website:
|
|
- Ῥαάβ Παπακωνσταντίνου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 6 Ιουνίου 18 1 Οριακό στρώμα και χαρακτηριστικά μεγέθη Στις αρχές του ου αιώνα ο Prandtl θεμελίωσε τη θεωρία του οριακού στρώματος. Κατάφερε να συνδέσει την ιδανική με την ιξώδη ροή, να διευκρινήσει απολύτως το ρόλο των διαφόρων δυνάμεων και την περιοχή εφαρμογής της θεωρίας της άτριβης ροής. Στην περίπτωση της κίνησης των πραγματικών ρευστών πάνω σε στερεά σώματα η επίδραση του ιξώδους γίνεται ιδιαίτερα αισθητή σε ένα πολύ λεπτό στρώμα ρευστού κοντά στην επιφάνεια του στερεού που ονομάζεται οριακό στρώμα. Εξω από το οριακό στρώμα το ιξώδες παύει να αποτελεί βασικό παράγοντα στην διαμόρφωση της ροής. Το πεδίο ροής ενός πραγματικού ρευστού πάνω από το στερεό χωρίζεται σε δύο διακεκριμένες περιοχές: 1) Το οριακό στρώμα στο οποίο η ροή ελέγχεται από δυνάμεις αδράνειας, δυνάμεις πίεσης και από τις ιξώδεις δυνάμεις οι οποίες είναι της ίδιας τάξης με τις δυνάμεις αδράνειας. ) Την περιοχή έξω από το οριακό στρώμα όπου η ροή ελέγχεται μόνο από τις δυνάμεις αδράνειας και τις δυνάμεις πίεσης και μπορεί να θεωρηθεί άτριβη. jmaay@physics.auth.gr, website: 1
2 Εστω μόνιμη ομοιόμορφη ροή πάνω από λεπτή, ακίνητη, επίπεδη πλάκα παράλληλη προς τη διεύθυνση ροής. Το ρευστό πριν φτάσει στην πλάκα έχει ομοιόμορφη ταχύτητα. Η ταχύτητα του ρευστού στην επιφάνεια της πλάκας (λόγω της ιξώδους φύσης του) είναι ίση με μηδέν. Εχουμε ανάπτυξη διατμητικής τάσης η οποία προκαλεί επιβράδυνση της ροής κοντά στην επιφάνεια της πλάκας. Άρα η ταχύτητα του ρευστού ξεκινά από μηδέν για y = και αυξάνεται έως ότου γίνει ίση με την ταχύτητα του ρευστού πριν να έρθει σε επαφή με την πλάκα,. Αυτή η περιοχή ονομάζεται οριακό στρώμα. Το οριακό στρώμα δεν διατηρείται σταθερό. Εχει πάχος δ το οποίο μεταβάλλεται κατά τη διεύθυνση της ροής αφού μεγαλύτερες ποσότητες ρευστού επιβραδύνονται υπό την επίδραση των διατμητικών τάσεων που αναπτύσσονται μέσα στο ρευστό. Μπορούμε να δούμε τρεις περιοχές στο οριακό στρώμα: 1. Στρωτό οριακό στρώμα: Η περιοχή αμέσως μετά την αρχή της πλάκας όπου η ροή είναι στρωτή. Αναπτύσσεται μέχρι μια ορισμένη απόσταση από την αρχή της πλάκας μετά από την οποία η ροή παύει να είναι στρωτή και μετατρέπεται σε τυρβώδη.. Τυρβώδες οριακό στρώμα: Η περιοχή του οριακού στρώματος όπου η τυρβώδης ροή είναι πλήρως αναπτυγμένη. 3. Η μεταβατική περιοχή: Η περιοχή μεταξύ του στρωτού οριακού στρώματος και του τυρβώδους οριακού στρώματος. Η έκταση της εξαρτάται από την ύπαρξη βαθμίδας πίεσης κατά τη διεύθυνση ροής, την τραχύτητα της επιφάνειας της πλάκας, την μεταφορά της θερμότητας, τις σωματικές δυναμεις και τις διαταραχές του ελεύθερου ρεύματος. Αν η επιφάνεια είναι τραχεία το τυρβώδες οριακό στρώμα είναι δυνατό να αναπτυχθεί αμέσως μετά την αρχή της πλάκας χωρίς να προηγηθεί ανάπτυξη στρωτού οριακού στρώματος. Στο Τυρβώδες οριακό στρώμα η κατανομή των μέσων χρονικών τιμών της ταχύτητας του ρευστού είναι ομοιόμορφη και το πάχος αισθητά μεγαλύτερο από εκείνο του στρωτού οριακού στρώματος. Αυτό οφείλεται στην τύρβη η
3 οποία καταλαμβάνει γρήγορα ολόκληρη της έκταση του οριακού στρώματος και φτάνει μέχρι και την εξωτερική ροή με αποτέλεσμα την ανάμειξη ολοένα και μεγαλύτερων ποσοτήτων ρευστού καθώς η απόσταση γίνεται μεγαλύτερη. Κριτήριο για το είδος του οριακού στρώματος είναι ο τοπικός αριθμός Reynolds Re x = x ν, (1) όπου ν το κινηματικό ιξώδες του ρευστού, η ταχύτητα του ρευστού πριν την επαφή του με την στερεή επιφάνεια και x η απόσταση που διανύει το ρευστό πάνω στην επιφάνεια. Οι τιμές που παίρνει ο τοπικός αριθμός Reynolds βρίσκονται πειραματικά ως εξής: Για τη στρωτή ροή Re x <.1 5, Για τη τυρβώδες ροή Re x > Οι ενδιάμεσες τιμές προσδιορίζουν την μεταβατική περιοχή. Κρίσιμος αριθμός για τη ροή ρευστού πάνω σε πλάκα είναι Re xc = στην οποία γίνεται η μετατροπή της ροής. Δομή του οριακού στρώματος Το τυρβώδες οριακό στρώμα είναι πιο σύνθετο από το στρωτό λόγω της ανάπτυξης σε αυτό τυρβώδων τάσεων (πέρα από τις ιξώδες τάσεις που είναι οι μοναδικές διατμητικές τάσεις που αναπτύσσονται στο στρωτό οριακό στρώμα). Χαρακτηριστικά μεγέθη οριακού στρώματος Ι. Το πάχος του οριακού στρώματος δ: Δεν ορίζεται με ακρίβεια και αυτό γιατί το σημείο που διαχωρίζει σε κάθε διατομή την ταχύτητα εντός του οριακού στρώματος και εκτός από αυτό δεν καθορίζεται αυστηρά. Συνήθως ορίζουμε το πάχος του οριακού στρώματος ως την απόσταση μεταξυ της επιφάνειας του στερεού και του σημείου του πεδίου ροής στο οποίο η ταχύτητα u x =.99u e, όπου η ταχύτητα u e μπορεί να διατηρείται σταθερή ή να μεταβάλλεται κατά μήκος του εξωτερικού ορίου του οριακού στρώματος. Αν η επιφάνεια του στερεού είναι επίπεδη τότε u e =. Στην περίπτωση της καμπύλης επιφάνειας ισχύει ότι η ταχύτητα είναι συνάρτηση της θέσης u e (x). 3
4 Ενας άλλος ορισμός για το πάχος του οριακού στρώματος δίνεται όπου δ = 3δ 1, όπου το δ 1 είναι το πάχος μετατόπισης. Πειραματικά το πάχος του οριακού στρώματος αποδυκνείεται ότι εξαρτάται από την ταχύτητα του ρευστού έξω από την πλάκα, την πυκνότητα του ρευστού ρ και του συντελεστή ιξώδους µ, και ισχύει δ ΙΙ. Πάχος μετατόπισης: µx ρ = x Rex. () Πάχος μετατόπισης ονομάζουμε το πάχος ενός ιδεατού στρώματος ρευστού ταχύτητας και παροχής μάζας ίση με τη μείωση αυτής που οφειλεται στην επιβράδυνση της ροής εντός του οριακού στρώματος. Δίνεται από τη σχέση δ 1 = Επειδή για y δ, u x η παραπάνω σχέση γίνεται δ 1 = δ )dy. (3) )dy. (4) ΙΙΙ. Πάχος ορμής: Πάχος ορμής ονομάζουμε το πάχος ενός ιδεατού στρώματος ρευστού ταχύτητας στο οποίο εισέρχεται ορμή ίση με το ποσό κατά το οποίο ελλατώνεται η ορμή ροής στο πραγματικό οριακό στρώμα. Το πάχος ορμής δίνεται από τη σχέση δ = Επειδή για y δ, u x η παραπάνω σχέση γίνεται δ = δ u x )dy. (5) u x )dy. (6) Ο λόγος του πάχους μετατόπισης ως προς το πάχος ορμής ονομάζεται παράγοντας σχήματος δίνεται από τη σχέση Θ = δ 1 δ, (7) 4
5 και σχετίζεται άμεσα με το φαινόμενο της αποκόλλησης του οριακού στρώματος. Οπισθέλκουσα δύναμη Οπισθέλκουσα ονομάζεται η δύναμη που προκαλούν οι διατμητικές τάσεις στην επιφάνεια του στερεού σώματος όπου σχηματίζεται το οριακό στρώμα. Εχει διεύθυνση την κατεύθυνση ροής και δίνεται από τη σχέση F D = l τ w bdx, (8) όπου b το πλάτος της πλάκας, l το μήκος της πλάκας και τ w η τοπική διατμητική τάση στην επιφάνεια που δίνεται από τη σχέση τ w = µ( dux dy ) y =. Η οπισθέλκουσα εκφράζεται συνήθως ως συνάρτηση της δυναμικής πίεσης ρu του ελεύθερου ρεύματος της επιφάνειας A πάνω στην οποία αναπτύσσονται οι διατμητικές τάσεις και ενός αδιάστατου συντελεστή που ονομάζεται συντελεστής οπισθέλκουσας C D. Δίνεται από τη σχέση 3 Ασκήσεις ρu F D = C D A. (9) 1. Κατά τη στρωτή ροή ενός νευτώνιου ρευστού πάνω από μια λεπτή επίπεδη πλάκα σχηματίζεται οριακό στρώμα. Η κατανομή της ταχύτητας του ρευστού εντός του οριακού στρώματος προσεγγίζεται ικανοποιητικά από μια ημιτονοειδή καμπύλη. Σε απόσταση x από την αρχή της πλάκας, το πάχος του οριακού στρώματος είναι 6mm και η ταχύτητα του ρευστού μακρία από αυτή 1m/s. Το ρευστό έχει ιξώδες P a m. Να υπολογιστούν 1. Η τάση τ w την οποία ασκεί το ρευστό στην επιφάνεια της πλάκας.. Το πάχος μετατόπισης και το πάχος ορμής του οριακού στρώματος. 5
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού
v = 1 ρ. (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ
η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 5 ο : Το οριακό
Ροη αέρα σε Επίπεδη Πλάκα
Ροη αέρα σε Επίπεδη Πλάκα Η ροή του αέρα γύρω από ένα σώμα επηρεάζεται από παράγοντες όπως το σχήμα του σώματος, το μέγεθός του, ο προσανατολισμός του, η ταχύτητά του όπως επίσης και οι ιδιότητες του ρευστού.
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της
ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ
ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ Θεώρημα της Μεταφοράς Rols Taspo To Μετατρέπει τη διατύπωση ενός θεμελιώδη νόμου ενός κλειστού συστήματος σ αυτήν για έναν όγκο ελέγχου Ο ρυθμός της εκτατικής
Υδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες
Υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Είδη ροών
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός
[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):
Συναγωγή Θερμότητας: Συναγωγή Θερμότητας Μέσω Συναγωγής μεταδίδεται η θερμότητα μεταξύ της επιφάνειας ενός στερεού σώματος και ενός ρευστού το οποίο βρίσκεται σε κίνηση σχετικά με την επιφάνεια και ταυτόχρονα
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική
Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές
Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές Στο σχήμα έχουμε ροή σε ένα ιδεατό ρευστό. Οι σωλήνες πάνω στον αγωγό (μανομετρικοί σωλήνες) μετρούν μόνο το ύψος πίεσης
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9 Μετρήσεις ταχύτητας ροής αέρα με τη βοήθεια σωλήνα Prandtl και απεικόνιση του πεδίου
Ρευστομηχανική Εισαγωγικές έννοιες
Ρευστομηχανική Εισαγωγικές έννοιες Διδάσκων: Αντώνης Σακελλάριος Email: ansakel13@gmail.com Phone: 2651007837 Ώρες Γραφείου Διδάσκοντα: καθημερινά 14:00 17:00, Εργαστήριο MEDLAB, Ιατρική Σχολή Περιεχόμενα
4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΓΚΑΡΣΙΑ ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΤΟΠΙΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΘΕΡΜΙΚΗΣ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑΣ
4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Νευτώνια και μη Νευτώνια ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 15 Απριλίου 2019 1 Καταστατικές εξισώσεις Νευτώνιου ρευστού Νευτώνια ή Νευτωνικά
Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.
Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών
ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ
ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό
Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών
Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Συναγωγή Γενικές αρχές Κεφάλαιο 6 2 Ορισµός Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται σε κίνηση Εξαναγκασµένη
p = p n, (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Ιξώδες Ταχύτητα διάτμησης Αριθμός Reynolds Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 2 ο : Είδη ροής
ΠΕΡΙΕΧΟΜΕΝΑ 2.1 ΕΙΔΗ ΡΟΩΝ 2.2 ΣΥΣΤΗΜΑ & ΟΓΚΟΣ ΕΛΕΓΧΟΥ 2.3 ΕΙΔΗ ΑΝΑΛΥΣΗΣ
ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΑΛΕΞΗΣ 2.1 ΠΕΡΙΕΧΟΜΕΝΑ 2.1 ΕΙΔΗ ΡΟΩΝ 2.2 ΣΥΣΤΗΜΑ & ΟΓΚΟΣ ΕΛΕΓΧΟΥ 2.3 ΕΙΔΗ ΑΝΑΛΥΣΗΣ 2.4 2.4 ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 2.4.1 ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΑΖΑΣ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ 2.4.2 ΑΡΧΗ
Χειμερινό εξάμηνο 2007 1
ΜΜΚ 31 Μεταφορά Θερμότητας Εξαναγκασμένη Συναγωγή και Σφαίρες ΜΜΚ 31 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 και Σφαίρες (flow across cylinders
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής
ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ
ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Η μελέτη της ροής μη συνεκτικού ρευστού γύρω από κύλινδρο γίνεται με την μέθοδο της επαλληλίας (στην προκειμένη περίπτωση: παράλληλη ροή + ροή διπόλου). Εδώ περιοριζόμαστε να
Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής
Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία
2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ Γενικά Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις Κατανοµή στρωτών και τυρβωδών
2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ 2 2.1 Γενικά 2 2.2 Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις 2 2.2.1 Κατανοµή στρωτών και τυρβωδών τάσεων 2 2.2.2 Περιοχές ροής 3 2.3 Κατανοµές ταχυτήτων
Μακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία
Σημειώσεις Εγγειοβελτιωτικά Έργα
4. ΚΛΕΙΣΤΟΙ ΑΓΩΓΟΙ 4.1. Γενικά Για τη μελέτη ενός δικτύου κλειστών αγωγών πρέπει να υπολογιστούν οι απώλειες ενέργειας λόγω τριβών τόσο μεταξύ του νερού και των τοιχωμάτων του αγωγού όσο και μεταξύ των
Στοιχεία Μηχανολογικού Εξοπλισμού
Στοιχεία Μηχανολογικού Εξοπλισμού Σκοπός Η γνωριμία και η εξοικείωση των φοιτητών με τον μηχανολογικό εξοπλισμό (σωληνώσεις, αντλίες, ανεμιστήρες, συμπιεστές, μετρητικά όργανα) που χρησιμοποιείται στη
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ, ΑΕΡΟΝΑΥΤΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II Ροή σε Αγωγούς
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί
Αιολική Ενέργεια & Ενέργεια του Νερού
Αιολική Ενέργεια & Ενέργεια του Νερού Ενότητα : Εισαγωγή στην Αεροδυναμική Γεώργιος Λευθεριώτης, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Εισαγωγή στις βασικές έννοιες
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ
ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΚΑΤΑΝΟΜΗ ΠΙΕΣΗΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΟΠΙΣΘΕΛΚΟΥΣΑΣ Σκοπός της άσκησης Η μέτρηση
Χειμερινό εξάμηνο 2007 1
Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές
κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών
Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών
ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί
Διδάσκουσα: Καθηγήτρια Εφαρμογών Σ. Πέππα
Διδάσκουσα: Καθηγήτρια Εφαρμογών Σ. Πέππα Ορισμός Αντίσταση της γάστρας ορίζεται εκείνη η συνιστώσα της συνολικής υδροδυναμικής δύναμης που ασκείται από το νερό σε οριζόντιο επίπεδο και κατά τη διεύθυνση
PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2: ΡΟΗ ΣΕ ΑΓΩΓΟΥΣ 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ Η πειραματική εργασία περιλαμβάνει 4 διαφορετικά πειράματα που σκοπό έχουν: 1. Μέτρηση απωλειών πίεσης σε αγωγό κυκλικής διατομής.
ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ
166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;
Εργαστήριο Μηχανικής Ρευστών
Εργαστήριο Μηχανικής Ρευστών Αργυρόπουλος Αθανάσιος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Β Ημ/νία εκτέλεσης Πειράματος: 26-11-1999 Ημ/νία παράδοσης Εργασίας: 16-12-1999 1 Θεωρητική Εισαγωγή: 1. Εισαγωγικές έννοιες
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Χειμερινό εξάμηνο
Εξαναγκασμένη Συναγωγή Ροή Πάνω από μία Επίπεδη Επιφάνεια Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Εξαναγκασμένη συναγωγή: Στρωτή ροή σε επίπεδες πλάκες (orced convection
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
Διαφορική ανάλυση ροής
Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη
3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας
3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις
ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 5 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΓΚΑΡΣΙΑ ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Σκοπός της άσκησης Η κατανόηση
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ
Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ
ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται
I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ. I.2.a Εισαγωγή
I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ I.2.a Εισαγωγή Οι αεροσήραγγες (wind tunnels) εμφανίστηκαν στα τέλη του 19 ου αιώνα και έγιναν ιδιαίτερα δημοφιλείς το 1903 από τους αδελφούς Wright. Η χρήση τους εξαπλώθηκε
6 Εξαναγκασμένη ροή αέρα
6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Η εργασία δημοσιεύτηκε στο 9ο τεύχος του περιοδικού Φυσικές Επιστήμες στην Εκπαίδευση,
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών
ΑΕΡΟ ΥΝΑΜΙΚΗ ΕΡΓ Νο2 ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝ ΡΟ
ΑΕΡΟ ΥΝΑΜΙΚΗ ΕΡΓ Νο2 ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝ ΡΟ Η µελέτη της ροής µη συνεκτικού ρευστού γύρω από κύλινδρο γίνεται µε την µέθοδο της επαλληλίας (στην προκειµένη περίπτωση: παράλληλη ροή + ροή διπόλου).
Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον Ενότητα 3 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων
Υδραυλικός Υπολογισμός Βροχωτών Δικτύων
Υδραυλικός Υπολογισμός Βροχωτών Δικτύων Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr Συνολικό δίκτυο ύδρευσης Α. Ζαφειράκου,
Υπολογισμός Παροχής Μάζας σε Αγωγό Τετραγωνικής Διατομής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ, ΑΕΡΟΝΑΥΤΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I Υπολογισμός
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Εξαναγκασµένη συναγωγή Κεφάλαιο 7 2 Ορισµός του προβλήµατος Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται σε κίνηση
ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 3: Συναγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Συναγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 5 ΣΤΡΩΤΗ ΡΟΗ ΓΥΡΩ ΑΠΟ ΣΤΕΡΕΗ ΣΦΑΙΡΑ ΓΙΑ ΜΙΚΡΟΥΣ ΑΡΙΘΜΟΥΣ REYNOLDS
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I Εργαστηριακή Άσκηση Μέτρηση Ιξώδους Επιμέλεια: Λάμπρος Καϊκτσής Μάρτιος
ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ. Οι εφαρμογές της διαστατικής ανάλυσης είναι:
ΔΙΑΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Χρήσεις της διαστατικής ανάλυσης Η διαστατική ανάλυση είναι μία τεχνική που κάνει χρήση της μελέτης των διαστάσεων για τη λύση των προβλημάτων της Ρευστομηχανικής. Οι εφαρμογές της διαστατικής
θέμα, βασικές έννοιες, ομοιόμορφη Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014
Υδραυλική ανοικτών αγωγών θέμα, βασικές έννοιες, ομοιόμορφη ροή Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014 Σκαρίφημα Σκελετοποίηση Διάταξη έργων: 3 περιοχές
Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών
Γραπτή εξέταση περιόδου Ιουνίου 011 διάρκειας,0 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική (ΜΕ0011), 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επ.Συν.Τμ.Πολ.Εργ.Υποδ.
ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου.
ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. Στα ιξωδόμετρα αυτά ένας μικρός σε διάμετρο κύλινδρος περιστρέφεται μέσα σε μια μεγάλη μάζα του ρευστού. Για
Σχεδιασμός και ανάλυση δικτύων διανομής Υπολογισμός Παροχών Αγωγών
Σχεδιασμός και ανάλυση δικτύων διανομής Υπολογισμός Παροχών Αγωγών Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr Παροχή H
Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.
1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4
ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ
Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο
Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής
501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης
μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές).
Μερικές ερωτήσεις στους κλειστούς αγωγούς: D Παροχή: Q (στους ανοικτούς αγωγός συνήθως χρησιμοποιούμε 4 μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Έστω
ΟΛΟΚΛΗΡΩΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΣΥΝΕΚΤΙΚΩΝ ΣΤΡΩΜΑΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΣΥΝΕΚΤΙΚΕΣ ΡΟΕΣ ΣΤΙΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (9 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
και επιτάχυνση μέτρου 1 4m/s. Ποια από τις παρακάτω προτάσεις είναι η σωστή;
Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α Α1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση και χρειάζεται χρόνο Δt = πs για να διανύσει την απόσταση από τη μια ακραία θέση στην άλλη.
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ ΠΡΟΣΝΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝ) 3/3/019 ΤΖΓΚΡΚΗΣ ΓΙΝΝΗΣ ΘΕΜ A Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη
Καβάλα, Οκτώβριος 2013
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΑΝ.ΜΑΚΕ ΟΝΙΑΣ - ΘΡΑΚΗΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό
2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά
2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα
Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι
Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό
Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής
1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1
Ατομικά Δίκτυα Αρδεύσεων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν
Παραδείγµατα ροής ρευστών (Moody κλπ.)
Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005
Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας.
5 η ΔΙΑΛΕΞΗ Στόχος της διάλεξης αυτής είναι η κατανόηση των διαδικασιών αλλά και των σχέσεων που χρησιμοποιούνται για τον προσδιορισμό του ρυθμού μεταφοράς θερμότητας, Q &, αλλά και του επιφανειακού συντελεστή
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Φυσική (ελεύθερη) συναγωγή Κεφάλαιο 8 2 Ορισµός του προβλήµατος Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα