7. Ετερογενείς καταλυτικές διεργασίες και αντιδραστήρες 7.1 Τύποι ετερογενών καταλυτικών αντιδραστήρων
|
|
- Χλόη Μελετόπουλος
- 5 χρόνια πριν
- Προβολές:
Transcript
1 7. Ετερογενείς καταλυτικές διεργασίες και αντιδραστήρες 7. Τύποι ετερογενών καταλυτικών αντιδραστήρων αντιδραστήρες σταθερής κλίνης (διαβρεχόμενοι) κινούμενης κλίνης ρευστοποιημένη κλίνη διασκορπισμού του καταλύτη σε υγρή φάση
2 7. εξωτερικά φαινόμενα μεταφοράς και χημική αντίδραση 7.. εξωτερική μεταφορά μάζας ταχύτητα αντίδρασης ρευστό καταλύτης ρυθμιστικό βήμα. γενική περίπτωση εξωτερική και εσωτερική διάχυση. εξωτερική διάχυση 3. εσωτερική διάχυση 4. επιφανειακή αντίδραση T
3 μη πορώδη καταλύτη και μη αντιστρεπτή αντίδραση n N α( για αντίδραση ης τάξης α α a=/ α αριθμός amöhle S ) a n α α α( S ), Ν (mole/*m 3 ) (m/)=(m /)/δ(m/) α(m /m 3 ) [π.χ. α=6(-ε)d ] εάν α (m /),N (mole/*) ή α α εάν α>>> : a και S = ρυθμιστικό βήμα η αντίδραση n n εάν >>>K α : a πολύ μεγάλο και S ρυθμιστικό βήμα η εξωτερική μεταφορά μάζας α
4 γενικώς a a α σχέσεις για οριακό στρώμα Whitman δ ~ /3 θεωρία Hibie πη t χρόνος επαφής θεωρία ancwet S S - ταχύτητα ανανέωση επιφάνειας
5 εξωτερική διάχυση και ενέργεια ενεργοποίησης a α α δ αae δ α Ae δ -E/T -E/T A e E/T αae δ α Ae δ -E/T -E/T α δ α << Ε << Ae Ε =Ε -E/T
6 πειραματική εκτίμηση της επίδρασης της εξωτερική διάχυσης W F x dx (W/F ) = σταθερό μικρή F μεγάλο δ μικρός
7 7.. Μεταφορά θερμότητας στην εξωτερική επιφάνεια του καταλύτη περιορισμοί διάχυσης θερμική συμπεριφορά συστήματος Q=hα(T -T ) Q = απαγόμενη θερμότητα ανά μονάδα όγκου καταλύτη h = συντελεστής μεταφοράς θερμότητας (Joule/m de) θερμική ισορροπία Q =Q ή (-ΔH)=hα(T S -T ) : ( - ) Q : (T -T )
8 7..3 παράγοντες μεταφοράς μάζας και θερμότητας αναλογία hilton-olbun αναλογία hilton-olbun j H j f j H, j : παράγοντες μεταφοράς θερμότητας, μάζας f : συντελεστής τρίβων j j H St St H P Sc /3 /3 h η uπ κ u η π /3 /3 (e) (e) St : κριτήριο Stanton P : κριτήριο Pandtl Sc : κριτήριο Schmidt e : κριτήριο eynold Le : κριτήριο Lewi (=Sc/P) f (e) j j H (η/π) ( η/κ) /3 /3 h π Le /3 h π j =.7 j H αέρια φάση : Le = h.7 π (-ΔH)=hα(T S -T ) α( - S )(-ΔH)=hα(T S -T ) T T ( ΓH).7 ( π S ) ( - S ) μεγάλη (βραδεία διάχυση) μεγάλη διαφορά (T S -T )
9 7..4 θερμική σταθερότητα καταλυτικού αντιδραστήρα σταθερής κλίνης εξώθερμη ης τάξης Q ( ΓH) ( ΓH) Q hα(t - T ) ( ΓH)Ae α Ae E/T E/T α ( ΓH) E/T Ae α ρυθμιστικό βήμα η αντίδραση >>> (αριστερό τμήμα) Q ( ΓH) ( ΓH) ( ΓH)Ae E/T ρυθμιστικό βήμα η εξωτερική διάχυση <<< (δεξιό τμήμα) Q ( ΔH) ( ΔH) α f (T / ) σχετική θέση γραμμών Q και Q (-ΔΗ), Τ, h
10 θερμική ισορροπία Q =Q ή (-ΔH)=hα(T S -T ) προσδιορισμός (T -T ) αναλυτικά ή γραφικά σημεία σταθερής λειτουργίας Q>Q το σύστημα ψύχεται Q<Q το σύστημα θερμαίνεται Q=Q κατάσταση θερμικής σταθερότητας σύστημα Q -Q Κ, Μ σημεία σταθερής θερμικής λειτουργίας θ K θ M ασταθής περιοχή (L ψευδοσταθερό σημείο) ρύθμιση της Τ λειτουργίας προθέρμανση θερμοχωρητικότητα ψυκτικού π.χ. λειτουργία στο σημείο Μ (υψηλή Τ) είτε προθέρμανση είτε ελάττωση της θερμοχωρητικότητας του ψυκτικού
11 υστέρηση της T συναρτήσει της T 4 κρίσιμο σημείο απόσβεσης κρίσιμο σημείο ανάφλεξης περιοχές - και 3-4 σταθερής λειτουργίας (Q Q ) -3 Q<Q 4- Q>Q
12 7..5 Εξωτερική αποτελεσματικότητα και εκλεκτικότητα του καταλύτη ισόθερμη εξωτερική αποτελεσματικότητα η παπαηηπούμ ενη ηασύηηηα επιπεαζόμε νη από εξωηεπική διάσςζη ηασύηηηα μη επιπεαζόμε νη από εξωηεπική διάσςζη η α η η όηαν α για γενική περίπτωση (T T, ) n η ( ηα) ex ε βηα η α E ε T : αριθμός Aheniu ( ΓH) β T π Le /3 : αδιάστατη αδιαβατική αύξηση θερμοκρασίας από βιβλιογραφία η f (ηα) για διάφορες τιμές ε και β
13 ισόθερμη εκλεκτικότητα (Ε) στις παράλληλες αντιδράσεις καθοριστικό βήμα εξωτερική διάχυση αντίδραση A B n A n A A L m A m A E nm A E nm A E E A A nm n > m E/E < n < m E/E > n = m E/E =
14 7.3 εσωτερικά φαινόμενα μεταφοράς, αντίδραση και διάχυση στους πόρους ρευστό καταλύτης ρυθμιστικό βήμα. γενική περίπτωση εξωτερική και εσωτερική διάχυση. εξωτερική διάχυση 3. εσωτερική διάχυση 4. επιφανειακή αντίδραση
15 7.3. μεταφορά μάζας στους πόρους - διάχυση μοριακή διάχυση (κανονική ή συνήθης) d >λ διάχυση Knuden d <λ επιφανειακή διάχυση d = διάμετρος πόρων λ = μέση ελεύθερη διαδρομή μοριακή διάχυση d >λ A, Aθ f θ = πορώδες (κλασματική κενότητα) σωματιδίου f = δαιδαλόδες των πόρων A (cm /).7 εξίσωση Hichfelde.46 (/M P (ζ t AB A ) ) (/M B f (T/ε ) T ΑΒ ) 3/ (/M A ) (/M B ) διάχυση Knuden d <λ K, Kθ f K u 3 3 8T πm 97 T M K (cm /) 94θ fsπ T M θ f μήκορ ηεμασιδίος Γ K K, ~ N K Ν Κ = ρυθμός διάχυσης S, ρ = ειδική επιφάνεια, πυκνότητα = ακτίνα πόρων u μέζη ηασύηηηα μοπίων
16 μεταβατική περιοχή K, A, ρυθμός διάχυσης (mole/m ) Fic-I d P dy P YA Y N A t A t A A, dz T dz T Γz ΔΖ : πάχος σωματιδίου υψηλές P t : A, (/ Pt ) και K,, = A. *P t =cont N=cont χαμηλές P t : για =cont μικρός K, =cont, = K, P YA Y t A N K, A, ( Pt ) T Γz NA,
17 μεταβατική περιοχή K, A, (P t ) ρυθμός διάχυσης (mole/m ) Fic-I d P dy P YA Y N A t A t A A, dz T dz T Γz ΔΖ : πάχος σωματιδίου μεγάλες : K,, = A. Pt T Y Y A A N A, A, Γz /P P cont N cont A, A t A, t A, μικρές : P t =cont μικρός K, ( K, << A, ), Pt T Y Y A A N A, K, Γz = K, K, ( ) NA, ( )
18 7.3. μεταφορά θερμότητας στους πόρους του καταλύτη Fouie : από όλη την κάθετη, ως προς την μεταφορά, επιφάνεια του σωματιδίου Q 4π dt d φαινόμενη θερμική αγωγιμότητα - ακτίνα σφαιρικού σωματιδίου Woodide - Meme f θ, f θερμική αγωγιμότητα στερεού, ρευστού θ πορώδες σωματιδίου
19 7.3.3 ταυτόχρονη μεταφορά μάζας και χημική αντίδραση - ισόθερμη αποτελεσματικότητας ισόθερμη εσωτερική αποτελεσματικότητα (η) η παπαηηπούμ ενη ηασύηηηα ανηίδπαζηρ ηασύηηηα ανηίδπαζηρ ζηην εξωηεπική επιθάνεια =η
20 σφαιρικό σωματίδιο ακτίνας παράγοντας Thiele ( ης τάξης αντίδραση) tanh 3 η ισοζύγιο μάζας αντιδρώντων στον dv=4π Δ Γ 4π d d 4π d d 4π Γ d d d d =, =, =, dc/d= ) inh( inh για όλη τη σφαίρα: αντίδραση=διάχυσηαπό την επιφάνεια 3 d d 4π π 3 4 tanh 3 d d 3 tanh d d όπου συνθήκες επιφάνειας : =, = tanh 3 tanh 3 η /
21 σφαιρικό σωματίδιο η 3 tanh όταν τότε η (<< ή μικρά σωματίδια) μεγάλο τότε μικρές τιμές η (>> ) για > 5 τότε tanh και 3 η
22 υπερβολικό ημίτονο (inh) inh e e υπερβολικό συνημίτονο (coh) coh e e υπερβολική εφαπτομένη (tanh) tanh e e e e - υπερβολική συνεφαπτομένη (coth) coth e e e e
23 επίπεδη πλάκα πάχους L ή ευθύγραμμος κυλινδρικός πόρος μήκους L η tanh L >3 τότε tanh και η
24 εσωτερική διάχυση : ενέργεια ενεργοποίησης τάξη αντίδρασης ης τάξης αντίδραση και ρυθμιστικό βήμα η εσωτερική διάχυση κυλινδρικοί πόροι η L L / / =η Ea T E E T = E E E a E
25 n ης τάξης αντίδραση L (n ) n- η n n L n (n ) n- n L / (n)/ ολική ισόθερμη αποτελεσματικότητα η (εσωτερική εξωτερική) για ης τάξης μη αντιστρεπτή αντίδραση η tanh [ (tanh)/b im] όταν >3 : tanh και L Bi m - αριθμός Biot για την μεταφορά μάζας η [ /Bi m ] L[ /Bi m ] η n δίδεηαι ζηη βιβλιογραθία ζε διαγράμμαηα n = f (n ) για διάθορες ηιμές Bi m η L - αδιάστατη ποσότητα
26 7.3.5 επίδραση της δηλητηρίασης του καταλύτη στην αποτελεσματικότητα και την ταχύτητα αντίδρασης ομοιόμορφη δηλητηρίαση εκλεκτική δηλητηρίαση (στόμιο πόρων) F ηασύηηηα ανηίδπαζηρ ζε δηληηηπιαζμένο πόπο ηασύηηηα ανηίδπαζηρ ζε μή δηληηηπιαζμένο πόπο F η ( α) η η, η : αντίστοιχες αποτελεσματικότατες α: κλάσμα δηλητηριασμένης επιφάνειας ομοιόμορφη δηλητηρίαση μικρό : η και F - α μεγάλο : η και F - α F A εκλεκτική δηλητηρίαση π.χ. στόμιο πόρων F [/( a)] [ ( a) ]/( a) καμπύλες Α,Β
27 7.4 πραγματική και παρατηρούμενη ταχύτητα σε εργαστηριακούς και βιομηχανικούς αντιδραστήρες εργ. αντιδραστήρες : φαινόμενη ταχύτητα αληθινή ταχύτητα : ελαχιστοποίηση επίδρασης μεταφοράς μάζας και θερμότητας τεχνοοικονομικοί λόγοι βιομηχανικοί αντιδραστήρες : εξωτερική μεταφορά μάζας και θερμότητας εσωτερική διάχυση στους πόρους αληθινή ταχύτητα (εργ. αντιδραστήρα) + συνθήκες μεταφοράς μάζας και θερμότητας (βιομηχανικό αντιδραστήρα) ταχύτητα αντίδρασης σε συνθήκες βιομηχανικού αντιδραστήρα
28 γνωστά :. πραγματική ταχύτητα 5. φυσικές ιδιότητες ρευστού. ιδιότητες ρευστού (T, ) (, αριθμοί Pandlt και Schmidt) 3. συνθήκες ροής 6. σχήμα μέγεθος και φυσικές ιδιότητες καταλύτη 4. θερμότητα αντίδρασης (ΔΗ σετ ) 7. πορώδες κλίνης m πραγματική ταχύτητα αντίδρασης σε T, m και η m () μέθοδος δοκιμής - σφάλματος. από διαγράμματα j =f(e), j H = f (e) υπολογισμός,h. επιλογή μίας τιμής T και υπολογισμός (4) m ή α m ( ) () m( ΔH) ha m(t T ) (3) 3. υπολογισμός (η) και από () η m 4. από m υπολογισμός T (3) 5. σύγκριση των δύοt και επανάληψη της διαδικασίας έως την ικανοποιητική προσέγγιση των δύο τιμών 6. υπολογισμός m βάσει της τελικής T αm( )(-H) ha m(t T ) (4)
ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ
ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ Παράγοντας Αποτελεσματικότητας Ειδικά για αντίδραση πρώτης τάξης, ο παράγοντας αποτελεσματικότητας ισούται προς ε = C
Σύνοψη - Αντίσταση στη διάχυση στους πόρους
Σύνοψη - Αντίσταση στη διάχυση στους πόρους Για να βρούμε πώς η αντίσταση στους πόρους επιδρά στο ρυθμό διεργασίας, υπολογίζουμε το Μ Τ ή το Μ W, κατόπιν ευρίσκουμε το ε από τις κατάλληλες εξισώσεις, ή
Σύνοψη ΜΗΧΑΝΙΚΗΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Χημική αντίδραση : a 1. + α 2 Α (-a 1 ) A 1. +(-a 2
ΠΑ- Σύνοψη ΜΗΧΑΝΙΚΗΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Χημική αντίδραση : a A + α Α +... ------------>...+a A ή σε μορφή γραμμικής εξίσωσης a A +...+(-a ) A +(-a ) A +... 0 a Στοιχειομετρικοί συντελεστές ως προς Α (
Η ΕΞΙΣΩΣΗ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΓΙΑ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ
Η ΕΞΙΣΩΣΗ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΓΙΑ ΚΙΝΗΤΙΚΗ Λόγω του μεγάλου βιομηχανικού ενδιαφέροντος των καταλυτικών αντιδράσεων έχει καταβληθεί πολύ μεγάλη προσπάθεια για την ανάπτυξη θεωριών, από τις οποίες να είναι δυνατόν
4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση
ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ
Εισαγωγή Διαδικασία σχεδιασμού αντιδραστήρα: Καθορισμός του τύπου του αντιδραστήρα και των συνθηκών λειτουργίας. Εκτίμηση των χαρακτηριστικών για την ομαλή λειτουργία του αντιδραστήρα. μέγεθος σύσταση
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Κεφάλαιο Πρόλογος i Κατάλογος Σχημάτων και Εικόνων v Ενότητα 1: Εισαγωγή 1-1 1.1 Το μαθηματικό πρότυπο: ισοζύγια και άλλες σχέσεις. 1-1 1.2 Αριστοποίηση 1-2 1.3 Αλλαγή κλίμακας (scale
Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες
Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες Σε πολλές χημικές αντιδράσεις, οι ταχύτητές τους επηρεάζονται από κάποια συστατικά τα οποία δεν είναι ούτε αντιδρώντα ούτε προϊόντα. Αυτά τα υλικά
ΤΕΙ ΚΑΒΑΛΑΣ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ
ΤΕΙ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΜΗΧ/ΚΩΝ ΤΕΧΝ. ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ Φ.Α. Τ.Ε. & ΜΗΧ/ΓΩΝ ΜΗΧ/ΚΩΝ Τ.Ε. ΚΑΤΕΥΘΥΝΣΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΑΣΚΗΣΕΙΣ - ΠΡΑΞΗΣ Καθηγήτρια, Ε. ΑΠΟΣΤΟΛΙΔΟΥ 2017-2018 Άσκηση 1
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών
Χημικές Διεργασίες: Εισαγωγή
: Εισαγωγή Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση - Αφυδρογόνωση - Πυρόλυση - Ενυδάτωση κλπ Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για
ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ. Πορώδης κόκκος τιτανίου. Χρήση ως καταλύτης αντιδράσεων.
ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ Πορώδης κόκκος τιτανίου. Χρήση ως καταλύτης αντιδράσεων. Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 Χημική κινητική Η χημική κινητική μελετά: Την ταχύτητα με την οποία εξελίσσεται μία
Χειμερινό εξάμηνο
Εξαναγκασμένη Συναγωγή Ροή Πάνω από μία Επίπεδη Επιφάνεια Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Εξαναγκασμένη συναγωγή: Στρωτή ροή σε επίπεδες πλάκες (orced convection
3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας
3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις
ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί
ΕΝΖΥΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΣΕ ΕΤΕΡΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ
ΕΝΖΥΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΣΕ ΕΤΕΡΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ ΚΙΝΗΤΙΚΗ ΕΝΖΥΜΩΝ ΣΕ ΔΙΑΛΥΜΑ ΕΠΕΝΕΡΓΟΥΝΤΩΝ ΣΕ ΑΔΙΑΛΥΤΑ ΥΠΟΣΤΡΩΜΑΤΑ το υπόστρωμα σε στερεά (αδιάλυτη) μορφή κλασσική περίπτωση: η υδρόλυση αδιάλυτων πολυμερών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών
Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3
Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου 2014 1/3 Πρόβλημα 2. Καταστατική Εξίσωση Van der Waals (11 ) Σε ένα πολύ γνωστό μοντέλο του ιδανικού αερίου, του οποίου η καταστατική εξίσωση περιγράφεται από το νόμο
4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier
Χημικός Διδάκτωρ Παν. Πατρών 4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Τι ονομάζεται θέση χημικής ισορροπίας; Από ποιους παράγοντες επηρεάζεται η θέση της χημικής
Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής
Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία
Παράγοντες που επηρεάζουν τη θέση της χημικής ισορροπίας. Αρχή Le Chatelier.
Παράγοντες που επηρεάζουν τη θέση της χημικής ισορροπίας. Αρχή Le Chatelier. H θέση ισορροπίας επηρεάζεται από τους εξής παράγοντες χημικής ισορροπίας: Τη συγκέντρωση των αντιδρώντων ή των προϊόντων. Την
v = 1 ρ. (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 5 ο : Το οριακό
Υπολογισµοί του Χρόνου Ξήρανσης
Η πραγµατική επιφάνεια ξήρανσης είναι διασπαρµένη και ασυνεχής και ο µηχανισµός από τον οποίο ελέγχεται ο ρυθµός ξήρανσης συνίσταται στην διάχυση της θερµότητας και της µάζας µέσα από το πορώδες στερεό.
ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.
Εισαγωγή Έστω ιδιότητα Ρ. ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ α) Ρ = Ρ(r, t) => μη μόνιμη, μεταβατική κατάσταση. β) P = P(r), P =/= P(t) => μόνιμη κατάσταση (μη ισορροπίας). γ) P =/= P(r), P(t) σε μακροσκοπικό χωρίο =>
1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Ετερογενή Μείγματα & Συστήματα Καύσης 1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Δ. Κολαΐτης Μ. Φούντη Δ.Π.Μ.Σ. «Υπολογιστική Μηχανική»
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Επιλέγοντας το κατάλληλο διάγραμμα φάσεων για ένα πραγματικό
1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ
η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού
6 ετερογενής Καταλυτική Δράση - Καταλύτες. ετερογενής. ομογενής. ενζυματική. Ni 2. ζύμη
6 ετερογενής Καταλυτική Δράση - Καταλύτες ετερογενής Ni H H H H H ομογενής H HOOH OH OO HO ενζυματική 5 ζύμη 6HO6 H ΟΗ 6. καταλύτες βιομηχανικοί καταλύτες φορέας ή υπόστρωμα l O 3, SiO, l O 3 -SiO κλπ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Η Επιστήμη της Θερμοδυναμικής ασχολείται με την ποσότητα της θερμότητας που μεταφέρεται σε ένα κλειστό και απομονωμένο σύστημα από μια κατάσταση ισορροπίας σε μια άλλη
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Κ. Μάτης ΤΟ ΠΡΟΒΛΗΜΑ ΠΕΡΙΛΑΜΒΑΝΕΙ ΕΝΑ ΣΥΝΕΧΗ ΠΛΗΡΩΣ ΑΝΑΜΙΓΝΥΟΜΕΝΟ ΑΝΤΙΔΡΑΣΤΗΡΑ (CSTR) ΜΕ ΔΥΝΑΤΟΤΗΤΑ ΕΝΑΛΛΑΓΗΣ ΘΕΡΜΟΤΗΤΑΣ ΕΣΩΤΕΡΙΚΑ ΜΕ ΜΙΑ ΣΠΕΙΡΑ. Σημ. Η σωστή απάντηση κάθε
Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ
ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 2: Θερμική Αγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού
Χειμερινό εξάμηνο
Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από
Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι
Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 13: Χημική κινητική
Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 13: Χημική κινητική Αν. Καθηγητής Γεώργιος Μαρνέλλος e-mail: gmarnellos@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων
Ετερογενής μικροβιακή ανάπτυξη
Ετερογενής μικροβιακή ανάπτυξη Περιπτώσεις ανάπτυξη κάποιου βιοφίλμ στα τοιχώματα του αντιδραστήρα. ανάπτυξη συσσωματώματων (flocs) στο εσωτερικό του αντιδραστήρα. συχνά οι αντιδραστήρες είναι εφοδιασμένοι
Kefˆlaio 1. Jermìthta. 1.1 Ask seic. k 1. k 2 + L2
Kefˆlaio 1 Jermìthta 1.1 Ask seic 1. Εστω δύο ράβδοι με μήκη L 1 και L 2 και θερμικές αγωγιμότητες k 1 και k 2 αντιστοίχως. Συνδέουμε τις ράβδους μεταξύ τους σε σειρά, ενώ τα δύο ελεύθερα άκρα τους έρχονται
ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ,
ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ, Octave Levenspiel ΚΕΦΑΛΑΙΟ : Εισαγωγή στις Χημικές Διεργασίες Σελίδα Λανθασμένη Έκφραση Σωστή Έκφραση 2 6 Σχήμα 2 Μοντέλο ροής η κατάσταση συσσώρευσης Σχήμα 3 Εκθέτης:
Ομογενή Χημικά Συστήματα
Ομογενή Χημικά Συστήματα 1. Πειραματικός Προσδιορισμός Τάξης Αντιδράσεων 2. Συνεχείς Αντιδραστήρες (Ι) Πειραματική Μελέτη Ρυθμού Αντίδρασης Μέθοδοι Λήψης και Ερμηνείας Δεδομένων (ΙΙ) Τύποι Συνεχών Αντιδραστήρων:
1 η ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΑΠΛΟ ΤΟΙΧΩΜΑ
ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1 η ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΑΠΛΟ ΤΟΙΧΩΜΑ Σκοπός της άσκησης Η κατανόηση της χρήσης της εξίσωσης Fourier
7 Κινητική Θραύσης Σωματιδίων σε Σφαιρόμυλο
7 Κινητική Θραύσης Σωματιδίων σε Σφαιρόμυλο 7. Θεωρία Η ελάττωση του μεγέθους κόκκων με θραύση είναι μία σπουδαία διεργασία σε βιομηχανίες όπως εξαγωγής ορυκτών, μεταλλουργίας, παραγωγής ενέργειας και
Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας.
5 η ΔΙΑΛΕΞΗ Στόχος της διάλεξης αυτής είναι η κατανόηση των διαδικασιών αλλά και των σχέσεων που χρησιμοποιούνται για τον προσδιορισμό του ρυθμού μεταφοράς θερμότητας, Q &, αλλά και του επιφανειακού συντελεστή
2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά
2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα
ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ. Περιληπτική θεωρητική εισαγωγή
ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΤΕΧΝΟΛΟΓΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Περιληπτική θεωρητική εισαγωγή α) Τεχνική zchralski Η πιο συχνά χρησιμοποιούμενη τεχνική ανάπτυξης μονοκρυστάλλων πυριτίου (i), αρίστης ποιότητας,
Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα, Καταιονισμοί.
Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα, Καταιονισμοί. Αδρονικές αλληλεπιδράσεις στην ατμόσφαιρα Κατά μέσον όρο 50% της ενέργειας του αρχικού παίρνει το leading paricle. p p +... Η πολλαπλότητα
ΔΙΑΣΠΟΡΑ ΑΕΡΙΩΝ ΡΥΠΩΝ
ΔΙΑΣΠΟΡΑ ΑΕΡΙΩΝ ΡΥΠΩΝ Παράμετροι που επηρεάζουν την τυρβώδη ροή, την ταχύτητα και την διεύθυνση του ανέμου Η τριβή με το έδαφος Η κατακόρυφη κατανομή της θερμοκρασίας στην ατμόσφαιρα Η τοπογραφία και η
(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η
ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,
3. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOULLI Κίνηση σωµατιδίων ρευστού
. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOLLI Κίνηση σωµατιδίων ρευστού ύναµη, επιτάχυνση F mα εφαρµογή στην κίνηση σωµατιδίου εύτερος νόµος του NEWTON Επιτάχυνση F mα ΒΑΣΙΚΕΣ ΠΑΡΑ ΟΧΕΣ Ρευστά χωρίς ιξώδες Πίεση-Βαρύτητα
Όνομα :... Ημερομηνία:... /... /...
Όνομα :... Ημερομηνία:... /... /... Επαναληπτικό Διαγώνισμα Χημείας Γ Λυκείου Ομάδας Προσανατολισμού Θετικών Σπουδών (1 ο + 2 ο + 3 ο + 4 ο + 5 ο ΚΕΦ.) Διάρκεια 180 min ΘΕΜΑ Α Στις ερωτήσεις Α1 εως Α4
ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Διδάσκοντες:Ν. Καλογεράκης Π. Παναγιωτοπούλου Γραφείο: K.9 Email: ppanagiotopoulou@isc.tuc.gr Μέρες/Ώρες διδασκαλίας: Δευτέρα (.-3.)-Τρίτη (.-3.) ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Αγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό
σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης
σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης Αρχές μεταφοράς μάζας Αρχές σχεδιασμού συσκευών μεταφοράς μάζας Διεργασίες μεταφοράς μάζας - Απορρόφηση - Απόσταξη - Εκχύλιση
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα η : Αγωγή Μονοδιάστατη αγωγή Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Cmmns.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας
1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πρόβλημα 1 Μηχανική Ρευστών Κεφάλαιο 1 Λυμένα Προβλήματα Μια αμελητέου πάχους επίπεδη πλάκα διαστάσεων (0 cm)x(0
ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ,
ΠΑΡΟΡΑΜΑΤΑ ΜΗΧΑΝΙΚΗ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ, Octave Levenspiel ΚΕΦΑΛΑΙΟ 1: Εισαγωγή στις Χημικές Διεργασίες Σελίδα Λανθασμένη Έκφραση Σωστή Έκφραση 2 6 Σχήμα 12 Μοντέλο ροής η κατάσταση συσσώρευσης Εκθέτης:
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Ιξώδες Ταχύτητα διάτμησης Αριθμός Reynolds Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος
ΑΣΦΑΛΕΙΑ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΠΑΡΑΔΕΙΓΜΑΤΑ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ
ΠΑΡΑΔΕΙΓΜΑΤΑ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ 9 ο Εξάμηνο Ακ. Έτος 2018-2019 ΑΚΗΣΗ 3. Να υπολογιστεί η δόση θερμικής ακτινοβολίας σε απόσταση 100m από το κέντρο φλεγόμενης λίμνης. Η λίμνη έχει δημιουργηθεί από την διαρροή
Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση
1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών
4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΓΚΑΡΣΙΑ ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΤΟΠΙΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΘΕΡΜΙΚΗΣ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑΣ
V S. r p = η k n. n S (53) r P = n s K +
53 Φ Γ = X ( K+ ) V ( K ) V K K = = + S KD S KD X Ο ορισµός του γενικευµένου αριθµού Thil είναι ακριβώς ίδιος µε τον αριθµός Thil που αναπτύχθηκε αναλυτικά. 6..4 Αλλαγή της φαινόµενης κινητικής αντιδράσεων
παραγωγή θερμότητας T=T1
ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων στην Αγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στα μαθήματα αμέσως μετά το Πάσχα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος, πρέπει να προσπαθήσετε
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ενδεικτικές απαντήσεις
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ενδεικτικές απαντήσεις Θέμα Α Α.1 - β Α.2 - β Α.3 - γ Α.4 - δ Α.5 - δ Θέμα Β
ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ. Διάχυση Συναγωγή. Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak
1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙΙ Διάχυση Συναγωγή Δημήτριος Τσιπλακίδης e mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Μεταφορά μάζας Κινητήρια δύναμη: Διαφορά συγκέντρωσης, ΔC Μηχανισμός: Διάχυση (diffusion)
8.1. Αντιδράσεις Υγρό - Αέριο
47 8.. Αντιδράσεις Υγρό - Αέριο Για τη στοιχειώδη χημική αντίδραση Α(αέριο)+ Β(υγρό)---->... που περιφράφεται από το διάνυσμα των στοιχειομετρικών συντελεστών ν, οι ρυθμοί ως προς τα αντιδρώντα είναι:
6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής
7 η 8 η ΕργαστηριακήΆσκηση ΕΦΑΡΜΟΓΕΣ ΥΓΡΗΣ ΛΙΠΑΝΣΗΣ ΣΕ Ε ΡΑΝΑ
7 η 8 η ΕργαστηριακήΆσκηση ΕΦΑΡΜΟΓΕΣ ΥΓΡΗΣ ΛΙΠΑΝΣΗΣ ΣΕ Ε ΡΑΝΑ ΠΕΡΙ ΛΙΠΑΝΣΗΣ ΚΑΙ ΣΧΕΤΙΚΩΝ ΜΗΧΑΝΙΣΜΩΝ ΑΚΤΙΝΙΚΑ Ε ΡΑΝΑ ΟΛΙΣΘΗΣΗΣ ΩΣΤΙΚΑ Ε ΡΑΝΑ ΟΛΙΣΘΗΣΗΣ Εργαστήριο Τριβολογίας Ιούνιος 2011 Αθανάσιος Μουρλάς
Εγκαταστάσεις ακινητοποιημένης καλλιέργειας μικροοργανισμών
Εγκαταστάσεις ακινητοποιημένης καλλιέργειας μικροοργανισμών Μικροοργανισμοί (συσσωματώματα μέσα σε διακυτταρική πηκτή) «προσκολλημένοι σε ένα αδρανές μέσο στερεό πληρωτικό υλικό χαλίκια αρχικά (χαλικοδιϋλιστήρια),
ΦΥΣΙΚΗ Ο.Π Β ΛΥΚΕΙΟΥ 15 / 04 / 2018
Β ΛΥΚΕΙΟΥ 1 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. Ένα μικρό σώμα εκτελεί ομαλή κυκλική κίνηση ακτίνας R. Η σχέση που συνδέει το μέτρο της γωνιακής ταχύτητας του σώματος με τη συχνότητα της κυκλικής του κίνησης
O δεύτερος νόµος της θερµοδυναµικής
O δεύτερος νόµος της θερµοδυναµικής O δεύτερος νόµος της θερµοδυναµικής Γιατί χρειαζόµαστε ένα δεύτερο νόµο ; Ζεστό, Τζ Κρύο, Τκ Ζεστό, Τζ Κρύο, Τκ q Tε Τε Ζεστό, Τζ Κρύο, Τκ q q Tε Τε Πιο ζεστό Πιο κρύο
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό
ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΚΑΥΣΗΣ ΣΤΑΓΟΝΑΣ ΥΓΡΟΥ ΚΑΥΣΙΜΟΥ. Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004
ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΚΑΥΣΗΣ ΣΤΑΓΟΝΑΣ ΥΓΡΟΥ ΚΑΥΣΙΜΟΥ Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 24 Σχηµατισµός Νέφους Σταγόνων Αρχή ιασκορπισµού ιασκορπισµός είναι η σταγονοποίηση των υγρών καυσίµων
Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 11 η : Χημική ισορροπία. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.
Τμήμα Τεχνολογίας Τροφίμων Ανόργανη Χημεία Ενότητα 11 η : Χημική ισορροπία Οκτώβριος 2018 Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής Η Κατάσταση Ισορροπίας 2 Πολλές αντιδράσεις δεν πραγματοποιούνται
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url 12.Μεταφορά Θερμότητας σε Ρευστά Χωρίς Αλλαγή Φάσης Συχνές Εφαρμογές Το θερμό ρεύμα εξόδου ενός αντιδραστήρα, όπου λαμβάνει χώρα
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας
2H 2 (g) + O 2 (g) 2H 2 O(l) Η = -572 kj,
ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 3.1 Γενικά για τη χηµική κινητική και τη χηµική αντίδραση - Ταχύτητα αντίδρασης 1. Τι µελετά η χηµική κινητική; Η χηµική κινητική µελετά - Την ταχύτητα (ή το ρυθµό) που εξελίσσεται µια
. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.
Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ Θέμα Α Α1. β, Α. β, Α. γ, Α4. δ, Α5. δ ΘΕΜΑ Β Β1. α. 1 Mg:
1. ΒΟΛΗ Προσομοιώνεται η κίνηση ενός σώματος κοντά στην επιφάνεια της Γης. Η αρχική θέση και ταχύτητά του επιλέγονται από το χρήστη.
Με τη Visual-Basic έχουν γραφτεί προγράμματα-προσομοιώσεις φυσικής, που ενδεχομένως ενδιαφέρουν κάποιους συναδέλφους. Επειδή δεν είναι δυνατή η ανάρτησή τους στο ιστολόγιο οι ενδιαφερόμενοι μπορούν να
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 6 Ιουνίου 18 1 Οριακό στρώμα και χαρακτηριστικά μεγέθη Στις αρχές του ου αιώνα ο Prandtl θεμελίωσε τη θεωρία
7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΚΤΙΝΙΚΟ Ε ΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 7.1 Εδρανα Τα έδρανα αποτελούν φορείς στήριξης και οδήγσης κινούµενων µηχανολογικών µερών, όπως είναι οι άξονες, -οι οποίοι καταπονούνται µόνο σε κάµψη
ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ ΓΕΝΙΚΑ. Σύντομη αναφορά στον όρο «Χημική κινητική» ΠΩΣ ΟΔΗΓΟΥΜΑΣΤΕ ΣΤΑ ΑΝΤΙΔΡΩΝΤΑ
ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ ΓΕΝΙΚΑ Σύντομη αναφορά στον όρο «Χημική κινητική» ΠΩΣ ΟΔΗΓΟΥΜΑΣΤΕ ΣΤΑ ΑΝΤΙΔΡΩΝΤΑ Α] ΘΕΩΡΙΑ ΣΥΓΚΡΟΥΣΕΩΝ Arrhenius Για να αντιδράσουν δυο μόρια πρέπει να συγκρουστούν αποτελεσματικά, δηλαδή
Διαδικασίες Υψηλών Θερμοκρασιών
Διαδικασίες Υψηλών Θερμοκρασιών Θεματική Ενότητα 4: Διαδικασίες σε υψηλές θερμοκρασίες Τίτλος: Διαδικασίες μετασχηματισμού των φάσεων Ονόματα Καθηγητών: Κακάλη Γλυκερία, Ρηγοπούλου Βασιλεία Σχολή Χημικών
Εφαρμοσμένη Υδραυλική. ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ
Εφαρμοσμένη Υδραυλική Πατήστε για προσθήκη Γ. Παπαευαγγέλου κειμένου ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ 1 Εισαγωγή Ρευστομηχανική = Μηχανικές ιδιότητες των ρευστών (υγρών και αερίων) Υδρομηχανική
Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ Εισαγωγικά Στην περίπτωση που επιθυμείται να διακινηθεί υγρό από μία στάθμη σε μία υψηλότερη στάθμη, απαιτείται η χρήση αντλίας/ αντλιών. Γενικώς, ονομάζεται δεξαμενή
ΕΞΙΣΩΣΗ CLAUSIUS-CLAPEYRON ΘΕΩΡΙΑ
ΕΞΙΣΩΣΗ CLAUSIUS-CLAEYRON ΘΕΩΡΙΑ Περιεχόμενα 1. 3D Διάγραμμα Φάσης 2. Λανθάνουσα θερμότητα 3. Εξίσωση Clausius Clapeyron 4. Συμπιεστότητα 5. Θερμική διαστολή 6. Θερμοχωρητικότητα 1 στερεό στερεό+υγρό υγρό
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της
ΙΙ» ΜΑΘΗΜΑ: «ΧΗΜΕΙΑ. Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Β ΕΞΑΜΗΝΟ (ΕΑΡΙΝΟ)
ΜΑΘΗΜΑ: «ΧΗΜΕΙΑ ΙΙ» Β ΕΞΑΜΗΝΟ (ΕΑΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
71 4. ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ
71 4. ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 72 73 ΔΙΔΑΚΤΙΚΗ ΩΡΑ: 15 ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: Χημική ισορροπία 4.1 Έννοια χημικής ισορροπίας Απόδοση αντίδρασης ΣΤΟΧΟΙ Στο τέλος αυτής της ώρας θα πρέπει ο μαθητής να μπορεί : Να ορίζει
1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 1. ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ (γενική περιγραφή και αναγκαιότητα) 17 1.1 Φυσικές Διεργασίες Διαχωρισμού 20 1.1.1 Μια γενική εποπτεία της παραγωγικής Χημικής Βιομηχανίας 21 1.1.2 Σύντομος
Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L
Κεφάλαιο 1 Εισαγωγικές Έννοιες της Μετάδοσης Θερμότητας ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1.1 Ένα διαχωριστικό τοίχωμα σκυροδέματος, επιφάνειας 30m, διαθέτει επιφανειακές θερμοκρασίες 5 ο C και 15 ο C, ενώ έχει
Φαινόμενα Μεταφοράς Μάζας θερμότητας
Φαινόμενα Μεταφοράς Μάζας θερμότητας 2 η Διάλεξη Μηχανισμοί μετάδοσης θερμότητας Εμμανουήλ Σουλιώτης Τμήμα Μηχανικών Περιβάλλοντος Πανεπιστήμιο Δυτικής Μακεδονίας Ακαδημαϊκό Έτος 2018-2019 Μαθησιακοί στόχοι
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους
ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ος θερμοδυναμικός νόμος 1. α. Αέριο απορροφά θερμότητα 2500 και παράγει έργο 1500. Να υπολογισθεί η μεταβολή της εσωτερικής του ενέργειας. β. Αέριο συμπιέζεται ισόθερμα και αποβάλλει