2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1"

Transcript

1 2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

2 ΟΙ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND ΚΑΙ OR Οι βασικές πράξεις της Άλγεβρας Boole είναι οι πράξεις NOT, ANDκαι OR. Στα ψηφιακά κυκλώµατα οι τρεις αυτές πράξεις εκτελούνται από κυκλώµατα που ονοµάζονται λογικές πύλες. Κάθε πύλη παίρνει το όνοµά της από την πράξη που εκτελεί. Έτσιέχουµετιςπύλες NOT, ANDκαι OR. Η πύλη ΝΟΤ έχει µία είσοδο και µία έξοδο, ενώ οι άλλες δύο (ή περισσότερες) εισόδους και µία έξοδο. Από την έξοδο κάθε πύλης µπορούν να τροφοδοτηθούν µία ή περισσότερες άλλες πύλες. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 2

3 ΕΙΣΟ ΟΙ ΚΑΙ ΕΞΟ ΟΙ ΤΩΝ ΠΥΛΩΝ Οιείσοδοίκαιοιέξοδοιτωνπυλώνµπορούνναπάρουν δύοµόνοτιµές,τολογικό 1 καιτολογικό 0. Στη Θετική Λογική στο λογικό 1 αντιστοιχεί το υψηλότερο δυναµικό - Ηigh Level (π.χ. 5V), που συµβολίζεται και µε το γράµµα Η, ενώ στο λογικό 0 αντιστοιχεί το χαµηλότερο δυναµικό - Low Level (π.χ. 0V)πουσυµβολίζεταικαιµετογράµµα L. Στηνπράξητολογικό 1 αντιστοιχείσετάσεις 3.5V - 5V, ενώτολογικό 0 σετάσεις 0V 1.5V. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 3

4 ΣΥΜΒΟΛΑ ΤΩΝ ΠΥΛΩΝ NOT, AND ΚΑΙ OR Τασύµβολατωνπυλών NOT, ANDδύοεισόδωνκαι OR δύο εισόδων παρουσιάζονται στο παρακάτω σχήµα: ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 4

5 ΠΙΝΑΚΕΣ ΑΛΗΘΕΙΑΣ ΤΩΝ ΠΥΛΩΝ NOT, AND ΚΑΙ OR NOT AND OR x x x y x y x y x+y ΗπύληΝΟΤδίνειέξοδο 1 ότανηείσοδόςτηςδενείναι 1. Hπύλη ANDδίνειέξοδο 1 ότανόλεςοιείσοδοίτηςείναι 1. Ηπύλη ORδίνειέξοδο 1 όταντουλάχιστονµία απότιςεισόδουςτηςείναι 1. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 5

6 ΣΥΜΒΟΛΑ ΤΩΝ ΠΥΛΩΝ NAND ΚΑΙ NOR Τα σύµβολα των πυλών NAND δύο εισόδων και NOR δύο εισόδων παρουσιάζονται στο παρακάτω σχήµα: ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 6

7 ΠΙΝΑΚΕΣ ΑΛΗΘΕΙΑΣ ΤΩΝ ΠΥΛΩΝ NAND ΚΑΙ NOR NAND NOR x y (xy) x y (x+y) Ηλογικήπύλη NANDείναιµίαπύλη ANDπουακολουθείταιαπόµίαπύλη NOT. Ηπύλη NANDδίνειέξοδο 1 "όταντουλάχιστονµίααπότιςεισόδουςτηςείναι 0. Ηλογικήπύλη NORείναιµίαπύλη ORπουακολουθείταιαπόµίαπύλη NOT. Ηπύλη NORδίνειέξοδο 1 ότανόλεςοιείσοδοιείναι 0. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 7

8 ΠΥΛΕΣ ANDΚΑΙ OR ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ Οι πύλες AND και OR υπάρχουν και µε τη µορφή πολλαπλών εισόδων. Οιπύλες ANDκαι ORπολλαπλώνεισόδωνµπορούννα υλοποιηθούν συνδέοντας πολλές αντίστοιχες πύλες δύο εισόδων, γιατί ισχύει η προσεταιριστική ιδιότητα: x+y+z=x+(y+z)=(x+y)+z x y z=x (y z)=(x y) z ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 8

9 ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ ΠΥΛΗΣ AND ΤΡΙΩΝ (3) ΕΙ Ο ΩΝ A B C ABC ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 9

10 ΠΥΛΕΣ NANDΚΑΙ NOR ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ Οι πύλες NAND και NOR υπάρχουν και µε τη µορφή πολλαπλών εισόδων. Οι πύλες NAND και NOR πολλαπλών εισόδων µπορούν να υλοποιηθούν συνδέοντας µία πύλη NOT στην έξοδο των αντίστοιχων πυλών AND και OR πολλαπλών εισόδων. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 10

11 ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ ΠΥΛΗΣ NOR ΤΕΣΣΑΡΩΝ (4) ΕΙΣΟ ΩΝ A B C D (A+B+C+D) ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 11

12 ΣΥΜΒΟΛΑ ΤΩΝ ΠΥΛΩΝ XOR ΚΑΙ XNOR Τα σύµβολα των πυλών XOR δύο εισόδων και XNOR δύο εισόδων παρουσιάζονται στο παρακάτω σχήµα: ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 12

13 ΠΙΝΑΚΕΣ ΑΛΗΘΕΙΑΣ ΤΩΝ ΠΥΛΩΝ XOR ΚΑΙ XNOR XOR XNOR x y x y x y x y Η πύλη XOR δίνει έξοδο "1" όταν οι είσοδοί της είναι σε διαφορετική κατάσταση. Ηπύλη XNORδίνειέξοδο "1"ότανοιείσοδοίτηςείναιστηνίδιακατάσταση. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 13 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 13

14 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΥΛΩΝ XOR ΚΑΙ XNOR Οι λογικές συναρτήσεις των πυλών XOR και XNOR δύο εισόδων είναι: x y=xy +x y x y=xy+x y Οι λογικές συναρτήσεις των πυλών XOR και XNOR δύο εισόδων συνδέονται µε τη σχέση: x y=(x y) ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 14 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 14

15 ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΟΛΟΚΛΗΡΩΜΕΝΟ ΚΥΚΛΩΜΑ - CHIP ΚΛΙΜΑΚΑ ΟΛΟΚΛΗΡΩΣΗΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΤΑΣΚΕΥΗΣ ΤΩΝ ΛΟΓΙΚΩΝ ΠΥΛΩΝ ΤΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΛΟΓΙΚΩΝ ΠΥΛΩΝ ΤΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΟΝΟΜΑΤΟΛΟΓΙΑ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΤΟ ΟΛΟΚΛΗΡΩΜΕΝΟ 7400 ΦΥΛΛΑ Ε ΟΜΕΝΩΝ ΤΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΤΗΣ ΣΕΙΡΑΣ 74 ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 15 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 15

16 ΟΛΟΚΛΗΡΩΜΕΝΟ ΚΥΚΛΩΜΑ - CHIP Τα ολοκληρωµένα κυκλώµατα (integrated circuits) είναι συστατικά στοιχεία των ψηφιακών κυκλωµάτων. Ένα ολοκληρωµένο κύκλωµα είναι ένας ηµιαγωγός κρύσταλλος από σιλικόνη (chip) που περιέχει ηλεκτρονικά στοιχεία για τις ψηφιακές πύλες. Οι πύλες συνδέονται µέσα στο chip για να σχηµατίσουν το κύκλωµα. Το chip τοποθετείται σε ένα πλαστικό περίβληµα και συγκολλούνται επαφές σε εξωτερικούς ακροδέκτες (pin) για να σχηµατιστεί το ολοκληρωµένο κύκλωµα. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 16 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 16

17 ΚΛΙΜΑΚΑ ΟΛΟΚΛΗΡΩΣΗΣ Τα ολοκληρωµένα κυκλώµατα κατηγοριοποιούνται ανάλογα µε την Κλίµακα Ολοκλήρωσης (Scale Integration), δηλαδή ανάλογα µε το πλήθος των ισοδύναµων µε µια πύλη κυκλωµάτων που περιέχουν: Κλίµακα Ολοκλήρωσης Πλήθος κυκλωµάτων (Scale Integration) ισοδύναµων µε µια πύλη SSI (Small Scale Integration) < 12 MSI (Medium Scale Integration) LSI (Large Scale Integration) VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale Integration) > ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 17 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 17

18 ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΤΑΣΚΕΥΗΣ ΤΩΝ ΛΟΓΙΚΩΝ ΠΥΛΩΝ ΤΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ BIPOLAR CMOS (Complementary Metal-Oxide Semiconductor) BICMOS (Bipolar CMOS) ECL (Emitter Coupled Logic) ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 18 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 18

19 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΛΟΓΙΚΩΝ ΠΥΛΩΝ ΤΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ - Fun Out (απαιτούµενο ρεύµα εισόδου που µπορεί να οδηγήσει η έξοδος χωρίς να κινδυνεύσει η οµαλή λειτουργία) - Power Dissipation (απαιτούµενη ισχύς τροφοδοσίας για οµαλή λειτουργία) - Propagation Delay (χρόνος για αλλαγή σήµατος από την είσοδο στην έξοδο) - Noise Margin (ελάχιστη τάση εξωτερικού θορύβου που προκαλεί ανεπιθύµητη αλλαγή στην έξοδο) ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 19 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 19

20 ΟΝΟΜΑΤΟΛΟΓΙΑ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΣΗΜΑΣΙΑ Κατασκευάστρια Εταιρεία Περιοχή Θερµοκρασίας Λειτουργίας Τεχνολογία Κατασκευής Λειτουργία Τρόπος συσκευασίας ΚΩ ΙΚΟΣ SN (Texas Instruments) DM (Fairchild Semiconductor) 74 (0 o C 70 o C για εµπορικές εφαρµογές) 64 (-40 o C 85 o C για βιοµηχανικές εφαρµογές) 54 (-55 o C 125 o C για στρατιωτικές εφαρµογές) S (Schottky) LS (Low-power Schottky) ALS (Advanced Low-power Schottky) C (CMOS) HC (High-speed CMOS TTL) HTC (High-speed CMOS TTL compatible) 00 4 πύλες NAND 2 εισόδων 04 6 πύλες NOT 08 4 πύλες AND 2 εισόδων 32 4 πύλες OR 2 εισόδων D/DW (SOIC Small Outline Integrated Circuit) DB/DL (SSOP) DGG (TSSOP) FK (LCCC) N/P (PDIP Plastic Dual In Package) NS (SOP) ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 20 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 20

21 ΤΟ ΟΛΟΚΛΗΡΩΜΕΝΟ 7400 Τα chip της standard σειράς 74 της οικογένειας TTL έχουν ονοµασία που αρχίζει από 74 και ακολουθείται από κατάληξη που προσδιορίζει τον τύπο της σειράς. Το chip 7400 που περιέχει τέσσερις πύλες NAND δυο εισόδων είναι το βασικό κύκλωµα της οικογένειας TTL. Vcc 4B 4A 4Y 3B 3A 3Y A 1B 1Y 2A 2B 2Y GND ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 21 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 21

22 ΟΙ ΑΚΡΟ ΕΚΤΕΣ ΤΟΥ 7400 Το chip τροφοδοτείται µε τάση Vcc (υψηλή τάση - λογικό 1 ) στην περιοχή τιµών 2.4V-5V µε τυπική τιµή 3.5V και γειώνεται GND (χαµηλή τάση - λογικό 0 ) στην περιοχή τιµών 0V-0.4V µε τυπική τιµή 0.2V. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 22 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ pin Σηµασία 1 1A πρώτη είσοδος πύλης 1 2 1B δεύτερη είσοδος πύλης 1 3 1Y έξοδος πύλης 1 4 2A πρώτη είσοδος πύλης 2 5 2B δεύτερη είσοδος πύλης 2 6 2Y έξοδος πύλης 2 7 GND Γείωση (λογικό 0 ) 8 3Y έξοδος πύλης 3 9 3A πρώτη είσοδος πύλης B δεύτερη είσοδος πύλης Y έξοδος πύλης A πρώτη είσοδος πύλης B δεύτερη είσοδος πύλης 4 14 Vcc Τάση τροφοδοσίας (λογικό 1 ) ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 22

23 ΦΥΛΛΑ Ε ΟΜΕΝΩΝ Τα φύλλα δεδοµένων (Data Sheets) των ολοκληρωµένων κυκλωµάτων περιέχουν πληροφορίες σχετικές µε: Κατασκευάστρια Εταιρεία Ονοµασία ολοκληρωµένου κυκλώµατος Γενική Περιγραφή (General Description) ιάγραµµα Σύνδεσης (Connection Diagram) Πίνακας Λειτουργίας (Function Table) Μέγιστες Απόλυτες Τιµές (Absolute Maximum Ratings) Συνιστώµενες Συνθήκες Λειτουργίας (Recommended Operation Conditions) Ηλεκτρικά Χαρακτηριστικά (Electrical Characteristics) Χαρακτηριστικά Μεταγωγής (Switching Characteristics). Φυσικές ιαστάσεις (Physical Dimensions) ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 23 e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ- ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 23

24 ΤΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΤΗΣ ΣΕΙΡΑΣ 74 chip πύλες πύλες NAND 2 εισόδων πύλες NOR 2 εισόδων πύλες NOT πύλες AND 2 εισόδων πύλες NAND 3 εισόδων πύλες AND 3 εισόδων πύλες NAND 4 εισόδων πύλες AND 4 εισόδων πύλες NOR 3 εισόδων πύλη NAND 8 εισόδων πύλες OR 2 εισόδων πύλες XOR 2 εισόδων ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 24

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Copyright, 2006 ΚΑΓΙΑΜΠΑΚΗΣ ΜΑΝΟΣ

Copyright, 2006 ΚΑΓΙΑΜΠΑΚΗΣ ΜΑΝΟΣ Copyright, 2006 ΚΑΓΙΑΜΠΑΚΗΣ ΜΑΝΟΣ ΣΚΟΠΟΣ ΤΗΣ ΕΝΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΗΦΙΑΚΗ ΤΕΧΝΟΛΟΓΙΑ ΥΛΙΚΑ ΕΞΑΡΤΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΛΟΓΙΚEΣ ΠΥΛΕΣ NOT, AND, OR, NAND, NOR, XOR, XNOR ΠΙΝΑΚΕΣ ΑΛΗΘΕΙΑΣ FLIP - FLOP RS, D, JK,

Διαβάστε περισσότερα

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Κεφάλαιο 1ο. Άλγεβρα Boole και Λογικές Πύλες. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17

Ψηφιακά Ηλεκτρονικά. Κεφάλαιο 1ο. Άλγεβρα Boole και Λογικές Πύλες. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17 Ψηφιακά Ηλεκτρονικά Κεφάλαιο 1ο Άλγεβρα Boole και Λογικές Πύλες Αναλογικά μεγέθη Αναλογικό μέγεθος ονομάζεται εκείνο που μπορεί να πάρει οποιαδήποτε τιμή σε μια περιοχή τιμών, όπως η ταχύτητα, το βάρος,

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφική Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφική Σχεδίαση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφική Σχεδίαση Ενότητα 4: Υλοποίηση Κυκλωμάτων με πύλες NOT AND και NOR, περιττή συνάρτηση, συνάρτηση ισοτιμίας. Δρ. Μηνάς Δασυγένης @ieee.ormdasygg Εργαστήριο

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Άλγεβρα Boole και Λογικές Πύλες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αξιωματικός Ορισμός Άλγεβρας Boole Άλγεβρα Boole: είναι μία

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 6: Συνδυαστική Λογική / Ολοκληρωµένα Κυκλώµατα (Συν.) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Συνέχεια

Διαβάστε περισσότερα

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ 6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Ολοκληρωμένα Κυκλώματα (Μέρος Γ) Διδάσκουσα: Μαρία Κ. Μιχαήλ Περίληψη Έξοδοι υψηλής εμπέδησης: απομονωτές tri-state, πύλες μετάδοσης Ολοκληρωμένα

Διαβάστε περισσότερα

1) Ταχύτητα. (Χρόνος καθυστερήσεως της διαδόσεως propagation delay Tpd ). Σχήμα 11.1β Σχήμα 11.1γ

1) Ταχύτητα. (Χρόνος καθυστερήσεως της διαδόσεως propagation delay Tpd ). Σχήμα 11.1β Σχήμα 11.1γ Κεφάλαιο 11 ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ 11.1. Εισαγωγή Τα ψηφιακά κυκλώματα κατασκευάζονται κυρίως με χρήση ολοκληρωμένων κυκλωμάτων (που λέγονται για συντομία ICs INTEGRATED CIRCUITS). Κάθε IC είναι ένας μικρός

Διαβάστε περισσότερα

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Οικογένειες Ψηφιακής Λογικής Τάση τροφοδοσίας Λογικά επίπεδα - Περιθώριo θορύβου Χρόνος μετάβασης Καθυστέρηση διάδοσης Κατανάλωση ισχύος Γινόμενο

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΒΑΣΙΚΕΣ ΠΥΛΕΣ ΨΗΦΙΑΚΗΣ ΛΟΓΙΚΗΣ. Τι σημαίνει

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Περίληψη

Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Περίληψη ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 27 Οκτ-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Συνδυαστική Λογική / Ολοκληρωμένα Κυκλώματα (Μέρος Γ) Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων Ψηφιακή Σχεδίαση Κεφάλαιο 2: Συνδυαστικά Λογικά Κυκλώματα Γ. Κορνάρος Περίγραμμα Μέρος 1 Κυκλώματα Πυλών και

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 1ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 1ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα ο. Λιούπης Ύλη του µαθήµατος () Ψηφιακά ολοκληρωµένα κυκλώµατα Πλεονεκτήµατα-µειονεκτήµατα Λογικές οικογένειες Χαρακτηριστικά Λογική άµεσα συζευγµένων transistor Λογική αντίστασης-transistor

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΛΓΕΒΡΑ BOOLE 2017, Δρ. Ηρακλής Σπηλιώτης Γενικοί ορισμοί Αλγεβρική δομή είναι ένα σύνολο στοιχείων και κάποιες συναρτήσεις με πεδίο ορισμού αυτό το σύνολο. Αυτές οι συναρτήσεις

Διαβάστε περισσότερα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα ΚΕΦΑΛΑΙΟ 4 ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ 4.1 Εισαγωγή Για την υλοποίηση των λογικών πυλών χρησιμοποιήθηκαν αρχικά ηλεκτρονικές λυχνίες κενού και στη συνέχεια κρυσταλλοδίοδοι και διπολικά τρανζίστορ. Τα ολοκληρωμένα

Διαβάστε περισσότερα

ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών

ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S. Συνηθισµένα Αξιώµατα (α, β, γ, 0) Σ,,

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. 1 Οι λογικές πύλες (ή απλά πύλες) είναι οι θεμελιώδεις δομικές μονάδες των ψηφιακών κυκλωμάτων. Όπως φαίνεται και από την ονομασία

Διαβάστε περισσότερα

2. Άλγεβρα Boole και Λογικές Πύλες

2. Άλγεβρα Boole και Λογικές Πύλες 2. Άλγεβρα Boole και Λογικές Πύλες 2.1 Βασικοί ορισμοί Η άλγεβρα Boole μπορεί να οριστεί με ένα σύνολο στοιχείων, ένα σύνολο τελεστών και ένα σύνολο αξιωμάτων. Δυαδικός τελεστής ορισμένος σε ένα σύνολο

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S = set, σύνολο Συνηθισµένα Αξιώµατα (α,

Διαβάστε περισσότερα

10. Χαρακτηριστικά στοιχεία λογικών κυκλωμάτων

10. Χαρακτηριστικά στοιχεία λογικών κυκλωμάτων 10. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 10.1 Εισαγωγή στο Ολοκληρωμένο Κύκλωμα (integrated circuit) IC Ένα IC αποτελείται από ένα κομμάτι ημιαγώγιμου υλικού (σιλικόνης) ονομαζόμενο

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. 3. Λογικές Πράξεις & Λογικές Πύλες

Ψηφιακά Συστήματα. 3. Λογικές Πράξεις & Λογικές Πύλες Ψηφιακά Συστήματα 3. Λογικές Πράξεις & Λογικές Πύλες Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΕΙΣΑΓΩΓΗ στους Η/Υ Διδάσκουσα Δρ. Β. Σγαρδώνη 2013-14 ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες Α. ΑΛΓΕΒΡΑ Boole Η Άλγεβρα Boole (Boolean algebra) πήρε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ 1.1 ΣΚΟΠΟΣ Η εξοικείωση με τη λειτουργία των Λογικών Πυλών και των Πινάκων Αληθείας. 1.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Οι λογικές πύλες είναι ηλεκτρονικά κυκλώματα που δέχονται στην είσοδο ή στις

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία

Διαβάστε περισσότερα

ΘΕΜΑ : ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΔΙΑΡΚΕΙΑ: 1 περιόδος. 24/11/2011 12:09 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας

ΘΕΜΑ : ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΔΙΑΡΚΕΙΑ: 1 περιόδος. 24/11/2011 12:09 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας ΘΕΜΑ : ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΔΙΑΡΚΕΙΑ: 1 περιόδος 24/11/2011 12:09 καθ. Τεχνολογίας ΜΙΚΡΟΕΠΕΞΕΡΓΑΣΤΗΣ Ένας μικροεπεξεργαστής είναι ένα ολοκληρωμένο κύκλωμα που επεξεργάζεται όλες τις πληροφορίες σε ένα

Διαβάστε περισσότερα

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 14. ΑΠΑΡΙΘΜΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΑΠΑΡΙΘΜΗΤΕΣ ΤΡΟΠΟΣ ΥΛΟΠΟΙΗΣΗΣ KAI ΡΟΗ ΑΠΑΡΙΘΜΗΣΗΣ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ ΥΑ ΙΚΟΥ ΑΠΑΡΙΘΜΗΤΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

Κεφάλαιο 3. Λογικές Πύλες

Κεφάλαιο 3. Λογικές Πύλες Κεφάλαιο 3 Λογικές Πύλες 3.1 Βασικές λογικές πύλες Τα ηλεκτρονικά κυκλώματα που εκτελούν τις βασικές πράξεις της Άλγεβρας Boole καλούνται λογικές πύλες.κάθε τέτοια πύλη δέχεται στην είσοδό της σήματα με

Διαβάστε περισσότερα

7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ

7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ 7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΗΜΙΑΘΡΟΙΣΤΗΣ ΠΛΗΡΗΣ ΑΘΡΟΙΣΤΗΣ ΗΜΙΑΦΑΙΡΕΤΗΣ ΠΛΗΡΗΣ ΑΦΑΙΡΕΤΗΣ ΠΑΡΑΛΛΗΛΟΣ

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων

Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων Καθηγητής Αντώνιος Γαστεράτος Τμήμα Ε.ΔΙ.Π. Μηχανικών Δρ. Αθανάσιος Παραγωγής Ψωμούλης και Διοίκησης, Δ.Π.Θ. Τμήμα Μηχανικών Παραγωγής

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Περιεχόμενα Βασικά ηλεκτρικά χαρακτηριστικά

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 10 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 10 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: στους Ηλεκτρονικούς Υπολογιστές 10 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

3. Απλοποίηση Συναρτήσεων Boole

3. Απλοποίηση Συναρτήσεων Boole 3. Απλοποίηση Συναρτήσεων Boole 3. Μέθοδος του χάρτη Η πολυπλοκότητα ψηφιακών πυλών που υλοποιούν μια συνάρτηση Boole σχετίζεται άμεσα με την πολύπλοκότητα της αλγεβρικής της έκφρασης. Η αλγεβρική αναπαράσταση

Διαβάστε περισσότερα

Κεφάλαιο 4. Λογική Σχεδίαση

Κεφάλαιο 4. Λογική Σχεδίαση Κεφάλαιο 4 Λογική Σχεδίαση 4.1 Εισαγωγή Λογικές συναρτήσεις ονομάζουμε εκείνες για τις οποίες μπορούμε να αποφασίσουμε αν είναι αληθείς ή όχι. Χειριζόμαστε τις λογικές προτάσεις στην συγγραφή λογισμικού

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α)

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ (Α) Αντικείμενο της άσκησης: Η χρήση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων (ΟΚ), η συνδεσμολόγησή τους στην κάρτα εργασίας (bread-board) και η κατανόηση της λογικής συμπεριφοράς των

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων

Διαβάστε περισσότερα

Βασικές CMOS Λογικές οικογένειες (CMOS και Domino)

Βασικές CMOS Λογικές οικογένειες (CMOS και Domino) Βασικές CMOS Λογικές οικογένειες (CMOS και Domino) CMOS Κάθε λογική πύλη αποτελείται από δύο τμήματα p-mos δικτύωμα, τοποθετείται μεταξύ τροφοδοσίας και εξόδου. Όταν είναι ενεργό φορτίζει την έξοδο στην

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΙΚΑΝΟΤΗΤΕΣ: 1. Αναγνωρίζει απλούς κωδικοποιητές - αποκωδικοποιητές.

ΙΚΑΝΟΤΗΤΕΣ: 1. Αναγνωρίζει απλούς κωδικοποιητές - αποκωδικοποιητές. ΙΚΑΝΟΤΗΤΕΣ: 1. Αναγνωρίζει απλούς κωδικοποιητές - αποκωδικοποιητές. 2.Επαληθεύει τη λειτουργία των κωδικοποιητών αποκωδικοποιητών με τη βοήθεια πινάκων 3. Υλοποιεί συνδυαστικά κυκλώματα με αποκωδικοποιητές

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 2: Αλγεβρα Boole, Δυαδική Λογική, Ελαχιστόροι, Μεγιστόροι Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

Κυκλωμάτων» Χειμερινό εξάμηνο

Κυκλωμάτων» Χειμερινό εξάμηνο «Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Εισαγωγή στα Συστήματα Ολοκληρωμένων Κυκλωμάτων Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής http://diceslab.cied.teiwest.gr E-mail: pkitsos@teimes.gr

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Επιµέλεια διαφανειών: Χρ. Καβουσιανός Βασικοί Ορισµοί Δυαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το Σ αντιστοιχίζει ένα στοιχείο του

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 4ο. Λιούπης Λογική συζευγµένου εκποµπού Emitter-coupled logic (ECL) Χρησιµοποιούνται BJT transistor, µόνο στην ενεργή περιοχή Εµφανίζονται µικρές αλλαγές δυναµικού µεταξύ των

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 10 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Στα προηγούμενα μaθήματα Δυαδικό

Διαβάστε περισσότερα

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ. Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 5 ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ

ΑΣΚΗΣΗ 5 ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΣΚΗΣΗ 5 ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης κωδικοποιητών και αποκωδικοποιητών, υλοποίηση συνδυαστικών κυκλωμάτων με αποκωδικοποιητές και λογικές πύλες

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί

Διαβάστε περισσότερα

1.1 Θεωρητική εισαγωγή

1.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΛΟΓΙΚΕΣ ΠΥΛΕΣ NOT, AND, NAND Σκοπός: Να εξοικειωθούν οι φοιτητές µε τα ολοκληρωµένα κυκλώµατα της σειράς 7400 για τη σχεδίαση και υλοποίηση απλών λογικών συναρτήσεων.

Διαβάστε περισσότερα

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 1

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 1 Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Κεφάλαιο 1 Κεφάλαιο 1 Κατηγορίες Υπολογιστικών Συστηµάτων Σκοπός του κεφαλαίου αυτού είναι να παρουσιάσει την εξέλιξη των υπολογιστικών συστηµάτων, τις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ CMOS ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ VLSI

ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ CMOS ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ VLSI ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ CMOS ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ VLSI A. ΚΑΝΑΠΙΤΣΑΣ καθηγητής Τ.Ε.Ι.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες

Διαβάστε περισσότερα

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 2 η :

Διαβάστε περισσότερα

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Οι αρχές της λογικής αναπτύχθηκαν από τον George Boole (85-884) και τον ugustus De

Διαβάστε περισσότερα

Εισαγωγή στα κυκλώµατα CMOS 2

Εισαγωγή στα κυκλώµατα CMOS 2 1 η Θεµατική Ενότητα : Εισαγωγή στα κυκλώµατα CMOS Επιµέλεια διαφανειών:. Μπακάλης Εισαγωγή Τεχνολογία CMOS = Complementary Metal Oxide Semiconductor Συµπληρωµατικού Ηµιαγωγού Μετάλλου Οξειδίου Αποτελείται

Διαβάστε περισσότερα

3. ΛΟΓΙΚΕΣ ΠΡΑΞΕΙΣ & ΛΟΓΙΚΕΣ ΠΥΛΕΣ

3. ΛΟΓΙΚΕΣ ΠΡΑΞΕΙΣ & ΛΟΓΙΚΕΣ ΠΥΛΕΣ 3. ΛΟΓΙΚΕΣ ΠΡΞΕΙΣ & ΛΟΓΙΚΕΣ ΠΥΛΕΣ 3. ΛΟΓΙΚΕΣ ΠΡΞΕΙΣ 3.. Εισαγωγή ντίθετα προς τις μαθηματικές πράξεις και τις μεταβλητές τους, στην λογική διαδικασία χρησιμοποιούμε τις λογικές μεταβλητές οι οποίες μπορούν

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

! " # $ &,-" " (.* & -" " ( /* 0 (1 1* 0 - (* 0 #! - (#* 2 3( 4* 2 (* 2 5!! 3 ( * (7 4* 2 #8 (# * 9 : (* 9

!  # $ &,-  (.* & -  ( /* 0 (1 1* 0 - (* 0 #! - (#* 2 3( 4* 2 (* 2 5!! 3 ( * (7 4* 2 #8 (# * 9 : (* 9 "# " # $ "%%" & '" (' )' * & + (' )' * &,-" " (.* & -" " ( /* 0 (1 1* 0 - (* 0 # - (#* 2 # - (#* 2 3( 4* 2 (* 2 5 3 ( * 2 6 3 (7 4* 2 #8 (# * 9 : (* 9 #" " 5,1 < = " = #+ +# 9 ' :> # &? + # & ISD i " @

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία

Διαβάστε περισσότερα

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 2ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 2ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 2ο. Λιούπης Transistor διπολικής επαφής (BJT) I B B C E I C Στα ψηφιακά κυκλώµατα χρησιµοποιείται κατά κύριο λόγο ως διακόπτης Στο σχήµαφαίνεταιένα τυπικό BJT τύπου NPN I B :

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Κυκλώματα 2

Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Κυκλώματα 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων MOS Ψηφιακά Κυκλώματα Κεφάλαιο 1 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Άλγεβρα oole Χάρτης Karnaugh 2. MOS τρανζίστορ 3.

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Απλοποίηση Συναρτήσεων Boole Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Απλοποίηση Συναρτήσεων Boole Η πολυπλοκότητα του κυκλώματος

Διαβάστε περισσότερα

Κεφάλαιο 4 : Λογική και Κυκλώματα

Κεφάλαιο 4 : Λογική και Κυκλώματα Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο

Διαβάστε περισσότερα

Εισαγωγή στις κρυσταλλολυχνίες (Transistors)

Εισαγωγή στις κρυσταλλολυχνίες (Transistors) Εισαγωγή στις κρυσταλλολυχνίες (Transistors) Dr. Petros Panayi Διακόπτες Ένας διακόπτης είναι μια συσκευή που αλλάζει τη ροή ενός κυκλώματος. Το πρότυπο είναι μια μηχανική συσκευή (παραδείγματος χάριν

Διαβάστε περισσότερα

Άλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα. URL:

Άλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα.   URL: Ø ÖÓ Ü Ñ ÒÓ ÓØ Άλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους

Διαβάστε περισσότερα

ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ

ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ Λ Ο Γ Ι Κ Η Σ Χ Ε Ι ΑΣ Η ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ ΤΜΗΜΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΙΚΤΥΩΝ ΠΑΡΑΡΤΗΜΑ ΝΑΥΠΑΚΤΟΥ ΝΑΥΠΑΚΤΟΣ 2005 ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Λ Ο Γ Ι Κ Η Σ Χ Ε Ι Α Σ Η ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ

Διαβάστε περισσότερα

"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch

My Binary Logic Ένας προσομοιωτής λογικών πυλών στο Scratch "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Καραγιάννη Ελένη 1, Καραγιαννάκη Μαρία-Ελένη 2, Βασιλειάδης Αθανάσιος 3, Κωστουλίδης Αναστάσιος-Συμεών 4, Μουτεβελίδης Ιωάννης-Παναγιώτης 5,

Διαβάστε περισσότερα

Εισαγωγή στη Γλώσσα VHDL

Εισαγωγή στη Γλώσσα VHDL Εισαγωγή στη Γλώσσα VHDL Παράδειγμα and3 Entity και Architecture Entity Entity - Παραδείγματα Architecture VHDL simulation παραδείγματος and3 Παράδειγμα NAND VHDL simulation παραδείγματος nand Boolean

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 5: Το CMOS transistor και κυκλώµατα CMOS ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Κυκλώµατα

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 3ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 3ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 3ο. Λιούπης Χαρακτηριστική καµπύλη µεταφοράς τάσης TTL V out (volts) εγγυηµένη περιοχή V OH V OH(min) V OL(max) 2.4 Ηκαµπύλη µεταφοράς εξαρτάται από τη θερµοκρασία περιβάλλοντος

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Γιάννης Λιαπέρδος 2 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΔΙΑΛΕΞΗΣ Άλγεβρα Διακοπτών Κυκλωματική Υλοποίηση Λογικών Πυλών με Ηλεκτρονικά

Διαβάστε περισσότερα

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Ερωτήσεις Επανάληψης 1. Ένας καθηγητής λογικής μπαίνει σε ένα εστιατόριο και λέει : Θέλω ένα σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες. Δυστυχώς,

Διαβάστε περισσότερα

Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2

Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2 Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs Διάλεξη 2 Δομή της διάλεξης Επανάληψη άλγεβρας Boole Λογική με διόδους Λογική Αντιστάσεων-Τρανζίστορ (Resistor-Transistor Logic ή RTL) Λογική Διόδων-Τρανζίστορ

Διαβάστε περισσότερα

Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole

Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole Κεφάλαιο 9. Ψηφιακά κυκλώματα - Άλγεβρα Boole Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται και αναλύονται οι βασικές αρχές λειτουργίας των ψηφιακών κυκλωμάτων, παρουσιάζεται η άλγεβρα Boole και πώς χρησιμοποιείται

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Δυαδική λογική Πύλες AND, OR, NOT, NAND,

Διαβάστε περισσότερα

6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η)

6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η) 6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η) 6. Εισαγωγή Όπως έχουμε δει οι εκφράσεις των λογικών συναρτήσεων για την συγκεκριμένη σχεδίαση προκύπτουν εύκολα από χάρτη Καρνώ -Karnaugh. Έτσι βρίσκουμε

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 4: Ελαχιστοποίηση και Λογικές Πύλες ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Βελτιστοποίηση

Διαβάστε περισσότερα

Λογική Σχεδίαση Ψηφιακών Συστημάτων

Λογική Σχεδίαση Ψηφιακών Συστημάτων Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδική Λογική Η δυαδική λογική ασχολείται με μεταβλητές

Διαβάστε περισσότερα

Εισαγωγή. Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων

Εισαγωγή. Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά: Οι έξοδοι είναι συνάρτηση των εισόδων και της κατάστασης των στοιχείων

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Μάθηµα 3: Απλοποίηση συναρτήσεων Boole ιδάσκων: Καθηγητής Ν. Φακωτάκης 3-1 Η µέθοδος του χάρτη H πολυπλοκότητα

Διαβάστε περισσότερα