᾶς συνάρτησης εἶναι τῆς µορφῆς y=f(x). Συνάρτηση συνόλου : ὃταν τὰ στοιχεῖα στὸ πεδίο ὁρισµοῦ εἶναι σύνολα. 25
26 Ἀσκήσεις Εἶναι ἀληθὲς ὅτι (A B) (B C) = A C? Δεῖξτε ὅτι (A B) C = (A C) (B C) Εἶναι ἀληθὲς ὅτι A (B C) = (A B) C? Εἶναι ἀληθὲς ὅτι (A B) (A B) = A? 26
Εὐκλείδεια Γεωµετρία
Εὐκλείδεια Γεωµετρία Φθινοπωρινὸ Εξάµηνο 010 Καθηγητὴς Ν.Γ. Τζανάκης Μάθηµα 9 ευτέρα 18-10-010 Συνοπτικὴ περιγραφή Υπενθύµιση τοῦ Θεωρήµατος τοῦ Θαλῆ. εῖτε καὶ ἐδάφιο 7.7 τοῦ σχολικοῦ ϐιβλίου. Τονίσθηκε,
Διαβάστε περισσότεραΚατάλογος τῶν Συγκερασµῶν ὅλων τῶν Βυζαντινῶν ιατονικῶν Κλιµάκων µέχρι καὶ σὲ 1200 µουσικὰ διαστήµατα (κόµµατα)
Κατάλογος τῶν Συγκερασµῶν ὅλων τῶν Βυζαντινῶν ιατονικῶν Κλιµάκων µέχρι καὶ σὲ 1200 µουσικὰ διαστήµατα (κόµµατα) τοῦ Παναγιώτη. Παπαδηµητρίου ρ. Ἠλεκτρ. Μηχανικοῦ, Φυσικοῦ Περιεχόµενα 1. Εἰσαγωγή...1 2.
Διαβάστε περισσότεραΕὐκλείδεια Γεωµετρία
Εὐκλείδεια Γεωµετρία Φθινοπωρινὸ Εξάµηνο 2010 Καθηγητὴς Ν.Γ. Τζανάκης Μάθηµα 14 22-11-2010 Συνοπτικὴ περιγραφή Πρόταση τῆς έσµης Εὐθειῶν. Εστω ὅτι τὰ σηµεῖα, καὶ, εἶναι τέτοια ὥστε οἱ εὐθεῖες και εἶναι
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/9/2017
Διαβάστε περισσότεραΣύνολα, Σχέσεις, Συναρτήσεις
Κεφάλαιο 2 Σύνολα, Σχέσεις, Συναρτήσεις Τα σύνολα, οι σχέσεις και οι συναρτήσεις χρησιμοποιούνται ευρύτατα σε κάθε είδους μαθηματικές αναπαραστάσεις και μοντελοποιήσεις. Στη θεωρία υπολογισμού χρησιμεύουν,
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής
Διαβάστε περισσότεραΑ. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ
ΜΑΘΗΜΑ 22 Κεφάλαιο 5o : Πιθανότητες Υποενότητα 5.1: Σύνολα. Θεµατικές Ενότητες: 1. Σύνολα-Υποσύνολα-Ίσα Σύνολα. 2. ιαγράµµατα Venn. 3. Πράξεις µε Σύνολα. Α. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ ΟΡΙΣΜΟΙ Σύνολο είναι
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ
Διαβάστε περισσότεραΣτήν Σελίδα Παρατηρήσεις στὸ κάτω μέρος καταγράφονται / ἐμφανίζονται τυχόν ἐντοπισθέντα περιουσιακά στοιχεῖα (IX, άκίνητα, ἀγροτεμάχια κλπ)
Κάρτα Ἀντιδίκου Στήν Σελίδα Παρατηρήσεις στὸ κάτω μέρος καταγράφονται / ἐμφανίζονται τυχόν ἐντοπισθέντα περιουσιακά στοιχεῖα (IX, άκίνητα, ἀγροτεμάχια κλπ) Ἡ Εἰσαγωγή/Μεταβολή/Διαγραφή γίνεται μέσω τῶν
Διαβάστε περισσότεραΈγκατάσταση καὶ Χρήση Πολυτονικοῦ Πληκτρολογίου σὲ Περιβάλλον Ubuntu Linux.
Έγκατάσταση καὶ Χρήση Πολυτονικοῦ Πληκτρολογίου σὲ Περιβάλλον Ubuntu Linux. Μακρῆς Δημήτριος, Φυσικός. mailto: jd70473@yahoo.gr 1. Εἰσαγωγή. Τὸ πολυτονικὸ σύστημα καταργήθηκε τὸ 1982. Δὲν θὰ ἀσχοληθοῦμε
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 2: Σύνολα και σχέσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΤο σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.
1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται
Διαβάστε περισσότεραΠαραθέτουμε απόσπασμα του άρθρου: ΟΡΘΟΔΟΞΟΣ ΤΥΠΟΣ ΑΠΙΣΤΕΥΤΟΝ- Οι Ιεχωβάδες και οι Μασόνοι κεφάλαια εις το βιβλίον των θρ
Με ένα από τα αγαπημένα της θέματα ασχολήθηκε για μια ακόμη φορά, στο φύλλο 1991 της 27ης Σεπτεμβρίου 2013, η εφημερίδα ΟΡΘΟΔΟΞΟΣ ΤΥΠΟΣ. Αιτία, το κεφάλαιο του βιβλίου των Θρησκευτικών που διδάσκεται στην
Διαβάστε περισσότεραἘγκατάστασις ICAMSoft Law Applications' Application Server ἔκδοση 3.x (Rel 1.1-6ος 2009) 1
Ἐγκατάστασις ICAMSoft Law Applications' Application Server ἔκδοση 3.x (Rel 1.1-6ος 2009) 1 Ἐγκατάστασις ICAMSoft Law3 Application Server ὅτι ἀναφέρεται ἐδῶ δὲν μπορεῖ νὰ ἐκτελεσθεῖ δικτυακά, δηλ. ἀπὸ ἄλλον
Διαβάστε περισσότεραΗ Θεωρια Αριθμων στην Εκπαιδευση
Η Θεωρια Αριθμων στην Εκπαιδευση Καθηγητὴς Ν.Γ. Τζανάκης Εφαρμογὲς τῶν συνεχῶν κλασμάτων 1 1. Η τιμὴ τοῦ π μὲ σωστὰ τὰ 50 πρῶτα δεκαδικὰ ψηφία μετὰ τὴν ὑποδιαστολή, εἶναι 3.14159265358979323846264338327950288419716939937511.
Διαβάστε περισσότερα11η Πανελλήνια Σύναξη Νεότητος της Ενωμένης Ρωμηοσύνης (Φώτο Ρεπορτάζ)
15/03/2019 11η Πανελλήνια Σύναξη Νεότητος της Ενωμένης Ρωμηοσύνης (Φώτο Ρεπορτάζ) / Νέοι και Εκκλησία Κατά την Κυριακὴ 10 Μαρτίου 2019 καὶ ὥρα 10:45 π.μ. (ἀμέσως μετὰ τὴν Θεία Λειτουργία) πραγματοποιήθηκε
Διαβάστε περισσότεραΣτους κήπους της Θεολογικής Σχολής της Χάλκης
26/02/2019 Στους κήπους της Θεολογικής Σχολής της Χάλκης Πατριαρχεία / Οικουμενικό Πατριαρχείο Ἡ Ἱερὰ Θεολογικὴ Σχολὴ τῆς Χάλκης ἀκολουθώντας τὸ παράδειγμα τοῦ περιβαλλοντικὰ εὐαισθητοποιημένου καὶ πρωτοπόρου
Διαβάστε περισσότεραODBC Install and Use. Κατεβάζετε καὶ ἐγκαθιστᾶτε εἴτε τήν ἔκδοση 32bit εἴτε 64 bit
Oἱ ἐφαρμογές Law4 χρησιμοποιοῦν τὸν Firebird SQL Server 32 ἤ 64 bit, ἔκδοση 2.5.x Γιὰ νὰ κατεβάσετε τὸν ODBC πηγαίνετε στό site www.firebirdsql.org στήν δ/νση http://www.firebirdsql.org/en/odbc-driver/
Διαβάστε περισσότεραICAMLaw Application Server Χειροκίνηση Ἀναβάθμιση
Εἰσαγωγή Ὁ ICAMLaw Application Server (στὸ ἑξῆς γιά λόγους συντομίας IAS) ἀποτελεῖ τὸ ὑπόβαθρο ὅλων τῶν δικηγορικῶν ἐφαρμογῶν τῆς ICAMSoft. Εἶναι αὐτός ποὺ μεσολαβεῖ ἀνάμεσα: α) στὴν τελική ἐφαρμογὴ ποὺ
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 2 : Σύνολα & Σχέσεις (2/2) Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 2 : Σύνολα & Σχέσεις (2/2) Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής
Διαβάστε περισσότεραΕΓΚΥΚΛΙΟΣ ὑπ ἀριθμ. 17
Πρὸς Ἅπαντας τοὺς Ἐφημερίους τῆς καθ ἡμᾶς Ἱερᾶς Μητροπόλεως. ΕΓΚΥΚΛΙΟΣ ὑπ ἀριθμ. 17 Θέμα: «Περὶ τῆς νομιμότητας τελέσεως τοῦ Μυστηρίου τοῦ Βαπτίσματος ἀνηλίκων». Ἀγαπητοὶ Πατέρες, Σχετικὰ μὲ τὶς προϋποθέσεις,
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΕκεί όπου όντως ήθελε ο Θεός
13/02/2019 Εκεί όπου όντως ήθελε ο Θεός Πατριαρχεία / Πατριαρχείο Αλεξανδρείας Του π. Πολυκάρπου Αγιαννανίτη Ὅπου διακονεῖ κανεὶς τὸν Χριστὸ καὶ τὴν Ἐκκλησία, ἐκεῖ βρίσκει τὴ χαρὰ καὶ τὴν ἀνάπαυσή του.
Διαβάστε περισσότεραΕἰσαγωγὴ. Αὐτόματη Δημιουργία Οἰκονομικῶν Κινήσεων Ἀμοιβῶν. Αὐτόματη Δημιουργία Οἰκονομικῶν Κινήσεων Ἀμοιβῶν. ICAMSoft Law Applications Σημειώ σεις
Εἰσαγωγὴ Ὅπως γνωρίζουν ὅλοι οἱ χρῆστες τῶν δικηγορικῶν ἐφαρμογῶν μας, τὰ εἴδη τῶν ἐνεργειῶν ποὺ μποροῦν νὰ καταγραφοῦν σὲ μία ὑπόθεση εἶναι 1. Ἐνέργειες Ἐξέλιξης, 2. Οἰκονομικές, 3. Λοιπές Ἐνέργειες &
Διαβάστε περισσότεραΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.
ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 1: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Εισαγωγικά (0.1) Σύνολα (0.2.1, 0.2.2) Συναρτήσεις & Σχέσεις (;;) (0.2.3) 1 Περιοχές που θα μελετήσουμε
Διαβάστε περισσότεραΠεριεχόμενα. Πρόλογος 3
Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.
Διαβάστε περισσότεραΣχέσεις, Ιδιότητες, Κλειστότητες
Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από
Διαβάστε περισσότεραΕΓΚΥΚΛΙΟΣ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2017 Ο ΜΗΤΡΟΠΟΛΙΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΘΙΜΟΣ
ΙΕΡΑ ΜΗΤΡΟΠΟΛΙΣ ΘΕΣΣΑΛΟΝΙΚΗΣ 25 εκεμβριου 2017 ἀριθμ. πρωτ. : 877 ΕΓΚΥΚΛΙΟΣ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2017 Ο ΜΗΤΡΟΠΟΛΙΤΗΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΘΙΜΟΣ Πρὸς τοὺς εὐλαβεῖς Ἱερεῖς καὶ τοὺς εὐσεβεῖς Χριστιανοὺς τῆς καθ ἡμᾶς Θεοσώστου
Διαβάστε περισσότεραΓραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής
Διαβάστε περισσότεραὌχι στὴν ρινόκερη σκέψη τοῦ ρινόκερου Κοινοβουλίου μας! (ε ) Tὸ Παγκόσμιο Οἰκονομικὸ Φόρουμ προωθεῖ τὴν ὁμοφυλοφιλία*
Ὄχι στὴν ρινόκερη σκέψη τοῦ ρινόκερου Κοινοβουλίου μας! (ε ) Tὸ Παγκόσμιο Οἰκονομικὸ Φόρουμ προωθεῖ τὴν ὁμοφυλοφιλία* «Οἱ ὁμοφυλόφιλοι ἀπὸ τὴν δεκαετία τοῦ 2000 ἐμφανίζονται πανίσχυροι οἰκονομικὰ καὶ κοινωνικά,
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Διαβάστε περισσότεραἙλληνικὰ σταυρόλεξα μὲ τὸ L A T E X
eutypon32-33 2014/11/30 12:03 page 19 #23 Εὔτυπον, τεῦχος 32-33 Ὀκτώβριος/October 2014 19 Ἑλληνικὰ σταυρόλεξα μὲ τὸ L A T E X Ἰωάννης Α. Βαμβακᾶς Ιωάννης Α. Βαμβακᾶς Παπαθεοφάνους 12 853 00 Κῶς Η/Τ: gavvns
Διαβάστε περισσότεραΗ KΑΚΟΜΕΤΑΧΕΙΡΗΣΗ ΤΩΝ ΑΠΟΨΕΩΝ ΤΟΥ ΕΥΓΕΝΙΟΥ ΒΟΥΛΓΑΡΗ ΠΕΡΙ ΥΛΗΣ ΑΠΟ ΤΟΝ ΓΙΑΝΝΗ ΚΑΡΑ. Μιχαήλ Μανωλόπουλος
Η KΑΚΟΜΕΤΑΧΕΙΡΗΣΗ ΤΩΝ ΑΠΟΨΕΩΝ ΤΟΥ ΕΥΓΕΝΙΟΥ ΒΟΥΛΓΑΡΗ ΠΕΡΙ ΥΛΗΣ ΑΠΟ ΤΟΝ ΓΙΑΝΝΗ ΚΑΡΑ Μιχαήλ Μανωλόπουλος Στο πλαίσιο του Δυτικοευρωπαϊκού διαφωτισμού παρατηρούμε την ανάπτυξη μιας σχετικά ολιγάριθμης υλιστικής
Διαβάστε περισσότεραK15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
Διαβάστε περισσότεραΣτὴν ἀρχὴ ἦταν ὁ Λόγος. Ὁ Λόγος ἦταν μαζὶ μὲ
ΚΕΦΑΛΑΙΟ Α ἤ 01ο (01-52) 01-05 Ὁ Λόγος εἶναι Θεὸς καὶ ημιουργὸς τῶν πάντων Στὴν ἀρχὴ ἦταν ὁ Λόγος. Ὁ Λόγος ἦταν μαζὶ μὲ τὸ Θεὸ Πατέρα καὶ ἦταν Θεὸς ὁ Λόγος. Αὐτὸς ἦταν στὴν ἀρχὴ μαζὶ μὲ τὸ Θεὸ Πατέρα.
Διαβάστε περισσότεραΔρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 7α Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες
Διαβάστε περισσότεραP(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!
Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός
Διαβάστε περισσότεραΠαρέλαση-Μαντήλα-Δωδεκάποντα*
Ἀξίες -Ἰδανικά -Ἱστορικὴ Μνήμη Παρέλαση-Μαντήλα-Δωδεκάποντα* «Ἡ σεμνότητα καὶ ἡ ταπεινότητα εἶναι προαπαιτούμενο...» α. Στὴν χώρα ποὺ θὰ ριζώσεις νὰ σεβαστεῖς τὴν σημαία της, τοὺς ἀνθρώπους της, τὴν φύση
Διαβάστε περισσότεραΘέμα: «Περὶ τοῦ προσώπου τοῦ Ἀναδόχου εἰς τὸ Μυστήριον τοῦ Βαπτίσματος».
ΕΓΚΥΚΛΙΟΣ ὑπ ἀριθμ. 18 Πρὸς Ἅπαντας τοὺς Ἐφημερίους τῆς καθ ἡμᾶς Ἱερᾶς Μητροπόλεως. Θέμα: «Περὶ τοῦ προσώπου τοῦ Ἀναδόχου εἰς τὸ Μυστήριον τοῦ Βαπτίσματος». Ἀγαπητοὶ Πατέρες, Ἐξ αἰτίας τοῦ ὅτι παρατηρεῖται
Διαβάστε περισσότεραΣᾶς εὐαγγελίζομαι τὸ χαρμόσυνο ἄγγελμα τῆς γεννήσεως τοῦ. Χριστοῦ, ποὺ ἀποτελεῖ τὴν κορυφαία πράξη τοῦ Θεοῦ νὰ σώσει τὸν
Χριστούγεννα 2013 Ἀρ. Πρωτ. 1157 Πρός τό Χριστεπώνυμο πλήρωμα τῆς καθ ἡμᾶς Ἱερᾶς Μητροπόλεως Χριστὸς γεννᾶται, δοξάσατε. Ἀδελφοί μου ἀγαπητοί, Σᾶς εὐαγγελίζομαι τὸ χαρμόσυνο ἄγγελμα τῆς γεννήσεως τοῦ Χριστοῦ,
Διαβάστε περισσότεραΤμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα:
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα: Κοντογιάννη Αριστούλα Σύνολα Σύνολο: Μία συλλογή διακριτών αντικειμένων
Διαβάστε περισσότεραEISGCGSG Dò. «Ἡ Εἰκόνα τοῦ Χριστοῦ: Χθὲς καὶ σήμερον ἡ αὐτὴ καὶ εἰς τοὺς αἰῶνας» Σάββατο, 22α Δεκεμβρίου 2012
EISGCGSEIS OQHODONGS EIJOMOKOCIAS EISGCGSG Dò «Ἡ Εἰκόνα τοῦ Χριστοῦ: Χθὲς καὶ σήμερον ἡ αὐτὴ καὶ εἰς τοὺς αἰῶνας» Εἰσηγητής: +Θεοφ. Ἐπίσκοπος Μεθώνης κ. Ἀμβρόσιος, Ἱστορικὸς Τέχνης Στὸ πλαίσιο τῆς Ἔκθεσης
Διαβάστε περισσότεραΦροντιστηριακὸ Μάθημα Ἁγιογραφίας Β
Φροντιστηριακὸ Μάθημα Ἁγιογραφίας Β Στὴν Ἱερὰ Μονή μας, τῶν Ἁγίων Μαρτύρων Κυπριανοῦ καὶ Ἰουστίνης, στὴν Φυλὴ Ἀττικῆς, μὲ τὴν Χάρι τοῦ Θεοῦ, τὴν εὐχὴ τοῦ ἀσθενοῦντος Σεβασμιωτάτου Πνευματικοῦ Πατρός μας,
Διαβάστε περισσότεραΓενικὴ Ἐκκλησιαστικὴ Ἱστορία Α
Γενικὴ Ἐκκλησιαστικὴ Ἱστορία Α Δρ. Ἰωάννης Ἀντ. Παναγιωτόπουλος Ἐπ. Καθηγητὴς Γενικῆς Ἐκκλησιαστικῆς Ἱστορίας Τµῆµα Θεολογίας - Θεολογικὴ Σχολὴ Ἐθνικὸ καὶ Καποδιστριακὸ Πανεπιστήµιο Ἀθηνῶν Γ Οἰκουµενικὴ
Διαβάστε περισσότεραΧρήση τῶν Στατιστικῶν / Ἐρευνητικῶν Ἐργαλείων τοῦ
ICAMSoft SmartMedicine v.3 Στατιστικά Χρήση τῶν Στατιστικῶν / Ἐρευνητικῶν Ἐργαλείων τοῦ ICAMSoft Applications White Papers Φεβρουάριος 2010 Σελίς: 1 / 14 Στατιστικά ICAMSoft SmartMedicine v.3 Μenu Στατιστικά
Διαβάστε περισσότεραΙΕΡΑ ΜΗΤΡΟΠΟΛΙΣ ΘΕΣΣΑΛΟΝΙΚΗΣ. ΙΕΡΟΣ ΝΑΟΣ ΜΕΤΑΜΟΡΦΩΣΕΩΣ ΤΟΥ ΣΩΤΗΡΟΣ (Δελφῶν καί Μιαούλη) Τηλ:2310-828989. Ἡ Θεία Κοινωνία.
ΙΕΡΑ ΜΗΤΡΟΠΟΛΙΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΕΡΟΣ ΝΑΟΣ ΜΕΤΑΜΟΡΦΩΣΕΩΣ ΤΟΥ ΣΩΤΗΡΟΣ (Δελφῶν καί Μιαούλη) Τηλ:2310-828989 Ἡ Θεία Κοινωνία κατ οἶκον Θεσσαλονίκη 2008 Κάποιοι συσχετίζουν κάκιστα τὴν παρουσία τοῦ ἱερέως στό
Διαβάστε περισσότεραLAHGLATA ACIOCQAVIAS PEQIODOS Bò L hgla Aò
LAHGLATA ACIOCQAVIAS PEQIODOS Bò L hgla Aò Μὲ τὴν εὐκαιρία τῆς μνήμης τοῦ Ἁγίου ἐνδόξου Ἀποστόλου καὶ πρώτου Ἁγιογράφου, Εὐαγγελιστοῦ Λουκᾶ (18η Ὀκτωβρίου) καὶ πρὸς τιμήν Του, πραγματοποιήθηκε, μὲ τὴν
Διαβάστε περισσότεραΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»
Η συνεπαγωγή ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Αν P και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε, όταν αληθεύει ο P να αληθεύει και ο Q, τότε λέμε ότι: «ο P συνεπάγεται τον Q» και γράφουμε P Q. Παράδειγμα: x=3 x 2 =9. Ο
Διαβάστε περισσότεραΤι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο
ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός
Διαβάστε περισσότεραΜαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΝὰ συγκαλέσει πανορθόδοξη Σύνοδο ή Σύναξη των Προκαθημένων καλεί τον Οικουμενικό Πατριάρχη η Κύπρος αν ο στόχος δεν επιτευχθεί
18/02/2019 Νὰ συγκαλέσει πανορθόδοξη Σύνοδο ή Σύναξη των Προκαθημένων καλεί τον Οικουμενικό Πατριάρχη η Κύπρος αν ο στόχος δεν επιτευχθεί Αυτοκέφαλες Εκκλησίες / Εκκλησία της Κύπρου Ανακοίνωση σχετικά
Διαβάστε περισσότεραὉ νεο-δαρβινισμὸς καὶ ἡ ἀμφισβήτηση τοῦ Θεοῦ*
Ἡ Θεωρία τῆς Ἐλέξιξης: κοσμικὴ θρησκεία, μὲ νόημα καὶ ἠθικὴ Ἡ Ὁ νεο-δαρβινισμὸς καὶ ἡ ἀμφισβήτηση τοῦ Θεοῦ* Ὄχι Ἐξέλιξη, ἀλλὰ Σχεδιασμὸς Μέρος B ἐπιστημονικὴ κριτικὴ ποὺ ἀσκεῖται στὴν Θεωρία τῆς Ἐξέλιξης
Διαβάστε περισσότεραΜητροπολίτου Μόρφου Νεοφύτου
Μητροπολίτου Μόρφου Νεοφύτου Στὴν καθ ἡμᾶς Μητροπολιτικὴ περιφέρεια Μόρφου τιμᾶται ἰδιαίτερα ὁ ὅσιος Σωζόμενος. Ἐπίκεντρο τῆς ἐδῶ τιμῆς του εἶναι ἡ ἁγιοτόκος κοινότητα τῆς Γαλάτας, ὅπου εὑρίσκεται κατάγραφος
Διαβάστε περισσότεραἈσκητὲς καὶ ἀσκητήρια στὴ νῆσο Σκόπελο
Ἀσκητὲς καὶ ἀσκητήρια στὴ νῆσο Σκόπελο (Μιὰ πρώτη προσέγγιση στὸ θέμα) Εἰπώθηκε, πὼς ὁλόκληρο τὸ Ἅγιον Ὄρος μοιάζει μὲ τὸ Καθολικὸ ἑνὸς ἰεροῦ Ναοῦ καὶ ὅτι ἡ περιοχὴ ἀπὸ τὴν Ἁγία Ἄννα καὶ πέρα εἶναι τὸ
Διαβάστε περισσότεραT ÓÈÎfi ŒÓÙ Ô HÏÂÎÙÚÔÎÈÓËÙ ÚˆÓ
T ÓÈÎfi ŒÓÙ Ô HÏÂÎÙÚÔÎÈÓËÙ ÚˆÓ ΕΙΣΑΓΩΓΗ Στὸν Τεχνικὸ αὐτὸν Ὁδηγὸ τοῦ Ἐργοστασίου Ἠλεκτροκινητήρων «Βαλιάδης Α.Ε.»: Παρουσιάζουμε τὶς προδιαγραφὲς κατασκευῆς τῶν κινητήρων μας καὶ κυρίως ἀναφερόμαστε στοὺς
Διαβάστε περισσότεραΔιαχείριση Συσχετισμένων Ἀρχείων & Εἰκόνων
Διαχείριση Συσχετισμένων Ἀρχείων & Εἰκόνων Εἰσαγωγὴ Μιὰ ἀπὸ τὶς βασικὲς πρόσθετες δυνατότητες τῆς ἔκδοσης 3 τῶν ἰατρικῶν ἐφαρμογῶν μας, εἶναι ἡ δυνατότητα συσχετισμοῦ ὅσων ψηφιακῶν ἀρχείων ἀπαιτεῖται στὴν
Διαβάστε περισσότεραμαθη ματικῶν, ἀλλὰ καὶ τὴ βαθιά του ἐκτίμηση γιὰ τὴ χαϊντεγκεριανὴ ἱστορικὴ κατανόηση τοῦ ἀνθρώπινου κόσμου. Καταγράφοντας ὅλες αὐτὲς τὶς ἐπιδράσεις,
ΠΡΟΛΟΓΟΣ Τὸ βιβλίο αὐτὸ εἶναι προϊὸν μακρόχρονης ἐξέλιξης. Γιὰ εἴκοσι περίπου χρόνια, τὸ ἐνδιαφέρον μου γιὰ τὸν Φρέγκε ἀποτέλεσε μέρος ἑνὸς ὁδοιπορικοῦ ποὺ ξεκίνησε ἀπὸ τὸ Μόναχο καί, μέσω τῆς Ὀξφόρδης
Διαβάστε περισσότεραΤα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C
Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο
Διαβάστε περισσότεραΣημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.
ΜΑΘΗΜΑ 1 αόριστες έννοιες Έννοιες που είναι τόσο απλές και οικείες από την εμπειρία μας, ώστε δεν μπορούμε να βρούμε πιο απλές με τη βοήθεια των οποίων να τις περιγράψουμε Σημείο Επίπεδο ο χώρος η ευθεία
Διαβάστε περισσότεραΘεµελιωδης Θεωρια Αριθµων
Θεµελιωδης Θεωρια Αριθµων Ν.Γ. Τζανάκης Τµήµα Μαθηµατικών - Πανεπιστήµιο Κρήτης 30 Σεπτεµβρίου 2008 2 Περιεχόµενα 1 ιαιρετότητα 3 1.1 Βασικὲς προτάσεις.......................... 3 1.2 Μέγιστος κοινὸς διαιρέτης......................
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία
Διαβάστε περισσότεραΜαρτυρία Πίστεως καὶ Ζωῆς
Ἐπισκόπου Γαρδικίου Κλήμεντος Μαρτυρία Πίστεως καὶ Ζωῆς Ὁμιλίες σὲ Ἐκδηλώσεις Εἰσηγήσεις - Διαλέξεις - Ἄρθρα Ἐκδόσεις Γεώργιος Χοροζίδης, Φυλὴ Ἀττικής, 2017, σελίδες 222. Ἡ ἰδέα γιὰ τὴν κυκλοφόρησι τοῦ
Διαβάστε περισσότεραΧριστιάνα Ἀβρααμίδου ΜΑΤΙΑ ΑΝΑΠΟΔΑ. Ποιήματα
Χριστιάνα Ἀβρααμίδου ΜΑΤΙΑ ΑΝΑΠΟΔΑ Ποιήματα ΛΟΓΟΤΕΧΝΙΚΑ ΣΗΜΕΙΩΜΑΤΑ Αὒγουστος 2011 12 ΛΟΓΟΤΕΧΝΙΚΑ ΣΗΜΕΙΩΜΑΤΑ Χριαστιάνα Ἀβρααμίδου ΜΑΤΙΑ ΑΝΑΠΟΔΑ Ποιήματα Τεῦχος 12 - Αὒγουστος 2011 ISSN: 1792-4189 Μηνιαία
Διαβάστε περισσότεραΗ έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27
Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός
Διαβάστε περισσότεραΠΡΟΛΟΓΟΣ ΣΤΗ ΓΑΛΛΙΚΗ ΕΚΔΟΣΗ
ΠΡΟΛΟΓΟΣ ΣΤΗ ΓΑΛΛΙΚΗ ΕΚΔΟΣΗ Τὰ Ἕξι μεγάλα ἐρωτήματα τῆς δυτικῆς μεταφυσικῆς καταλαμβάνουν μιὰ ξεχωριστὴ θέση στὴν ἱστορία τῆς φιλοσοφικῆς ἱστοριογραφίας. Ὁ συγγραφέας του βιβλίου, Χάιντς Χάιμζετ (1886-1975),
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of
Διαβάστε περισσότεραἙλένη Γλύκατζη-Ἀρβελέρ. Γιατὶ τὸ Βυζάντιο. Ἐκδόσεις «Ἑλληνικὰ Γράμματα», Ἀθήνα 2009, σελίδες 292.
Ἑλένη Γλύκατζη-Ἀρβελέρ Γιατὶ τὸ Βυζάντιο Ἐκδόσεις «Ἑλληνικὰ Γράμματα», Ἀθήνα 2009, σελίδες 292. Κατ ἐπανάληψιν ἔχει ἐπισημανθῆ ὅτι ἐπιβάλλεται νὰ ἀναθεωρήσουμε ἐμεῖς οἱ Ἕλληνες τὴν ὀπτικὴ εἰκόνα ποὺ ἔχουν
Διαβάστε περισσότεραΠεριεχόμενα. Πρόλογος 3
Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016
HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
Διαβάστε περισσότερα(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac
Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΦΩΤΟΓΡΑΦΙΑΣ Εν Αθήναις e-book 2012
ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΦΩΤΟΓΡΑΦΙΑΣ Εν Αθήναις e-book 2012 Συγγραφέας: dimdom 2 ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΦΩΤΟΓΡΑΦΙΑΣ Εν Αθήναις e-book 2012 ΦΑΚΟΙ Τό φῶς ἀπό τά κοντινά ἀντικείμενα συγκλίνει πίσω ἀπό τό φακό, στό ἐπίπεδό
Διαβάστε περισσότεραΕισαγωγικά Παραδείγματα: Παρατηρήσεις:
1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται
Διαβάστε περισσότεραΗ ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΧΡΟΝΟΥ
Ποιμαντικές σκέψεις Η ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΧΡΟΝΟΥ τοῦ Ἀλεξάνδρου Μ. Σταυροπούλου Ὁμοτίμου Καθηγητοῦ τοῦ Πανεπιστημίου Ἀθηνῶν Ὁ χρόνος καὶ ἡ σχετικότητά του Συνήθως, τέλος τοῦ παλαιοῦ ἀρχὲς τοῦ καινούριου χρόνου,
Διαβάστε περισσότεραΔρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 7 ο Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε
Διαβάστε περισσότεραΜὲ τὴν Χάρι τοῦ Κυρίου μας
Ἱερὸ Τελετὴ Λήξεως Μαθημάτων Ἁγιογραφίας τῆς Μητροπόλεώς μας Περίοδος ΣΤ, 2013-2014 Ζωὴ καὶ Δημιουργικὴ Συνέχεια στὴν Ὀρθόδοξη Ἁγιογραφία + Κυριακὴ Ἁγιορειτῶν Πατέρων, 9/22.6.2014 Μὲ τὴν Χάρι τοῦ Κυρίου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,
Διαβάστε περισσότεραΣυγκρίσεις ιατονικής Κλίµακας ιδύµου µε άλλες διατονικές κλίµακες.
Page 1 of 5 Βυζαντινή Μουσική Κλίμακες Σύγκριση τῆς Διατονικῆς Κλίμακας τοῦ Διδύμου, μὲ τὶς ἀντίστοιχες τοῦ Χρυσάνθου, τῆς Ἐπιτροπῆς 1881, καὶ ἄλλων Σὲ αὐτὴ τὴν ἱστοσελίδα δίνουμε τὴν σύγκριση (σὲ συχνότητες)
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη
Διαβάστε περισσότεραΑς θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «
.1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση μαθηματικών εννοιών, προτάσεων
Διαβάστε περισσότεραΣκέψεις γιὰ τὴν διατροφὴ καὶ τὴ νηστεία
Σκέψεις γιὰ τὴν διατροφὴ καὶ τὴ νηστεία Ἀλήθεια, πόσο σημαντικὸ εἶναι τὸ θέμα τῆς διατροφῆς. Εἴμαστε αὐτὸ ποὺ τρῶμε, λένε μερικοὶ ὑλιστὲς φιλόσοφοι. Καὶ ἐννοοῦν τίποτα παραπάνω. Ἡ λογικὴ αὐτὴ εἶναι λίγο
Διαβάστε περισσότεραΣχεσιακή Άλγεβρα και Σχεσιακός Λογισμός. Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός
7 Σχεσιακή Άλγεβρα και Σχεσιακός Λογισμός Σχεσιακή Άλγεβρα Σχεσιακός Λογισμός Σχεσιακή Άλγεβρα H Σχεσιακή Άλγεβρα (relational algebra) ορίζει ένα σύνολο πράξεων που εφαρμόζονται σε μία ή περισσότερες σχέσεις
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως
Διαβάστε περισσότεραΠΟΙΜΑΝΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΚΑΙ ΧΡΙΣΤΙΑΝΙΚΕΣ ΑΞΙΕΣ ΣΤΗΝ ΕΥΡΩΠΗ
Ἀλεξάνδρου Μ. Σταυροπούλου ΠΟΙΜΑΝΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΚΑΙ ΧΡΙΣΤΙΑΝΙΚΕΣ ΑΞΙΕΣ ΣΤΗΝ ΕΥΡΩΠΗ ( Περιοδικό «Εὐθύνη», τεῦχος 453, Σεπτέμβριος 2009, σ. 410-412) Στὴν πρωτοφανῆ κρίση τῶν ἀξιῶν ποὺ διέρχεται ἡ Οἰκουμένη
Διαβάστε περισσότεραΓνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.
Γνωριµία ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr Ωρες γραφείου (502, Γρ.Λαµπράκη 26): ευτέρα
Διαβάστε περισσότεραΣύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου:
Ορισμός Συνόλου Σύνολα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σύνολο είναι μια συλλογή διακεκριμένων
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
Διαβάστε περισσότεραἈπολογισμὸς «Ἐ.Ἐ.Ε.» καὶ Τμημάτων Ψηφιδωτοῦ, Ξυλογλυπτικῆς καὶ Πληροφορικῆς.
Ἐπὶ τῇ λήξει τῆς Περιόδου Ι (2016-2017) Ποιμαντικῶν, Κατηχητικῶν, Κοινωνικῶν καὶ Πολιτιστικῶν Δραστηριοτήτων Κυριακὴ Ἁγίων 318 Πατέρων τῆς Α Οἰκουμενικῆς Συνόδου, 15/28.5.2017 Φυλὴ Ἀττικῆς Ἀπολογισμὸς
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου
Διαβάστε περισσότεραu v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Διαβάστε περισσότεραιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36
ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 Γνωριµία ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Διαβάστε περισσότεραΗ Α.Θ.Π. ο Οικουμενικός Πατριάρχης κ.κ. Βαρθολομαίος. τίμησε με την παρουσία του τις εκδηλώσεις για τον εορτασμό
Θέρμη 25/10/2013 Η Α.Θ.Π. ο Οικουμενικός Πατριάρχης κ.κ. Βαρθολομαίος τίμησε με την παρουσία του τις εκδηλώσεις για τον εορτασμό των 35 χρόνων των Εκπαιδευτηρίων Ε. Μαντουλίδη. Τον εορτασμό των 35 χρόνων
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραἙλένη Ἰωαννίδου. χωρὶς τὶς παροτρύνσεις, τῆς ὁποίας, δὲν θὰ ἔμπαινα, ποτέ, στὴν διαδικασία τῶν μεταπτυχιακῶν σπουδῶν.
Τὸν ἀναμενόμενο μεταπτυχιακὸ μου τίτλο, ἀφιερώνω στὴν δασκάλα μου Ἑλένη Ἰωαννίδου χωρὶς τὶς παροτρύνσεις, τῆς ὁποίας, δὲν θὰ ἔμπαινα, ποτέ, στὴν διαδικασία τῶν μεταπτυχιακῶν σπουδῶν. Δὲν εἶναι μιὰ ἀφιέρωση
Διαβάστε περισσότερα5. 1 ΣΥΝΟΛΑ. Η έννοια του συνόλου
ΜΕΡΟΣ Α 5.1 ΣΥΝΟΛΑ 359 5. 1 ΣΥΝΟΛΑ Η έννοια του συνόλου Ονομάζουμε σύνολο στα Μαθηματικά κάθε ομάδα αντικειμένων τα οποία διακρίνονται μεταξύ τους με απόλυτη σαφήνεια Κάθε αντικείμενο που περιέχεται σε
Διαβάστε περισσότεραπολεμικὴ πείρα πρῶτα μὲ τὶς κινήσεις τῶν γυμνασίων, ποὺ εἶναι ἕνα εἶδος παιχνίδι. Ὕστερα, γνωρίζουν τὸν ἀληθινὸ πόλεμο. Ἔχουμε κι ἐμεῖς μπροστά μας μι
Προς τους νέους Ἐμεῖς οἱ χριστιανοὶ θεωροῦμε ἐντελῶς ἀσήμαντο πρᾶγμα τὴν ἐδῶ κάτω ἀνθρώπινη ζωή. Δὲν λογαριάζουμε καὶ δὲν λέμε καλὸ ὅ,τι μᾶς ἐξυπηρετεῖ σ αὐτὴ μονάχα τὴ ζωή. Τὴν ἔνδοξη καταγωγή, τὴν εὐρωστία
Διαβάστε περισσότεραΧρήσιμες ὁδηγίες γιὰ τοὺς ἐνηλίκους ποὺ ἐπιθυμοῦν νὰ βαπτισθοῦν Χριστιανοὶ Ὀρθόδοξοι.
Χρήσιμες ὁδηγίες γιὰ τοὺς ἐνηλίκους ποὺ ἐπιθυμοῦν νὰ βαπτισθοῦν Χριστιανοὶ Ὀρθόδοξοι. Σὰ τελευταῖα χρόνια καὶ ἰδιαίτερα μετὰ τὸ ἄνοιγμα τῶν συνόρων τῶν χωρῶν τῆς ἀνατολικῆς Εὐρώπης, ἀλλὰ καὶ γειτόνων χωρῶν
Διαβάστε περισσότερα