Bisser Raytchev {tamaki,bisser,kin}@hiroshima-u.ac.jp, amano@is.naist.jp. R n R
|
|
- Ἐλισάβετ Φωτινή Γιάνναρης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 (MIRU9) 9 7 R R R 1 R, R,..., R R Bisser Raytchev {tamaki,bisser,ki}@hiroshima-u.ac.jp, amao@is.aist.jp 3 3 R R, R 3,..., R R R, R 3, R, R,..., R R R R,,, Abstract Ca R estimate a rotatio matrix R more accurately tha R? A method for estimatig a rotatio matrix R by usig R, R, R 3,... obtaied by a oe-shot measuremet Toru TAMAKI, Bisser RAYTCHEV, Toshiyuki AMANO, ad Kazufumi KANEDA Departmet of Iformatio Egieerig, Graduate School of Egieerig, Hiroshima Uiversity Kagamiyama, Higashi-hiroshima, Hiroshima, Japa Graduate School of Iformatio Sciece, Nara Istitute of Sciece ad Techology Takayama, Ikoma, Nara, Japa {tamaki,bisser,ki}@hiroshima-u.ac.jp, amao@is.aist.jp I this paper, we show that a more accurate estimatio of a 3 3 rotatio matrix R ca be achieved by appropriately decomposig higher-order rotatio matrices: R, R 3, ad so o. First we discuss a agle estimatio of a rotatio matrix ispired by the Electroic Distace Measuremet. The we reformulate the problem for a 3 3 rotatio matrix: if oise-cotamiated measuremet matrices R, R,..., R are give, fid a appropriate rotatio matrix R. I the proposed method, the give measuremet matrices are first trasformed to rotatio matrices by usig the polar decompositio. The the rotatio agles are obtaied by usig a eige decompositio of the rotatio matrices. Fially, the ambiguity of the obtaied rotatio agle is removed. Numerical simulatios ad pose estimatio experimets show that the use of R results i more accurate estimates tha whe R itself is used. Key words pose estimatio Rotatio matrix, Measuremet with higher frequecy, Electroic distace measuremet, View-based 1. R t 3
2 [1], [] F E R t [3] [1], [] ICP [4] [5] [6] [8] [9], [1] R R SO(3) [11] [14] R R R, R 3,... (Electroic Distace Measuremet, EDM) [15], [16] 3 3 R, R 3,... R R, R,..., R R 8 [] 8 1 R, R,..., R [17] 1 R R [6] [8] R R, R 3,... R, R, R 3, R R. 1 R R R 1 R θ R R θ R R R. 1 [16], [18] 1 Dist λ 1 1 θ 1 λ 1 > Dist Dist = θ 1 π λ 1, < = θ 1 < π (1)
3 1 Dist λ 1 λ k 1 k θ θ π θ = θ + π θ θ + π θ θ + πk θ 1 ( ) ( ) cos θ 1 cos( θ mi + πk ) k =,1 si θ 1 si( θ. (5) + πk ) θ 1 π/1 Dist λ 1 /1 λ (< λ 1 ) θ ( ) θ Dist = π + k λ, < = θ < π () k λ λ λ λ /1 k Total Statio Geodimeter Tellurometer [19] (beatig). R R R R θ R 1 cos θ 1, si θ 1 R cos θ, si θ 1 θ θ 1 θ θ θ R R θ 1 θ θ θ 1 1 < = θ < π λ 1 = π θ θ θ 1 λ = π θ = θ 1 π λ 1 = θ 1, (3) ( ) θ θ = π + k λ = θ + πk, (4) θ 1 θ + πk R R θ R θ θ θ θ λ = π/ ( ) θ θ = π + k λ = θ + π k, (6) k =, 1,..., 1 k ( ) ( ) cos θ 1 cos( ˆk θ = argmi + π k ) k si θ 1 si( θ + π k ) θ + π ˆk (7) R 3 3 R R ( = 1,,...) R 3 3 R R R R R R [], [1] mi R R F + µ R T R I F (8) µ
4 polar decompositio [] R R = U Σ V T R polar decompositio R = (U V T )(V Σ V T ). (9) polar part U V T (8) U V T 1 U V T R { U V R T if U V = +1, = (1) U (HV ) T if U V = 1, H = diag(1, 1, 1) polar decompositio R U V T V T V I G V T G 1 GV polar part 1 H V T H 1 HV H T H = I H = 1 U V = 1 polar decompositio R = (U (HV ) T )(HV Σ V T ) (11) 3. R R expoetial map [] cos θ = trr 1 expoetial map π θ π cos si ω = (b, c, d) T 3 expoetial map [] ω = (r 3 r 3, r 13 r 31, r 1 r 1 ) T, (1) r ij R ij R R 1 [1], [] R P D [1], [], [3] R = P D P H, (13) i = 1 b P = 1 c ω d c +d bc+id ω (c +d ) bd ic ω (c +d ) c +d bc id ω (c +d ) bd+ic ω (c +d ) (14) D = diag(1, e iθ, e iθ ) (15) P 1 D e ±iθ R P = D θ P H P R R = P DP H R P H P = I R = P DP H P DP H = P D P H P R P ω 1,..., ω media 1 1 ω med P med ω med = med ω i (16) i=1,..., media media 3. 3 [4], [5] Matlab S S = 1 1 i 1 i, S H S = SS H = I. (17) R = P D P H = P SS H D SS H P H, (18) = P D P T, (19) P = P S D = S H D S P 1 media
5 P P T = P T P = I D D = 1 cos θ si θ si θ cos θ. () θ D = P T R P 3. 4 R 1 R θ 1 θ θ ( ) ( ) cos θ 1 cos( ˆk θ = argmi + π k ) k=,1, si θ 1 si( θ..., 1 + π k ) ˆθ = θ + π ˆk (1) R 1 R θ 1 θ 1 θ 1 π k θ 1 θ 1 π 1 k 1 R = P med cos ˆθ si ˆθ P T si ˆθ cos ˆθ med () 4. R ( = 1,,...) R 1 (R 1 ) R R R R R R R [6] 1 4 agle error [deg] F orm 3 F orm ±.1 ± ±.1 ± ±.1 ±.5 P med P 1 1 R 1 R ±.1 ±.5
6 θ, ω ˆθ, ˆω 3 θ, ω (π θ), ω ω ˆω 9 π θ ˆθ, ω T ˆω < π agle error = θ (π ˆθ), (3) otherwise agle error [deg] [deg] R = 1 R 1 > 1 R 1 R,..., R 1 (±.1,.,.3,.4,.5) R, R 3,... R 1 R R R R 1 R 3 R media P med media R P med P 1 4 R R 1 R 3 P P 4. R R R 1 R 1 (R 1 ) R ±.1 ±.5 F orm ±.1 ±.5 R R R 1 R R 1 R R 1, R,... R [6] [8] [5] [9], [1] 3 R R, R,..., R 8
7 agle error [deg] F orm R 1,..., R 8 [8] [7] [8] R x R R = F x R, = 1,..., 8 (4) F i R R 9 x R = F x, = 1,..., 8 (5) 9 R 3 3 R CG [deg] 7 8 R ± 5.84[deg] R 8.87 ± 4.55[deg] R ±.16 R 8.14 ± R R ( > 1) R [1] Richard Hartley ad Adrew Zisserma. Multiple View Geometry i Computer Visio. Cambridge Uiversity Press, d editio, 4. catalogue.asp?isb= [] Yi Ma, Stefao Soatto, Jaa Košecká, ad S. Shakar Sastry. A Ivitatio To 3-D Visio. Spriger, 4. [3] Carlo Tomasi ad Takeo Kaade. Shape ad motio from image streams uder orthography: a factorizatio method. Itl. J. of Computer Visio, Vol. 9, No., pp , sprigerlik.com/cotet/q3546r136334l8r. [4] P. J. Besl ad N. D. McKay. A method for registratio of 3-D shapes. IEEE Tras. PAMI, Vol. 14, No., pp , ieeecomputersociety.org/1.119/ [5] D. G. Lowe. Fittig parameterized three-dimesioal models to images. IEEE Tras. PAMI, Vol. 13, No. 5, pp , ieeecomputersociety.org/1.119/ [6] Hiroshi Murase ad Shree K. Nayar. Visual learig ad recogitio of 3-D objects from appearace. Itl. J. of Computer Visio, Vol. 14, No. 1, pp. 5 4, [7] Gabriele Peters, Barbara Zitova, ad Christoph
8 vo der Malsburg. How to measure the pose robustess of object views. Image ad Visio Computig, Vol., No. 4, pp ,. peters/ pages/research/modeladaptsys/ modeladaptsys vba rov.html. [8] Thomas Melzer, Michael Reiter, ad Horst Bischof. Appearace models based o kerel caoical correlatio aalysis. Patter Recogitio, Vol. 36, pp , 3. http: //dx.doi.org/1.116/s31-33(3)58-x. [9] David G. Lowe. Distictive image features from scale-ivariat keypoits. Itl. J. of Computer Visio, Vol. 6, No., pp , 4. h4l69137px768. [1] Fred Rothgager, Svetlaa Lazebik, Cordelia Schmid, ad Jea Poce. 3D object modelig ad recogitio usig affie-ivariat patches ad multi-view spatial costraits. Proc. of CVPR3, Vol., pp. 7 77, 3. grp/ publicatio/paper/cvpr3a.ps.gz. [11] Ameesh Makadia ad Kostas Daiilidis. Rotatio recovery from spherical images without correspodeces. IEEE Tras. PAMI, Vol. 8, No. 7, pp , 6. [1] Ameesh Makadia ad Kostas Daiilidis. Direct 3d-rotatio estimatio from spherical images via a geeralized shift theorem. Proc. of CVPR3, Vol., p. 17, 3. CVPR [13] Peter J. Kostelec ad Daiel N. Rockmore. Ffts o the rotatio group. Joural of Fourier Aalysis ad Applicatios, Vol. 14, No., 8. sprigerlik.com/cotet/r631816xr89vr5. [14] David K. Masle ad Daiel M. Rockmore. Geeralized FFTs a survey of some recet results. Groups ad Computatio II, DIMACS Series i Discrete Mathematics ad Theoretical Computer Sciece, pp , dartmouth.edu/ rockmore/dimacs-.pdf. [15].., [16] Russell Charles Briker ad Roy Miick, editors. The Surveyig Hadbook. Chapma & Hall, d editio, http: //books.google.com/books?id=gb7w9xlnjac. [17] Zhegyou Zhag. Parameter estimatio techiques: a tutorial with applicatio to coic fittig. Image ad Visio Computig, Vol. 15, No. 1, pp , [18],,,,.., 8. http: //books.google.co.jp/books?id=jk7ivyjsloc. [19] The Alberta Lad Surveyors Associatio. Equipmet. olie, accessed 9// [] Gee Howard Golub ad Charles F. Va Loa. Matrix Computatios. The Joh Hopkis Uiversity Press, 3rd, http: //books.google.com/books?id=mloa7wpx6oyc. [1] Zhegyou Zhag. A flexible ew techique for camera calibratio. Techical Report MSR-TR-98-71, Microsoft Research, view.aspx?tr id=1. [] MathPages. Rotatio matrices. olie, accessed 9//6. kmath593/kmath593.htm. [3] Eric W. Weisstei. Rotatio matrix. From MathWorld A Wolfram Web Resource, accessed 9//6. http: //mathworld.wolfram.com/rotatiomatrix.html. [4] Ichiro Satake. Liear Algebra. Marcel Dekker Ic., [5],,.. MIRU7, pp , 7. [6] GSL GNU Scietific Library, 8. [7] Shigo Ado, Yoshiori Kusachi, Akira Suzuki, ad Keichi Arakawa. Appearace based pose estimatio of 3D object usig support vector regressio. ICIP5, Vol. 1, pp. I , 5. all.jsp? arumber=159757&isumber=366. [8] Takayuki Okatai ad Koichiro Deguchi. Yet aother appearace-based method for pose estimatio based o a liear model. IAPR Workshop o Machie Visio Applicatios, pp ,. http: //b.cvl.iis.u-tokyo.ac.jp/mva/proceedigs/ CommemorativeDVD//papers/58.pdf.
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Rapid Acquisitio n of Doppler Shift in Satellite Co mmunicatio ns
7 3 7 ATA ELETRONIA SINIA Vol. 31 No. 7 July 3 1, 1, (1., 184 ;., 444) :., PN,.,,. : ; ; ; : TN9 : A : 3711 (3) 7155 Rapid Acquisitio of Doppler Shift i Satellite o mmuicatio s HUAN Zhe 1,LU Jiahua 1,YAN
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA
16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15
Research on Real-Time Collision Detection Based on Hybrid Hierarchical Bounding Volume
20 2 Vol. 20 o. 2 2008 Joural of System Simulatio Ja., 2008 6024 SphereOBB X Z X Sphere OBB-Sphere Z OBB Sphere Sphere OBB OBB OBB OBB TP9.9 A 004-7X (2008) 02-72-06 Research o Real-Time Collisio Detectio
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Pro duction Technology and Technical Efficiency in ( k, y) Sp ace
15 5 Vol. 15 No. 5 006 10 OPERA TIONS RESEARCH AND MANA GEMEN T SCIENCE Oct. 006 ( 150001) : K L Y k ( L ) y ( K L Y) ( k y) ( k y) ( k y) ( K L Y) ( C R ) C R ( k y) : ; ;; : F4. 0 :A :100731 (006) 05007505
CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT
2003 6 RESEARCH & DEVELOPME 00-893X(2003) 06-003 - 06 3 CDMA Ξ,, (, 36005), roecker Delta, CDMA, DS - CDMA, CDMA, CDMA CDMA, CDMA, Gold asami DS - CDMA CDMA ; ; ; 929. 5 ;O45. 5 A Performace Aalysis of
An A lgor ithm of M ea sur ing Var ia tion D egree for Fea ture M odel
35 2 2010 4 ( ) http: / /www. kustjoura l. com / Joural of Kum ig Uiversity of Sciece ad Techology ( Sciece ad Techology) Vol. 35 No12 Ap r. 2010 doi: 10. 3969 / j. iss. 1007-855x. 2010. 02. 018 1, 2 (1.,
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â þÿãå½±¹ã ¼±Ä¹º  ½ ¼ Ãͽ  þÿ±à ĵ»µÃ¼±Ä¹º
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
PACS: Pq, Tp
Acta Phys. Si. Vol. 61, No. 4 (212) 456 * 1)2) 1) 1) (, 213 ) 2) (, 3325 ) ( 211 4 18 ; 211 7 6 ),., ; Rossler,,, ;. :,,, PACS: 5.45.Pq, 5.45.Tp 1,,. Takes [1] [2 5],,,,.,, [6]., [7] Lyapuov [8],,,. (extreme
A Vision Based Method for Aircraft Approach Angle Estimation
ISSN -9825, CODEN RUXUEW E-mail: jos@iscas.ac.c Joral of Software, Vol.7, No.5, ay 26, pp.959967 ttp://www.jos.org.c DOI:.36/jos7959 Tel/Fax: +86--62562563 26 by Joral of Software. All rigts resered.,
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Endogoneity and All That
Edogoeity ad All That Roger Koeker Uiversity of Illiois, Urbaa-Champaig Uiversity of Miho 12-14 Jue 2017 Roger Koeker (UIUC) Edogoeity Braga 12-14.6.2017 1 / 17 Is there IV for QR? Amemiya (1982) ad Powell
M in ing the Com pa tib ility Law of M ultid im en siona l M ed ic ines Ba sed on D ependence M ode Sets
39 4 ( Vol. 39 No. 4 2007 7 JOURNAL OF SICHUAN UN IVERSITY ( ENGINEER ING SC IENCE ED ITION July 2007 : 100923087 (2007 0420134205 1, 1, 2, 1, 1, 3 (1., 610065; 2., 610075; 3., 150000 :, MM2 DE (MultidimesioalMedicie
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
Journal of Central South University (Science and Technology) Jun i p i q
4 3 ( ) Vol.4 No.3 6 Joural of Cetral South Uiversity (Sciece ad Techology) Ju. pq i p i q (. 483. 483) pq i p i q pq TM74 A 6777()357 A improved i p i q detectio approach of positive fudametal active
Diane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Ψηφιακό Μουσείο Ελληνικής Προφορικής Ιστορίας: πώς ένας βιωματικός θησαυρός γίνεται ερευνητικό και εκπαιδευτικό εργαλείο στα χέρια μαθητών
Μ. Τζακώστα, Α. Σφακιανάκη & Α. Πατσιάς Ψηφιακό Μουσείο Ελληνικής Προφορικής Ιστορίας: πώς ένας βιωματικός θησαυρός γίνεται ερευνητικό και εκπαιδευτικό εργαλείο στα χέρια μαθητών Abstract In this paper
T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod
2003 6 6 00026788 (2003) 0620042206 H arlow, 2 3, (., 70049; 2., 7006; 3., 200433) H arlow,,,,, ;, ; ; F832. 5; F830. 9 A T he Op tim al L PM Po rtfo lio M odel of H arlow s ad Its So lvig M ethod W AN
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΕΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΕΔΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ «ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ Π Τ Υ Χ Ι Α Κ Η Ε Ρ Γ Α Σ Ι Α: Ο ΡΟΛΟΣ ΤΗΣ ΣΥΝΑΙΣΘΗΜΑΤΙΚΗΣ ΝΟΗΜΟΣΥΝΗΣ ΣΤΗΝ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΗΓΕΣΙΑ ΕΠΙΜΕΛΕΙΑ
EE 570: Location and Navigation
EE 570: Locatio ad Navigatio INS Iitializatio Aly El-Osery Electrical Egieerig Departmet, New Mexico Tech Socorro, New Mexico, USA April 25, 2013 Aly El-Osery (NMT) EE 570: Locatio ad Navigatio April 25,
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
«ΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΙ ΡΟΥΝ ΣΤΗΝ ΑΦΟΣΙΩΣΗ ΤΟΥ ΠΕΛΑΤΗ ΣΕ ΕΠΩΝΥΜΑ ΠΡΟΪΟΝΤΑ ΤΡΟΦΙΜΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΕΠΩΝΥΜΩΝ ΓΑΛΑΚΤΟΚΟΜΙΚΩΝ ΠΡΟΪΟΝΤΩΝ»
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΟΡΓΑΝΩΣΗ ΚΑΙ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΡΟΦΙΜΩΝ & ΓΕΩΡΓΙΑΣ ΣΥΝΕΡΓΑΖΟΜΕΝΟ ΤΜΗΜΑ: ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΤΕΧΝΗΤΗ ΟΡΑΣΗ
ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΤΕΧΝΗΤΗ ΟΡΑΣΗ ΓΕΩΜΕΤΡΙΑ ΚΑΜΕΡΑΣ ΚΑΙ ΠΡΟΟΠΤΙΚΑ ΜΟΝΤΕΛΑ Εργαστήριο Αυτομάτου Ελέγχου Η παρουσίαση βασίζεται στις διαφάνειες: Multiple View Geometr, Richard Hartle ad Adrew isserma
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο
ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» ΘΕΜΑ 1 Ο 1. Ένα σώµα εκτελεί απλή αρµονική ταλάντωση. Στο διπλανό σχήµα φαίνεται η γραφική παράσταση της ταχύτητας του σώµατος µε το χρόνο. Η αρχική φάση της ταλάντωσης
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
PACS: Mj, Dp, Ta
* )2)3) 2) 4) 4) ) (, 26607 ) 2) (, 26606 ) 3) (, 00049 ) 4) (, 266003 ) ( 20 8 22 ; 20 0 2 ),.,,, ;,,,.. :,, PACS: 42.68.Mj, 42.8.Dp, 92.60.Ta,, 4., 5 7. 9, Mouche, :, HH VV, Mouche., Zhag 0 Wag, HH VV,.,
SIMULTANEOUS HYPOTHESIS TESTING OF SPLINE TRUNCATED MODEL IN NONLINEAR STRUCTURAL EQUATION MODELING (SEM)
3 st July 06. Vol.89. No. 005-06 JATIT & LLS. All rights reserved. ISSN: 99-8645 www.jatit.org E-ISSN: 87-395 SIMULTANEOUS HYPOTHESIS TESTING OF SPLINE TRUNCATED MODEL IN NONLINEAR STRUCTURAL EQUATION
ΣΤΗ ΣΧΕ ΙΑΣΗ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ 1
Η ΧΡΗΣΗ ΤΩΝ ΧΡΩΜΑΤΩΝ ΣΤΗ ΣΧΕ ΙΑΣΗ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ 1 Αναστασία Β. Παπαβασιλείου, Υποψήφια διδάκτωρ του.π.θ (apapavas@demokritos.cc.duth,gr) Γεωργίου ηµήτριος, Αν. Καθηγητής.Π.Θ. Καράκος Αλέξανδρος,
The Equivalence Theorem in Optimal Design
he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
:,,,,,, Engle 1982 ARCH,,,, (Realized Volatility),, Andersen Bollerslev Diebold Ebens(1998,2001), ( ) :
003 3 ( ( 51075) 51000) :,,,,, : 3 (79800010 7004005) 00 (01jb79006) 00, Egle 198 ARCH,,,, (Realized Volatility),, Aderse Bollerslev Diebold Ebes(1998,001), ( ) : (1),,, 0, 0, (), :,,,,, (3) (), (Auto
Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»
Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων
Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker
Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,
ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ Σ.Ε.Υ.Π. ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΕΡΓΑΣΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τίτλος: «Χρήση ψυχοτρόπων ουσιών από μαθητές Α Λυκείου της Δευτεροβάθμιας Εκπαίδευσης του Νομού Ηρακλείου και ο ρόλος του Κοινωνικού
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»
I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives
America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Automatic extraction of bibliography with machine learning
Automatic extraction of bibliography with machine learning Takeshi ABEKAWA Hidetsugu NANBA Hiroya TAKAMURA Manabu OKUMURA Abstract In this paper, we propose an extraction method of bibliography using support
Gauss Radau formulae for Jacobi and Laguerre weight functions
Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,
0 irotmttm ------------------------------- * -------------------------------- eka.ia.gtxi Me ΤΗΝ ΠΡΟΝΟΙλ ΜΗΤΡΟΠΟΛΙΤΟΥ Μ V ΤI \ Η Ν Η C
Μ ηνιαίο fc K K ju i«ia C T ih O T F e p i o a i f i o 0 irotmttm ------------------------------- * -------------------------------- TOV ceg. eka.ia.gtxi Me ΤΗΝ ΠΡΟΝΟΙλ ΜΗΤΡΟΠΟΛΙΤΟΥ Μ V ΤI \ Η Ν Η C κογ
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
The measurement of similarity in stock data documents collections
The measuremet of similarity i stock data documets collectios Nikitas N. Karaikolas 1 1 Departmet of Iformatics, Techological Educatioal Istitute of Athes, Athes, Greece Tel: +302105385882, Fax: +302105910975,
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Tired Waiting in Queues? Then get in line now to learn more about Queuing!
Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with
athanasiadis@rhodes.aegean.gr , -.
παιδαγωγικά ρεύµατα στο Αιγαίο Προσκήνιο 88 - * athanasiadis@rhodes.aegean.gr -., -.. Abstract The aim of this survey is to show how students of the three last school classes of the Primary School evaluated
Αντιλήψεις εκπαιδευτικών για τα περιβαλλοντικά ζητήµατα και σχολικά βιβλία: Η περίπτωση του φαινοµένου του θερµοκηπίου και του στρώµατος του όζοντος
Αντιλήψεις εκπαιδευτικών για τα περιβαλλοντικά ζητήµατα και σχολικά βιβλία: Η περίπτωση του φαινοµένου του θερµοκηπίου και του στρώµατος του όζοντος ηµητρίου Αναστασία Πανεπιστήµιο Αιγαίου, Παιδαγωγικό
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ
Δ ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΜΗΜΑ ΠΔΡΙΦΔΡΔΙΑΚΗ ΓΙΟΙΚΗΗ ΣΔΛΙΚΗ ΔΡΓΑΙΑ Θέκα: Αμηνιφγεζε κίαο δηαπξαγκάηεπζεο. Μειέηε Πεξίπησζεο: Ζ αλέγεξζε ηεο Νέαο Δζληθήο Λπξηθήο θελήο, ηεο Νέαο
ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1
Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups
Wiki Wiki Wiki Wiki qwikweb Wiki Wiki Wiki Analysis of user activity of closed Wiki used by small groups Satoshi V. Suzuki, Koichiro Eto, Keiki Shimada, Shinobu Shibamura and Takuichi Nishimura Wikis are
42. διαβάζει την εφηµερίδα (α) ή να διαβάζει την εφηµερίδα (β) ii) Ορίζουµε το ενδεχόµενο
5 η δεκάδα θεµάτων επανάληψης 41. Να βρεθούν 4 αριθµοί οι οποίοι αποτελούν διαδοχικούς όρους αριθµητικής προόδου αν το άθροισµα τους είναι και το άθροισµα των τετραγώνων τους είναι 166 i Αν ο µικρότερος
Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 599 8531 1 1 980 8579 6 6 05 812 8581 6 10 1 E-mail: {kise,masa}@cs.osakafu-u.ac.jp, machi@aso.ecei.tohoku.ac.jp,
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6