Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
|
|
- Βαρβάρα Βασιλειάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
2 Σύνθεση Πανοράµατος Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής 2
3 Σύνθεση Πανοράµατος 3
4 Σύνθεση Πανοράµατος Πώς µπορούµε να συνθέσουµε ένα πανόραµα; πρέπει να αντιστοιχίσουµε (στοιχίσουµε) εικόνες... 4
5 Σύνθεση Πανοράµατος Αντιστοίχιση µε χρήση Χαρακτηριστικών (Features) Εντοπισµός Χαρακτηριστικών στις δύο εικόνες... 5
6 Σύνθεση Πανοράµατος Αντιστοίχιση µε χρήση Χαρακτηριστικών (Features) Εντοπισµός Χαρακτηριστικών στις δύο εικόνες Εύρεση Αντίστοιχων Χαρακτηριστικών 6
7 Σύνθεση Πανοράµατος Αντιστοίχιση µε χρήση Χαρακτηριστικών (Features) Εντοπισµός Χαρακτηριστικών στις δύο εικόνες Εύρεση Αντίστοιχων Χαρακτηριστικών Χρήση των Αντίστοιχων σηµείων για Στοίχιση 7
8 Σύνθεση Πανοράµατος Πρώτο Πρόβληµα Εντόπισε το ίδιο σηµείο ανεξάρτητα στις δύο εικόνες Δύσκολη αν όχι ακατόρθωτη η αντιστοίχιση... Χρειαζόµαστε κάτι επιπλέον... έναν επαναλαµβανόµενο ανιχνευτή 8
9 Σύνθεση Πανοράµατος Δεύτερο Πρόβληµα Εντόπισε για κάθε σηµείο το σωστό αντίστοιχό του... ; Χρειαζόµαστε έναν αξιόπιστο και ξεχωριστό περιγραφέα 9
10 Σύνθεση Πανοράµατος l Τα χαρακτηριστικά σηµεία χρησιµοποιούνται επίσης στη: Στοίχιση Εικόνων (Image alignment) 3-Δ ανακατασκευή Ιχνηλάτιση κίνησης (Motion tracing) Αναγνώριση αντικειµένων (Object recognition) Δεικτοδότηση και ανάκτηση από βάση δεδοµένων (Indexing and database retrieval) Καθοδήγηση ροµπότ (Robot navigation) 10
11 Σύνθεση Πανοράµατος Επιθυµούµε να: Ανιχνεύουµε τα ίδια ενδιαφέροντα σηµεία ανεξάρτητα από τις Γεωµετρικές και Φωτοµετρικές αλλαγές (παραµορφώσεις) της εικόνας... 11
12 Ανιχνευτές (Detectors) l Γεωµετρικά Περιστροφής Οµοιότητας (περιστροφή + οµοιόµορφη κλιµάκωση) Συγγένειας 12
13 Ανιχνευτές (Detectors) l Φωτοµετρικά Μοντέλο γραµµικών παραµορφώσεων Iˆ ( x, y) ai ( x, y) β 13
14 Σύνθεση Πανοράµατος Επιλέγοντας «σωστά» Χαρακτηριστικά... l Ποιό είναι ένα «καλό Χαρακτηριστικό»; Ικανοποιεί την υπόθεση της «brightness constancy» Έχει υφή (αλλά δεν µεταβάλλεται πάρα πολύ). Δεν παραµορφώνεται πολύ µε το πέρασµα του χρόνου. 14
15 Σύνθεση Πανοράµατος Κοµµάτια µε µικρή διακρισιµότητα: Διακριτά κοµµάτια: Ανιχνευτής Γωνίας : ανιχνεύει σηµεία µε διακριτούς γείτονες κατάλληλους για επιβεβαίωση αντιστοιχίσεων. 15
16 Επισκόπιση Μαθήµατος l l l Ανιχνευτής Γωνιών του Harris (Corner Detector) Περιγραφή Ανάλυση Επιθυµητές Ιδιότητες Ανιχνευτών (Detectors). Αναισθησία σε: Περιστροφή Αλλαγή Κλίµακας Φωτοµετρικές Παραµορφώσεις Επιθυµητές Ιδιότητες Περιγραφέων (Descriptors). Αναισθησία σε: Περιστροφή Αλλαγή Κλίµακας Φωτοµετρικές Παραµορφώσεις 16
17 Ανιχνευτής του Harris-Βασική Ιδέα Απαιτήσεις: Θα πρέπει να αναγνωρίζουµε το «σηµείο» κοιτάζοντας µέσα από ένα µικρό παράθυρο. Ολίσθηση του παραθύρου προς οποιαδήποτε κατεύθυνση θα πρέπει να έχει ως αποτέλεσµα την έντονη αλλαγή της φωτεινότητας. 17
18 Ανιχνευτής του Harris-Βασική Ιδέα Επίπεδη περιοχή: καµιά αλλαγή. Ακµή : καµιά αλλαγή κατά την κατεύθυνση της ακµής. Γωνία : Σηµαντικές αλλαγές προς όλες τις κατευθύνσεις. 18
19 Ανιχνευτής του Harris-Βασική Ιδέα Βασίζεται στην ιδέα της αυτοσυσχέτισης (auto-correlation) Σηµαντικές Διαφορές προς όλες τις ατευθύνσεις Ενδιαφέρον Σηµείο 19
20 Ανιχνευτής του Harris-Βασική Ιδέα Demo ενός σηµείου (+) µε ξεχωριστούς γείτονες. - 20
21 Ανιχνευτής του Harris-Βασική Ιδέα Demo ενός σηµείου (+) µε ξεχωριστούς γείτονες. - 21
22 Ανιχνευτής του Harris-Βασική Ιδέα Demo ενός σηµείου (+) µε ξεχωριστούς γείτονες. - 22
23 Ανιχνευτής του Harris-Βασική Ιδέα Demo ενός σηµείου (+) µε ξεχωριστούς γείτονες. - 23
24 Ανιχνευτής του Harris-Βασική Ιδέα Demo ενός σηµείου (+) µε ξεχωριστούς γείτονες. - 24
25 Ανιχνευτής του Harris-Βασική Ιδέα Demo ενός σηµείου (+) µε ξεχωριστούς γείτονες. - 25
26 Ανιχνευτής του Harris-Βασική Ιδέα Demo ενός σηµείου (+) µε ξεχωριστούς γείτονες. - 26
27 Ανιχνευτής του Harris-Βασική Ιδέα Demo ενός σηµείου (+) µε ξεχωριστούς γείτονες. - 27
28 Ανιχνευτής του Harris-Βασική Ιδέα Ιδανικές Συνθήκες: l Μητρώο Αυτο-συσχέτισης Περιέχει «πληροφορία» για τη δοµή της γειτονιάς Χρήση Μέτρου βασισµένου στις ιδιοτιµές του µητρώου l Δύο (2) µη µηδενικές ιδιοτιµές ενδιαφέρον σηµείο l Μία (1) µη µηδενική ιδιοτιµή ακµές l Μηδέν (0) µη µηδενικές ιδοτιµές οµοιόµορφη περιοχή 28
29 Ανιχνευτής του Harris-Βασική Ιδέα Πραγµατικές Συνθήκες: l Ανίχνευση Ενδιαφέροντος Σηµείου Ορισµός κατωφλίου στις ιδιοτιµές Τοπικό µέγιστο για τοπικότητα (local maximum for localization) 29
30 Ανιχνευτής του Harris-Βασική Ιδέα Υλοποίηση της Βασικής Ιδέας: Συνάρτηση αυτο-συσχέτισης για ένα σηµείο και µια ολίσθησή του κατά ( Δx, Δy) : ( x, y) f xy ( Δx, Δy) = ( I( x, y ) I( x + Δx, y + Δy)) ( x, y ) W 2 30
31 Προσέγγιση Taylor και Μητρώο Αυτο-Συσχέτισης: Δ Δ + = + Δ + Δ y x y x I y x I y x I y y x x I y x )), ( ), ( ( ), ( ), ( ( ) 2 ), ( ), ( ), ( ), ( Δ Δ = Δ Δ W y x y x xy y x y x I y x I y x f Υλοποίηση της Βασικής Ιδέας: Άρα: 31 Υπολογιστική Όραση Ανιχνευτής του Harris-Βασική Ιδέα
32 Ορίζοντας: το µητρώο Αυτο-Συσχέτισης = W y x y W y x y x W y x y x W y x x y x I y x I y x I y x I y x I y x I C ), ( 2 ), ( ), ( ), ( 2 )), ( ( ), ( ), ( ), ( ), ( )), ( ( Υλοποίηση της Βασικής Ιδέας: και το Διάνυσµα, έχουµε: t y x ] [ Δ Δ Δ = Δ = Δ Δ C f t xy ) ( 32 Υπολογιστική Όραση Ανιχνευτής του Harris-Βασική Ιδέα
33 Ανιχνευτής του Harris-Βασική Ιδέα Μέση αλλαγή φωτεινότητας για ολίσθηση Δ: f xy ( Δ) = w( x, y )( I( x + Δx, y + Δy) I( x, y ( x, y ) W )) 2 Συνάρτηση Παραθύρου Ολισθηµένη Εικόνα Αρχική Εικόνα 33
34 Ανιχνευτής του Harris-Βασική Ιδέα f xy ( Δ) t = ΔCΔ Έστω και λ 1, λ 2 οι ιδιοτιµές του C. Έλλειψη: f xy (Δ) = c Κατεύθυνση της γρηγορότερης αλλαγής (λ max ) -1/2 (λ min )-1/2 Κατεύθυνση της πιο αργής αλλαγής 34
35 Ανιχνευτής του Harris-Βασική Ιδέα Κατηγοριοποίηση των σηµείων της εικόνας βάσει των ιδιοτιµών του Μητρώου C: λ 2 Ακµή λ 2 >> λ 1 Γωνία :λ 1 και λ 2 >>0, λ 1 ~ λ 2 ; Η f αυξάνει προς όλες τις κατευθύνσεις λ 1 και λ 2 µικρές. Η f είναι «σχεδόν» σταθερή Επίπεδη περιοχή Ακµή λ 1 >> λ 2 λ 1 35
36 Ανιχνευτής του Harris-Βασική Ιδέα det( C) trace( C) = λ1λ 2 = λ + λ 1 2 Μέτρο απόκρισης «Γωνίας»: R ( C) = det( C) - (trace( C)) όπου εµπειρική σταθερά, =
37 Ανιχνευτής του Harris-Βασική Ιδέα Το R(C) εξαρτάται αποκλειστικά από τις ιδιοτιµές του µητρώου Αυτο-Συσχέτισης. Το R(C) παίρνει µεγάλες (θετικές) τιµές σε γωνίες. Το R(C) είναι αρνητικό στις ακµές. Το R(C) είναι µικρό σε οµοιόµορφες περιοχές φωτεινότητας. 37
38 Ανιχνευτής του Harris-Ανάλυση Ιδιοτιµών λ 2 Ακµή : R<0 Γωνία : R>0 Επίπεδη περιοχή: R <ε Ακµή : R<0 λ 1 38
39 Ανιχνευτής του Harris-Ανάλυση Ιδιοτιµών Μη διακριτά τµήµατα: Η βαθµίδα (ανάδελτα) της εικόνας σε µη διακριτά τµήµατά της είναι: είτε µηδενική είτε έχει ένα κύριο στοιχείο. 39
40 Ανιχνευτής του Harris-Ανάλυση Ιδιοτιµών Διακριτά τµήµατα: Η βαθµίδα (ανάδελτα) της εικόνας σε διακεκριµένα τµήµατά της έχει δύο κύρια στοιχεία: ran ( C) = 2 40
41 Ανιχνευτής του Harris-Ανάλυση Ιδιοτιµών R( C) >> 0 41
42 Ανιχνευτής του Harris-Ανάλυση Ιδιοτιµών R( C) < 0 42
43 Ανιχνευτής του Harris-Ανάλυση Ιδιοτιµών R( C) < ε 43
44 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια l Ο Αλγόριθµος: Βρίσκει σηµεία που έχουν µεγάλες τιµές του «µέτρου» R(C) (R(C) > T (κατώφλι)). Κρατάει τα τοπικά µέγιστα της R(C). 44
45 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 45
46 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 46
47 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 47
48 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 48
49 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 49
50 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 1. Φιλτράρισµα της εικόνας µε ένα Gaussian φίλτρο: 2. Υπολογισµός της βαθµίδας της εικόνας. I( x, y) G 1 2 2σ d ( x) = e 3. Για κάθε pixel της εικόνας και για παράθυρο εύρους γίνεται ο υπολογισµός τoυ µητρώου Αυτο-Συσχέτισης: και τoυ «µέτρου»: C = R(C) x, y W I( x, y) I( x, y) 4. Επιλογή των καλύτερων υποψήφιων χαρακτηριστικών. t σ w 2π x 2 50
51 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 1. Φιλτράρισµα της εικόνας µε ένα Gaussian φίλτρο: G 1 2 2σ d ( x) = e 2π x 2 51
52 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια I( x, y) 2. Υπολογισµός του ανάδελτα της εικόνας. 52
53 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 3. Για κάθε pixel της εικόνας και για παράθυρο εύρους γίνεται ο υπολογισµός: τoυ µητρώου Αυτο-Συσχέτισης: και του «µέτρου»: R(C) C = σ w I x, y W ( x, y) I( x, y) t 53
54 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 4. Επιλογή των καλύτερων υποψήφιων χαρακτηριστικών. 54
55 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 55
56 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 56
57 Υπολογιστική Όραση Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια 57
58 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια l Αναισθησία σε Περιστροφές; 58
59 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια l Αναισθησία σε Περιστροφές; Η έλλειψη περιστρέφεται αλλά το σχήµα της (δηλαδή οι ιδιοτιµές) παραµένουν οι ίδιες!!! Το «µέτρο» R(C) είναι αναίσθητο σε περιστροφές της εικόνας. 59
60 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια l Αναισθησία σε Φωτοµετρικές Παραµορφώσεις; 60
61 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια l Αναισθησία σε Φωτοµετρικές Παραµορφώσεις; Αναισθησία σε αλλαγές της λαµπερότητας (brightness): Iˆ ( x, y) = I( x, y) + β αλλα ευαισθησία σε αλλαγές της αντίθεσης (contrast) Iˆ ( x, y) = αi( x, y) 61
62 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια l Αναισθησία σε αλλαγές Κλίµακας; 62
63 Ανιχνευτής του Harris-Αλγόριθµος (R. Harris, 1988) λόγια l Ευαισθησία σε αλλαγές Κλίµακας Αλλαγή Κλίµακας Όλα τα σηµεία κατηγοριοποιούνται ως «ακµές» Γωνία! 63
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χαρακτηριστικά Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα
Ειδικά Θέματα Υπολογιστικής Όρασης & Γραφικής. Εμμανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέματα Υπολογιστικής Όρασης & Γραφικής Εμμανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Υπολογιστική Όραση Εισαγωγή Εμμανουήλ Ζ. Ψαράκης Πολυτεχνική
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Εκτίµηση Κίνησης Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μωσαϊκά-Συρραφή Εικόνων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Matlab command: corner
Matlab command: corner http://www.mathworks.com/help/images/ref/corner.html Μια εισαγωγή-outube: http://www.outube.com/watch?v=vkwdzwerfc4 Οκτώβριος 013 Σ. Φωτόπουλος ΨΕΕ Harris Corner detector ΔΠΜΣ ΗΕΠ
Matlab command: corner
Matlab command: corner http://www.mathworks.com/help/images/ref/corner.html Μια εισαγωγή-youtube: http://www.youtube.com/watch?v=vkwdzwerfc4 Τι είναι σημεία keypoints ενδιαφέροντος Σημεία που μπορούν να
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. 1/45 Τι είναι ο SIFT-Γενικά Scale-invariant feature transform detect and
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. Εισαγωγικά: SIFT~Harris Harris Detector: Δεν είναι ανεξάρτητος της κλίμακας
Ανάκτηση πολυμεσικού περιεχομένου
Ανάκτηση πολυμεσικού περιεχομένου Ανίχνευση / αναγνώριση προσώπων Ανίχνευση / ανάγνωση κειμένου Ανίχνευση αντικειμένων Οπτικές λέξεις Δεικτοδότηση Σχέσεις ομοιότητας Κατηγοριοποίηση ειδών μουσικής Διάκριση
Ειδικές Επιστηµονικές Εργασίες
Ειδικές Επιστηµονικές Εργασίες 2005-2006 1. Ανίχνευση προσώπων από ακολουθίες video και παρακολούθηση (face detection & tracking) Η ανίχνευση προσώπου (face detection) αποτελεί το 1 ο βήµα σε ένα αυτόµατο
6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ
ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ Ρήγας Κουσκουρίδας, Βασίλειος Μπελαγιάννης, Δημήτριος Χρυσοστόμου και Αντώνιος Γαστεράτος Δημοκρίτειο Πανεπιστήμιο Θράκης, Πανεπιστημιούπολη, Κιμμέρια,
Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους
Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους Επαµεινώνδας. Φριτζίλας Μ Ε Βιοπληροφορικής Τµήµα Βιολογίας ΕΚΠΑ 17 Φεβρουαρίου 2005 Τί σηµαίνει ο τίτλος ; γεωµετρικός περιορισµός:
Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο
Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Ακμές και περιγράμματα Ακμές και περιγράμματα Γενικά Μεγάλο τμήμα της πληροφορίας που γίνεται αντιληπτή
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα
ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
Μάθημα: Μηχανική Όραση
Μάθημα: Μηχανική Όραση Εργασία 2: Advances in Digital Imaging and Computer Vision Ομάδα χρηστών 2 : Τσαγκαράκης Νίκος, Καραμήτρος Κώστας Εισαγωγή Σκοπός της άσκησης, είναι να εξοικειωθούμε με κάποιες βασικές
«ΠΥΘΑΓΟΡΑΣ II: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑ»
«ΠΥΘΑΓΟΡΑΣ II: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑ» ΣΧΟΛΗ: ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ (ΣΑΤΜ) Ε.Μ.Π. ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: ΑΡΓΙΑΛΑΣ ΔΗΜΗΤΡΗΣ ΤΙΤΛΟΣ ΥΠΟΕΡΓΟΥ: ΑΝΑΠΤΥΞΗ ΠΡΟΗΓΜΕΝΩΝ ΤΕΧΝΙΚΩΝ
Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα
Ενότητα 3: Μετασχηµατισµοί Έντασης & Χωρικό Φιλτράρισµα Βασικές Έννοιες Διεργασίες στο πεδίο του χώρου f(x, y) : εικόνα εισόδου g(x, y) : εικόνα εισόδου g x, y = T f(x, y) T : τελεστής που εφαρµόζεται
Digital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Επεξεργασία Εικόνας Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή
Συστήµατα και Αλγόριθµοι Πολυµέσων
Συστήµατα και Αλγόριθµοι Πολυµέσων Ιωάννης Χαρ. Κατσαβουνίδης Οµιλία #3: Αρχές Επεξεργασίας Σηµάτων Πολυµέσων 10 Οκτωβρίου 005 Επανάλειψη (1) ειγµατοληψία επανα-δειγµατοληψία Τεχνικές φίλτρων (συνέλειξη)
Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης
Μάθημα 10 ο. Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 10 ο Περιγραφή Σχήματος ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει: Με βάση τα εξωτερικά χαρακτηριστικά (ακμές, όρια). Αυτή η περιγραφή προτιμάται όταν μας ενδιαφέρουν
Οπτική Μοντελοποίηση Ανθρώπινου Προσώπου με Εφαρμογές σε Αναγνώριση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Σημάτων Ελέγχου και Ρομποτικής Οπτική Μοντελοποίηση Ανθρώπινου Προσώπου με Εφαρμογές σε Αναγνώριση Επιβλέπων: καθ. Πέτρος Μαραγκός Ορισμός
DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης
DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»
Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Οδηγίες: Σχετικά με την παράδοση της εργασίας θα πρέπει: Το κείμενο
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Ανάλυση και Αναζήτηση Εικόνων με Μεθόδους Ανίχνευσης Τοπικών Χαρακτηριστικών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ.Π.Μ.Σ. «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣE ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΤΗΝ ΟΙΚΟΝΟΜΙΑ» Ανάλυση και Αναζήτηση
Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Στερεοσκοπική Αντιστοίχιση Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΤΙΣΤΟΙΧΙΣΗ ΕΙΚΟΝΩΝ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΟΡΑΣΗ
ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΤΙΣΤΟΙΧΙΣΗ ΕΙΚΟΝΩΝ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΟΡΑΣΗ Γεώργιος Δ. Ευαγγελίδης και Εμμανουήλ Ζ. Ψαράκης Εργαστήριο Επεξεργασίας Σημάτων & Τηλεπικοινωνιών, Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο
α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ
ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί
ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ4 -1- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION)
-- ΑNIΧΝΕΥΣΗ ΑΚΜΩΝ (EDGE DETECTION) 4. Εισαγωγικά Ακµή ή περίγραµµα (edge) σε µια εικόνα Χ ij ορίζεται ως το σύνολο των σηµείων στη θέση i,j της εικόνας, όπου παρατηρείται µία σηµαντική αλλαγή της έντασης
Παρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalma Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ακολουθιακή Επεξεργασία Τα δείγµατα
ιαφάνειες μαθήματος "Φωτογραμμετρία ΙΙΙ" (0) Γ. Καρράς_12/2011
Ιστορική Εξέλιξη Φωτογραμμετρίας 1525 Dürer νόμοι προοπτικής 1759 Lambert εμπροσθοτομία 1839 Daguerre φωτογραφία 1851 Laussedat μετρογραφία 1858 Meydenbauer φωτογραμμετρία 1897 Scheimpflug θεωρία αναγωγής
Κίνηση στερεών σωμάτων - περιστροφική
Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων
Νοέμβριος 2005 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ 1/53
Νοέμβριος 5 Σ. Φωτόπουλος ΨΕΕ κεφ.4 ΑΝΙΧΝΕΥΣΗ ΑΚΜΩΝ ΔΠΜΣ ΗΕΠ /53 Ακμή ή περίγραμμα (edge) σεμιαεικόναχ ij ορίζεται ως το σύνολο των σημείων στη θέση i,j της εικόνας, όπου παρατηρείται μία σημαντική αλλαγή
Digital Image Processing
Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση
ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ
ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Συµπληρωµατικές Σηµειώσεις Προχωρηµένο Επίπεδο Επεξεργασίας Εικόνας Σύνθεση Οπτικού Μωσαϊκού ρ. Γ. Χ. Καρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τοµέας Μηχανολογικών
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Διαφορική Παλµοκωδική Διαµόρφωση (DPCM)
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Διαφορική Παλµοκωδική Διαµόρφωση (DCM) Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Προεπισκόπηση Διαφορική Παλµοκωδική Διαµόρφωση
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές αποκατάστασης
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Μοντέλα Πεπερασµένων Διαφορών & Παραγώγων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Χώρος Κατάστασης Παραστάσεις στο Πεδίο του
Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν
DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση
Τεχνητή Νοημοσύνη ΙΙ. Ενότητα 4: Αντίληψη. Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη ΙΙ Ενότητα 4: Αντίληψη Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Αντίληψη 2 Περιεχόμενα ενότητας Αντίληψη 3 Αντίληψη
Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας
Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διακριτού Χρόνου Σειρές Fourier Περιοδική Επέκταση Σήµατος Πεπερασµένης Χρονικής Διάρκειας.
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Από τις Καταστατικές Εξισώσεις στη Συνάρτηση Μεταφοράς bx x y bx I X b I Y Καταστατικές
Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Εκτίµηση Τυχαίων Σηµάτων FIR φίλτρα: Ορίζουµε
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές
Τεχνητή Νοημοσύνη ΙΙ. Ενότητα 2: Αντίληψη. Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη ΙΙ Ενότητα 2: Αντίληψη Μουστάκας Κωνσταντίνος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Αντίληψη 2 Περιεχόμενα ενότητας Αντίληψη 3 Αντίληψη
Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Π. ΑΣΒΕΣΤΑΣ Επ. Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕΙ Αθήνας Email: pasv@teiath.gr ΠΕΡΙΕΧΟΜΕΝΑ Αναπαράσταση εικόνας Ιστόγραμμα Εξισορρόπηση ιστογράμματος Κατωφλίωση
2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5
IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος
Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΕΡΓΑΣΤΗΡΙΟ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής
Κλασικη ιαφορικη Γεωµετρια
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία
Αναγνώριση κλάσεων αντικειμένων σε εικόνες
Αναγνώριση κλάσεων αντικειμένων σε εικόνες Χαλέβα-Ντίνα Χρυσάνθη Διπλωματική εργασία Επιβλέπων καθηγητής: κος Νικόλαος Νικολαΐδης Τμήμα Πληροφορικής Σχολή Θετικών Επιστημών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 1 Εισαγωγή Τι είναι η εικόνα; Οτιδήποτε μπορούμε να δούμε ή να απεικονίσουμε Π.χ. Μια εικόνα τοπίου αλλά και η απεικόνιση
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Παρουσιάση πλάτους
DIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση
Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 5: Διαμόρφωση Πλάτους (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορισμοί Είδη Διαμόρφωσης Διαμόρφωση Διπλής Πλευρικής Ζώνης (DSB) Κανονική (συνήθης)
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e
ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 4 AΣΚΗΣΗ () [ ] (.5)
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ. Πτυχιακή εργασία. Μπαδέκα Ευτυχία (AEM 1037)
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Πτυχιακή εργασία Μελέτη και υλοποίηση σε λογισμικό ανιχνευτών σημειακών χαρακτηριστικών από εικόνες (point
Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Βασικά στοιχεία της ψηφιακής επεξεργασίας και
(Computed Tomography, CT)
Υπολογιστική Τοµογραφία (Computed Tomography, CT) Κωσταρίδου Ελένη Αναπληρώτρια Καθηγήτρια Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής, Τµήµα Ιατρικής, Πανεπιστήµιο Πατρών Περιεχόµενα µαθήµατος Φυσικό
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Μετατροπείς A/D-Διαµόρφωση Δ Μετατροπείς Σ-Δ
EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Μετατροπείς A/D-Διαµόρφση Δ Μετατροπείς Σ-Δ Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μετατροπή A/D Μοντέλο Μετατροπέα Α/D xat
Digital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι
Συστήματα αναγνώρισης ίριδας
Συστήματα αναγνώρισης ίριδας Σοφία Μιχοπούλου επιβλέπων καθηγητής Σπύρος Φωτόπουλος 1 Η βιομετρική αναγνώριση Δακτυλικό αποτύπωμα Πρόσωπο Ίριδα Υπογραφή Γεωμετρία Χεριού Φωνή 2 Οι εφαρμογές της αναγνώρισης
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός-Z. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός-Z Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μετασχηµατισµός - Ιδιότητες Μετασχηµατισµού- Γραµµικότητα Χρονική Ολίσθηση Κλιµάκωση
DIP_01 Εισαγωγήστην ψηφιακήεικόνα. ΤΕΙ Κρήτης
DIP_01 Εισαγωγήστην ψηφιακήεικόνα ΤΕΙ Κρήτης Ψηφιακήεικόνα Ψηφιακή εικόνα = αναλογική εικόνα µετά από δειγµατοληψία στο χώρο (x και y διευθύνσεις) Αναπαριστάνεται από έναν ή περισσότερους 2 πίνακες Μπορεί
cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα
[ ], σχηµατίζουµε το άθροισµα. Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ 1
ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ 4.. ΣΥΝΕΛΙΞΗ Στην προηγούµενη παράγραφο εισαγάγαµε την ιδέα της συνέλιξης από τα συµφραζόµενα των γραµµικών συστηµάτων. Σ' αυτήν την παράγραφο ορίζουµε τη συνέλιξη σαν µια πράξη η οποία
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Γεωμετρικοί μετασχηματιμοί εικόνας
Γεωμετρικοί μετασχηματιμοί εικόνας Μάθημα: Υπολογιστική Οραση 1 Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στονευκλείδιοχώρο: p=[x p,y p,z p ] T, όπου x p, y p, z p πραγματικοί αριθμοί. ΕστωΕ 3 τοσύνολοτωνp.
Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)
Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί
Παρουσίαση Νο. 6 Αποκατάσταση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Εισαγωγή (1/2) Αναίρεση υποβάθμισης που μπορεί να οφείλεται: Στο οπτικό σύστημα (θόλωμα λόγω κακής εστίασης, γεωμετρικές παραμορφώσεις...)
Υλοποίηση εντοπισμού στα Nao robots μέσω προσέγγισης του φίλτρου Kalman
Α Π Ε (Χ 2011/2012) Υλοποίηση εντοπισμού στα Nao robots μέσω προσέγγισης του φίλτρου Kalman Ιωακείμ Πέρρος, ΑΜ: 2007030085 2 Απριλίου 2012 Περιεχόμενα 1 Εισαγωγή / Πρόβλημα 1 2 Προσέγγιση / Λύση 2 2.1
MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου
MPEG-7 : Περιγραφή πολυμεσικού περιεχομένου Εξαγωγή μεταδεδομένων / περιγραφών Χαμηλού επιπέδου περιγραφείς Συντακτικός και σημασιολογικός ορισμός Ανάκτηση πολυμεσικών τεκμηρίων XML / OWL Δημοσίευση 2002
1 ο Θερινό Σχολείο: ICT και Εφαρμογές»
Τμήμα Μηχανικών Η/Υ & Πληροφορικής Computer Engineering & Informatics Department (CEID) Πρόγραμμα Εργασιών Πάτρα, Ιούνιος 21-24, 2016 1 ο Θερινό Σχολείο: ICT και Εφαρμογές» Διοργάνωση: Τμήμα Μηχανικών