ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008"

Transcript

1 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές) μονάδες Στοιχειώδης λογικές συναρτήσεις υαδικοί Αποκωδικοποιητές Λειτουργία, Επέκταση, Υλοποίηση κυκλώματος υαδικοί Κωδικοποιητές Λειτουργία, Επέκταση, Κωδικοποιητές Προτεραιότητας Πολυπλέκτες (Multiplexers -- s) Λειτουργία Παράλληλοι (Dual, Quad, κτλ) ως οικουμενική πύλη Υλοποίηση κυκλωμάτων με s Οκτ-8 Κυκλώματα MKM - 2 Κυκλώματα

2 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Συναρτήσεις και Συναρτησιακές (Λειτουργικές) Μονάδες Εξετάζουμε βασικές συναρτήσεις που χρησιμεύουν στο σχεδιασμό ψηφιακών κυκλωμάτων Σε κάθε συνάρτηση αντιστοιχεί μια υλοποίηση συνδυαστικού κυκλώματος που αναφέρετε ως λειτουργική μονάδα Στο παρελθόν, πολλές λειτουργικές μονάδες υλοποιούνταν ως κυκλώματα τεχνολογίας SSI, MSI, and LSI Σήμερα, συχνά, είναι μέρος (κομμάτια) των κυκλωμάτων τεχνολογίας VLSI Οκτ-8 Κυκλώματα MKM - 3 Στοιχειώδης Λογικές Συναρτήσεις Μεταφορά / Συμπλήρωση Αμετάβλητες τιμές (value fixing) ίαυλοι (busses) Ενεργοποίηση (enabling / gating) Οκτ-8 Κυκλώματα MKM - Κυκλώματα 2

3 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Στοιχειώδης Λογικές Συναρτήσεις Συναρτήσεις μίας εισόδου (X) Χρησιμοποιούνται στις εισόδους των λειτουργικών μονάδων για να μετατρέψουν τη προτιθέμενη λειτουργία τους TABLE - Functions of One Variable X F = F = X F = X F = V or V DD F= F= X (c) F=X F= F= X F=X Οκτ-8 (a) Βασικές Συνδυαστικές Συναρτήσεις (b) και Κυκλώματα (d) MKM - 5 Στοιχειώδη Συναρτήσεις Πολλαπλών bit ( ίαυλος/bus) Παραδείγματα πολλαπλών bit: A F 3 F 2 F A F (a) A A 2 3 (b) 2 2: F F(2:) (c) 3,: 3 F(3), F(:) F Η κίτρινη γραμμή αναπαριστά ένα δίαυλο (d) (bus), ο οποίος είναι ένα διάνυσμα σημάτων Στο παράδειγμα (b), F(3:) = (F 3, F 2, F, F ) είναι ένας δίαυλος Ένας δίαυλος μπορεί να διασπαστεί σε ξεχωριστά bits, όπως φαίνετε στο (b) Σύνολα από bits μπορούν να διασπαστούν από ένα δίαυλο, όπως φαίνετε στο (c) για τα bits 2 και του F Τα σύνολα των διασπασμένων bits δεν είναι ανάγκη να είναι συνεχόμενα, όπως φαίνετε στο (d) για τα bits 3,, και του F Οκτ-8 Κυκλώματα MKM - 6 F Κυκλώματα 3

4 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Value-fixing Y = I A B + I A B + I 2 AB + I 3 AB ίνοντας σταθερές τιμές ( ή ) στις εισόδους I -- I 3 μπορούμε να υλοποιήσουμε οποιαδήποτε συνάρτηση F(A,B) πχ F(A,B) = A + B Οκτ-8 Κυκλώματα MKM - 7 Value-fixing (Παράδειγμα ) Y = A B + A B + AB + AB = A B+AB +AB = A+B ίνοντας σταθερές τιμές ( ή ) στις εισόδους I -- I 3 μπορούμε να υλοποιήσουμε οποιαδήποτε συνάρτηση F(A,B) πχ F(A,B) = A + B Οκτ-8 Κυκλώματα MKM - 8 Κυκλώματα

5 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Value-fixing (Παράδειγμα 2) Y = A B + A B + AB + AB = A B+AB = A B ίνοντας σταθερές τιμές ( ή ) στις εισόδους I -- I 3 μπορούμε να υλοποιήσουμε οποιαδήποτε συνάρτηση F(A,B) πχ F(A,B) = A B = A B + AB Οκτ-8 Κυκλώματα MKM - 9 Value-fixing (Παράδειγμα 3) Y = A B + A B + AB + I 3 AB = A B + I 3 AB ίνοντας σταθερές τιμές ( ή ) στις εισόδους I -- I 3 μπορούμε να υλοποιήσουμε οποιαδήποτε συνάρτηση F(A,B) πχ F(A,B) = A B + AB + I 3 ΑΒ (I 3 = Α Β, I 3 = Α+Β) Οκτ-8 Κυκλώματα MKM - Κυκλώματα 5

6 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Συνάρτηση Ενεργοποίησης (Enabling Function / Gating) Ενεργοποίηση: επιτρέπει ένα σήμα εισόδου να περάσει στην έξοδο Απενεργοποίηση: εμποδίζει ένα σήμα εισόδου να περάσει στην έξοδο, αντικαθιστώντας το με μια σταθερή τιμή Η τιμή μιας απενεργοποιημένης εξόδου μπορεί να είναι Hi-Z (όπως σε tri-state buffers και πύλες μετάδοσης),, ή, αναλόγως της σύμβασης Όταν ΕΝ=, F= X EN Όταν ΕΝ=, F= (a) F EN X F Οκτ-8 Κυκλώματα MKM - (b) υαδικοί Αποκωδικοποιητές (Binary Decoders) Συνδυαστικό κύκλωμα για μετατροπή δυαδικών δεδομένων από n κωδικοποιημένες εισόδους σε 2 n κωδικοποιημένες εξόδους Aποκωδικοποιητής (Binary Decoder) n-to- 2 n Αποκωδικοποιητής (ode onverter) n-σε-m, m 2 n Παραδείγματα: BD-σε-7-segment και BD-σε- Εxcess-3, όπου n= και m= Οκτ-8 Κυκλώματα MKM - 2 Κυκλώματα 6

7 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Αποκωδικοποιητές (συν) Οκτ-8 Κυκλώματα MKM - 3 Αποκωδικοποιητής 2-σε- Σχεδιάστε ένα αποκωδικοποιητή -σε-2 Οκτ-8 Κυκλώματα MKM - Κυκλώματα 7

8 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Αποκωδικοποιητής 2-σε-, ενεργός με χαμηλή τάση (active low) Οκτ-8 Κυκλώματα MKM - 5 Αποκωδικοποιητής 3-σε-8 δεδομένα διεύθυνση Οκτ-8 Κυκλώματα MKM - 6 Κυκλώματα 8

9 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Αποκωδικοποιητής 3-σε-8 (συν) Τρεις είσοδοι, A, A, A 2, αποκωδικοποιούνται σε οκτώ εξόδους, D έως D 7 Κάθε έξοδος D i αντιπροσωπεύει έναν από τους ελαχιστόρους των 3ων μεταβλητών εισόδου D i = όταν ο δυαδικός αριθμός A 2 A A = i Συντομογραφία: D i = m i Οι τιμές στις εξόδους έχουν αμοιβαία αποκλειστικότητα (mutually exclusive), δηλ ΜΟΝΟ μία έξοδος μπορεί να έχει την τιμή ανά πάσα στιγμή, καιοιυπόλοιπεςέχουν την τιμή Οκτ-8 Κυκλώματα MKM - 7 Αποκωδικοποιητής 3-σε-8, με ιεραρχικό σχεδιασμό Οκτ-8 Κυκλώματα MKM - 8 Κυκλώματα 9

10 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Υλοποίηση δυαδικών συναρτήσεων με χρήση αποκωδικοποιητών Οποιοδήποτε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί χρησιμοποιώντας μόνο ένα αποκωδικοποιητή και πύλες OR! Γιατί; Παράδειγμα: Υλοποιήστε ένα πλήρη αθροιστή με ένα αποκωδικοποιητή και 2 πύλες OR Θεωρήστε X, Y, και Z για εισόδους, S και για εξόδους: S(X,Y,Z) = X+Y+Z = Σm(,2,,7) (X,Y,Z) = Σm(3, 5, 6, 7) Αφού υπάρχουν 3 είσοδοι και άρα 8 συνολικοί ελαχιστόροι, χρειαζόμαστε ένα αποκωδικοποιητή 3-σε-8 Οκτ-8 Κυκλώματα MKM - 9 Υλοποίηση υαδικού Αθροιστή με χρήση Αποκωδικοποιητή S(X,Y,Z) = Σm(,2,,7) (X,Y,Z) = Σm(3,5,6,7) Οκτ-8 Κυκλώματα MKM - 2 Κυκλώματα

11 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Επέκταση Αποκωδικοποιητή Μπορούμε να κατασκευάσουμε ένα μεγαλύτερο αποκωδικοποιητή χρησιμοποιώντας ένα αριθμό από μικρότερους ΙΕΡΑΡΧΙΚΟΣ σχεδιασμός! Παράδειγμα: Ένας αποκωδικοποιητής 6-σε-6 μπορεί να σχεδιαστεί με τέσσερις -σε-6 και ένα 2-σε- Πως; (Υπόδειξη: Χρησιμοποιήστε τον 2-σε- γιαναπαράγει το σήμα ενεργοποίησης των τεσσάρων -σε-6) Οκτ-8 Κυκλώματα MKM - 2 Αποκωδικοποιητής 3-σε-8 με δύο αποκωδικοποιητές 2-σε- Οκτ-8 Κυκλώματα MKM - 22 Κυκλώματα

12 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 ένδρο αποκωδικοποιητή με εισόδους Οκτ-8 Κυκλώματα MKM - 23 Αποκωδικοποιητής με Enable Οκτ-8 Κυκλώματα MKM - 2 Κυκλώματα 2

13 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Κωδικοποιητές Συνδυαστικό κύκλωμα που διεκπεραιώνει την αντίστροφη λειτουργία από αυτή του αποκωδικοποιητή Έχει 2 n εισόδους και n εξόδους ΜΟΝΟ είσοδος μπορεί να έχει την τιμή ανά πάσα στιγμή (αντιστοιχεί σε από τους 2 n ελαχιστόρους) Οι έξοδοι παράγουν το δυαδικό ισοδύναμο της εισόδου με τιμή Οκτ-8 Κυκλώματα MKM - 25 Κωδικοποιητές (συν) Οκτ-8 Κυκλώματα MKM - 26 Κυκλώματα 3

14 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Κωδικοποιητές -- Παράδειγμα Παράδειγμα: δυαδικός κωδικοποιητής 8-σε-3 A = D + D 3 + D 5 + D 7 A = D 2 + D 3 + D 6 + D 7 A 2 = D + D 5 + D 6 + D 7 Οκτ-8 Κυκλώματα MKM - 27 Παράδειγμα (συν) Οκτ-8 Κυκλώματα MKM - 28 Κυκλώματα

15 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Θέματα Σχεδιασμού Κωδικοποιητών Υπάρχουν 2 αοριστίες που συσχετίζονται με τον σχεδιασμό ενός απλού κωδικοποιητή: ΜΟΝΟ μία είσοδος μπορεί να είναι ενεργή (active ή High), ανά πάσα στιγμή Αν ενεργοποιηθούν δύο μαζί, οι τιμές στις εξόδους είναι ακαθόριστες (πχ, αν D 3 και D 6 είναι μαζί, το αποτέλεσμα στις εξόδους είναι ) 2 Αποτέλεσμα με όλο μπορείναπαραχθείόταν όλες οι είσοδοι είναι, ήόταντοd είναι Οκτ-8 Κυκλώματα MKM - 29 Κωδικοποιητές Προτεραιότητας Επιλύουν τις αοριστίες που προαναφέρθηκαν Περισσότερες από μία είσοδοι μπορούν να πάρουν την τιμή Όμως, μία έχει προτεραιότητα από όλες τις άλλες Ρητή ένδειξη όταν καμία από τις εισόδους δεν είναι Οκτ-8 Κυκλώματα MKM - 3 Κυκλώματα 5

16 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Κωδικοποιητής Προτεραιότητας -σε-2 Πίνακας Αληθείας (συμπυκνωμένος) Ποια είναι η σειρά προτεραιότητας; Οκτ-8 Κυκλώματα MKM - 3 Κωδικοποιητής Προτεραιότητας -σε-2 (συν) Λειτουργία: Εάν δύο ή περισσότερες είσοδοι είναι συγχρόνως, η είσοδος με τον πιο ψηλό αριθμοδείκτη παίρνει προτεραιότητα Ο έγκυρος δείκτης εξόδου (valid output indicator, ορισμένος ως V στην προηγούμενη διαφάνεια), παίρνει την τιμή μόνο όταν μία ή περισσότερες από τις εισόδους έχουν την τιμή V = D 3 + D 2 + D + D Οκτ-8 Κυκλώματα MKM - 32 Κυκλώματα 6

17 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Κωδικοποιητής Προτεραιότητας -σε-2 K-χάρτες Οκτ-8 Κυκλώματα MKM - 33 Κωδικοποιητής Προτεραιότητας -σε-2 Λογικό ιάγραμμα Οκτ-8 Κυκλώματα MKM - 3 Κυκλώματα 7

18 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Κωδικοποιητής Προτεραιότητας 8-σε-3 Οκτ-8 Κυκλώματα MKM - 35 Χρήσεις υαδικού Κωδικοποιητή υαδική κωδικοποίηση κατεύθυνσης ανέμου Οκτ-8 Κυκλώματα MKM - 36 Κυκλώματα 8

19 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Χρήσεις υαδικού Κωδικοποιητή (συν) Επίλυση αιτημάτων διακοπών (interrupt requests) με χρήση κωδικοποιητή Οκτ-8 Κυκλώματα MKM - 37 Πολυπλέκτες (Multiplexers) Κύκλωμα που «επιλέγει» δυαδική πληροφορία από μία από τις εισόδους και την κατευθύνει στη μοναδική έξοδο Επίσης γνωστό ως «επιλογέας» (selection circuit) Η επιλογή ελέγχετε από ένα σύνολο εισόδων, ο αριθμός των οποίων εξαρτάτε από τον # των εισόδων δεδομένων Για ένα πολυπλέκτη 2 n -σε-, υπάρχουν 2 n + n είσοδοι: 2 n είσοδοι δεδομένων και n είσοδοι επιλογής, έτσι ώστε ο συνδυασμός των bit τους να καθορίζει την είσοδο δεδομένων που θα επιλεγεί Οκτ-8 Κυκλώματα MKM - 38 Κυκλώματα 9

20 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Πολυπλέκτες (συν) είσοδοι δεδομένων έξοδος είσοδοι επιλογής Οκτ-8 Κυκλώματα MKM σε- Αφού υπάρχουν 2 είσοδοι δεδομένων, 2 = 2 n = Υπάρχει μια είσοδος επιλογής S: S = επιλέγει την είσοδο I S = επιλέγει την είσοδο I Υλοποιεί την συνάρτηση: Y = S I + SI Το λογικό διάγραμμα: Decoder Ι Ι Enabling ircuits 2-to- S Υ S I I Y Οκτ-8 Κυκλώματα MKM - Κυκλώματα 2

21 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 2-σε- (συν) Προσέξετε ότι τα διάφορα μέρη του πολυπλέκτη δείχνουν: Ένα -σε-2 Αποκωδικοποιητή ύο κυκλώματα ενεργοποίησης (enable circuits) Μια πύλη OR 2-εισόδων Τα πιο πάνω συνδυάζονται για να μας δώσουν τον πολυπλέκτη, τα κυκλώματα ενεργοποίησης και η πύλη OR 2-εισόδων δίνουν ένα κύκλωμα 2 2 AND-OR, όπου οι είσοδοι του προέρχονται από τις 2 εισόδους δεδομένων και τις 2 εισόδους του αποκωδικοποιητή: 2 είσοδοι δεδομένων -σε-2 αποκωδικοποιητή (παράγουν τους ελαχιστόρους) 2 2 AND-OR Γενικά, για έναν πολυπλέκτη 2 n -σε-: 2 n είσοδοι δεδομένων n-σε-2 n αποκωδικοποιητή 2 n 2 AND-OR Οκτ-8 Κυκλώματα MKM - Παράδειγμα: -σε- S Decoder S 3 2 AND-OR S Decoder S I I Y Y I 2 I 3 Οκτ-8 Κυκλώματα MKM - 2 Κυκλώματα 2

22 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Παράδειγμα: -σε- (συν) S Decoder δηλώνει επενεργοποίηση S S S Decoder I I I AND-OR Y Ι 2 Ι 2 Y I 3 Οκτ-8 Κυκλώματα MKM - 3 Παράδειγμα: -σε- : Βελτιστοποίηση S S D S S D S S D 2 S S D 3 Οκτ-8 Κυκλώματα MKM - Κυκλώματα 22

23 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Παράδειγμα: σε με Πύλες Μετάβασης (Transmission Gates) Οκτ-8 Κυκλώματα MKM - 5 Πολυπλέκτες (συν) Μέχρι στιγμής, έχουμε εξετάσει επιλογή δυαδικής πληροφορίας ενός-bit από Τι γίνετε αν θέλουμε να επιλέξουμε πληροφορία των m-bit (data/words)? Συνδυάζουμε κυκλώματα παράλληλα, με κοινές εισόδους επιλογής και ενεργοποίησης Παράδειγμα: Βρείτε το λογικό διάγραμμα ενός πολυπλέκτη που επιλέγει μεταξύ 2 συνόλων από εισόδους -bit Τετραπλός 2-σε- πολυπλέκτης (Quad 2-to- ) Quad 2-to-? Οκτ-8 Κυκλώματα MKM - 6 Κυκλώματα 23

24 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Παράδειγμα: Τετραπλό (Quad) 2-σε- Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής (S) και κοινή είσοδο ενεργοποίησης (E) Η είσοδος επιλογής S επιλέγει μεταξύ των A i s και B i s και στέλνει στα αντίστοιχα Y i s Το σήμα ενεργοποίησης E αφήνει τα επιλεγμένα δεδομένα εισόδου να φτάσουν στις εξόδους (E= για ενεργή λειτουργία) ήόλοιοιέξοδοιμένουν σταθεροί σε (E= για απενεργοποίηση) Οκτ-8 Κυκλώματα MKM - 7 Παράδειγμα: Τετραπλό (Quad) 2-σε- Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής (S) και κοινή είσοδο ενεργοποίησης (E) A A A A Η είσοδος επιλογής S επιλέγει μεταξύ των A i s και B i s και στέλνει στα αντίστοιχα Y i s Το σήμα ενεργοποίησης E αφήνει τα επιλεγμένα δεδομένα εισόδου να φτάσουν στις εξόδους (E= για ενεργή λειτουργία) ήόλοιοιέξοδοιμένουν σταθεροί σε (E= για απενεργοποίηση) A 2 A 3 A 2 A 3 Οκτ-8 Κυκλώματα MKM - 8 Κυκλώματα 2

25 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Παράδειγμα: Τετραπλό (Quad) 2-σε- Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής (S) και κοινή είσοδο ενεργοποίησης (E) Η είσοδος επιλογής S επιλέγει μεταξύ των A i s και B i s και στέλνει στα αντίστοιχα Y i s B B B 2 B 3 Το σήμα ενεργοποίησης E αφήνει τα επιλεγμένα δεδομένα εισόδου να φτάσουν στις εξόδους (E= για ενεργή λειτουργία) ήόλοιοιέξοδοιμένουν σταθεροί σε (E= για απενεργοποίηση) B B B 2 B 3 Οκτ-8 Κυκλώματα MKM - 9 Παράδειγμα: Τετραπλό (Quad) 2-σε- Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής (S) και κοινή είσοδο ενεργοποίησης (E) Η είσοδος επιλογής S επιλέγει μεταξύ των A i s και B i s και στέλνει στα αντίστοιχα Y i s Το σήμα ενεργοποίησης E αφήνει τα επιλεγμένα δεδομένα εισόδου να φτάσουν στις εξόδους (E= για ενεργή λειτουργία) ήόλοιοιέξοδοιμένουν σταθεροί σε (E= για απενεργοποίηση) X X X Οκτ-8 Κυκλώματα MKM - 5 Κυκλώματα 25

26 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Παράδειγμα: Τετραπλό (Quad) 2-σε- Άλλη Όψη Χρησιμοποιεί τέσσερις 2-σε-, με κοινή είσοδο επιλογής (S) Η είσοδος επιλογής S επιλέγει μεταξύ των A i s και B i s και στέλνει στα αντίστοιχα Y i s Quad 2-to- S S S S S S Οκτ-8 Κυκλώματα MKM - 5 B A B A B A B2 A2 B3 A3 F F F F2 F3 A B A B A B A2 B2 A3 B3 2-to- S 2-to- 2-to- 2-to- 2-to- F F F F2 F3 S Άλλα Παραδείγματα: 8-bit 2-to- A B 2-to- F A B 2-to- F S bit 2-to- 8 A B 2-to- F A5 B5 2-to- F5 S A2 B2 2-to- F2 A6 B6 2-to- F6 A3 B3 2-to- F3 A7 B7 2-to- F7 Οκτ-8 Κυκλώματα MKM - 52 Κυκλώματα 26

27 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Άλλα Παραδείγματα: Quad (-bit) -to- S A S2 B F A B D -to- F 2 S A B D D 2 -to- S F A B D A2 B2 2 D2 A3 B3 3 D3 -to- -to- -to- F F2 F3 Quad -to- 2 S Οκτ-8 Κυκλώματα MKM - 53 Παράδειγμα: Quad -σε- Επίσης μια άλλη όψη 3 2 AND-OR I, Quad -to- 2 A A A A 2-to--Line decoder D D 3 I 3, I, 3 2 AND-OR I 3, I,2 Y 3 2 AND-OR Y I 3,2 I,3 3 2 AND-OR Y 2 Y 3 I 3,3 Οκτ-8 Κυκλώματα MKM - 5 Κυκλώματα 27

28 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Παράδειγμα: Quad -σε- Επίσης μια άλλη όψη Quad -to- 2 A A A A 2-to--Line decoder D AND-OR I I,, I 3, 3 2 AND-OR I D I,, Y I 3 2 AND-OR 3, I,2 I,2 Y I 3 2 AND-OR 3,2 I,3 I,3 Y 2 Y 3 I 3,3 Οκτ-8 Κυκλώματα MKM - 55 Υλοποίηση συναρτήσεων Boole με πολυπλέκτες Οποιαδήποτε συνάρτηση Boole n μεταβλητών μπορεί να υλοποιηθεί χρησιμοποιώντας ένα πολυπλέκτη μεγέθους 2 n- -σε- και μια πύλη NOT Αναμενόμενο, αφού ένας πολυπλέκτης αποτελείται από έναν αποκωδικοποιητή, με τις εξόδους του να καταλήγουν σε μια πύλη OR Τα σήματα ΕΠΙΛΟΓΗΣ παράγουν τους ελαχιστόρους της συνάρτησης Τα σήματα Ε ΟΜΕΝΩΝ καθορίζουν τους ελαχιστόρους που οδηγούν στην πύλη OR Οκτ-8 Κυκλώματα MKM - 56 Κυκλώματα 28

29 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Παράδειγμα F(X,Y,Z) = X Y Z + X YZ + XYZ + XYZ = Σm(,2,6,7) Υπάρχουν n=3 είσοδοι, άρα, χρειαζόμαστε ένα 2 2 -to- Οι πρώτες n- (=2) είσοδοι υπηρετούν ως είσοδοι επιλογής Οκτ-8 Κυκλώματα MKM - 57 Συστηματική Μέθοδος για υλοποίηση συναρτήσεων με Για μία συνάρτηση n-μεταβλητών (πχ, f(a,b,,d)): Χρειάζεται ένας 2 n- -to-, με n- εισόδους επιλογής 2 Υπολογίζουμε τον πίνακα αληθείας της συνάρτησης, με τη σειρά μεταβλητών Α>Β>>D (Α είναιτοmsb και D το LSB) 3 Ορίζουμε τις πιο σημαντικές n- μεταβλητές στις n- εισόδους επιλογής (πχ, A,B,) Εξετάζουμε ζεύγη γειτονικών γραμμών στον πίνακα (μόνο το LSB διαφέρει, πχ, D= and D=) 5 Καθορίζουμε κατά πόσο η τιμή της συνάρτησης (έξοδος) για το συνδυασμό (A,B,,) και (A,B,,) είναι (,), (,), (,), or (,) 6 Για κάθε συνδυασμό (A,B,), ορίζουμε, D, D, ή στην είσοδο δεδομένων που αντιστοιχεί στο (A,B,) Οκτ-8 Κυκλώματα MKM - 58 Κυκλώματα 29

30 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Άλλο Παράδειγμα Θεωρήστε F(A,B,) = m(,3,5,6) Μπορούμε να υλοποιήσουμε τη συνάρτηση με ένα -σε- Η σειρά μεταβλητών είναι A>B> Τότε, τα σήματα επιλογής ορίζονται ως S =ΑκαιS =B Βρείτε τον πίνακα αληθείας Οκτ-8 Κυκλώματα MKM - 59 Άλλο Παράδειγμα (συν) A B F Όταν A=B=, F= Όταν A=, B=, F= Όταν A=, B=, F= Όταν A=B=, F= Οκτ-8 Κυκλώματα MKM - 6 Κυκλώματα 3

31 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Άλλο Παράδειγμα (συν) Υλοποίηση F(A,B,) = m(,3,5,6) με A B F Οκτ-8 Κυκλώματα MKM - 6 Μεγαλύτερο Παράδειγμα Οκτ-8 Κυκλώματα MKM - 62 Κυκλώματα 3

32 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Παράδειγμα με πολλαπλές εξόδους: Gray σε Binary Σχεδιάστε το κύκλωμα που μετατρέπει από 3-bit Gray στο δυαδικό κώδικα Ο πίνακας αληθείας δίνεται στα δεξιά Είναι φανερό ότι, X = ενώ οι συναρτήσεις Y και Z είναι πιο πολύπλοκες Gray A B Binary x y z Οκτ-8 Κυκλώματα MKM - 63 Gray to Binary η λύση Αναδιατάξτε τον πίνακα, έτσι ώστε οι διάφοροι συνδυασμοί εισόδων να είναι σε σειρά (,,, ) Οι συναρτήσεις y και z μπορούν να υλοποιηθούν με ένα διπλό (2-bit) 8-σε- : Οι A, B και ενώνονται στις εισόδους επιλογής Οι έξοδοι του ΜUX ορίζονται ως η y και η z Gray A B Binary x y z Οι είσοδοι δεδομένων παίρνουν τις αντίστοιχες σταθερές τιμές από τον πίνακα αληθείας (value fixing) Οκτ-8 Κυκλώματα MKM - 6 Κυκλώματα 32

33 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Gray to Binary η λύση (συν) A B D D D2 D3 D D5 D6 D7 S2 S S Out 8-to- Y A B D D D2 D3 D D5 D6 D7 S2 S S Out 8-to- Z Βασικά, ένας 2-bit 8-to- με σταθερές τιμές είναι πανομοιότυπος με μια ROM με διευθύνσεις 3ων-bit (είσοδοι) και δεδομένα εξόδου 2-bit! --> 2 3 x2 ROM Οκτ-8 Κυκλώματα MKM - 65 Gray σε Binary 2 η λύση Αναδιατάξτε τον πίνακα, έτσι ώστε οι διάφοροι συνδυασμοί εισόδων να είναι σε σειρά (,,, ) Gray A B Binary x y z Στοιχειώδης συνάρτηση του για y F = F = F = F = Στοιχειώδης συνάρτηση του για z F = F = F = F = Οκτ-8 Κυκλώματα MKM - 66 Κυκλώματα 33

34 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Gray σε Binary 2 η λύση (συν) D D D2 D3 Out Y D D D2 D3 Out Z A B S S 8-to- A B S S 8-to- Η 2 η λύση μειώνει το κόστος σχεδόν στο μισό της ης Η 2 η λύση δεν μοιάζει με ROM Οκτ-8 Κυκλώματα MKM - 67 ως οικουμενική πύλη Μπορούμε να παράγουμε τις λειτουργίες OR, AND, και NOT μόνο με 2-σε- Άρα, η 2- to- είναι οικουμενική πύλη OR NOT AND x z = x + x x z = x + x = x z = x x + x = x x = x x + x x + x x = x + x Οκτ-8 Κυκλώματα MKM - 68 Κυκλώματα 3

35 ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 Demultiplexers (De) Εκτελεί το αντίστροφο της λειτουργίας του πολυπλέκτη: έχεται δεδομένα από μία είσοδο και τα μεταβιβάζει σε συγκεκριμένη έξοδο, από τις 2 n πιθανές που υπάρχουν Η επιλογή εξόδου γίνετε από τις n εισόδους επιλογής Βασικά, είναι ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ! Για παράδειγμα, ένας 2-σε- De είναι ένας αποκωδικοποιητής 2-σε-, με είσοδο ενεργοποίησης (ενώνετε στην είσοδο δεδομένων) Οκτ-8 Κυκλώματα MKM - 69 Κυκλώματα 35

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Βασικές Συνδυαστικές Συναρτήσεις και. Διδάσκουσα: Μαρία Κ. Μιχαήλ

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Βασικές Συνδυαστικές Συναρτήσεις και. Διδάσκουσα: Μαρία Κ. Μιχαήλ ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 29 Οκτ-9 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό μρ Εξάμηνο 29 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 2 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 26 ΔΙΑΛΕΞΗ 8: Σχεδιασµός Συνδυαστικών Κυκλωµάτων Ι (Κεφάλαιο 4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Συναρτήσεις

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 7: κωδικοποιητές, κωδικοποιητές προτεραιότητας, πολυπλέκτες, υλοποίηση συνάρτησης με πολυπλέκτη, αποπλέκτες, πύλη 3ιών καταστάσεων,

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 υαδικός Αθροιστής, Πολυπλέκτες και Αποκωδικοποιητές Εβδοµάδα: 5 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Στόχοι

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ

ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΠΟΛΥΠΛΕΚΤΗΣ ΑΠΟΠΛΕΚΤΗΣ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1) Κωδικοποιητής Ο κωδικοποιητής

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 6: Δυαδικές Πράξεις, Συμπλήρωμα του 2, Δυαδικοί Αποκωδικοποιητές, Κωδικοποιητές, Πολυπλέκτες Δρ. Μηνάς Δασυγένης @ieee.ormdasygg

Διαβάστε περισσότερα

Περιεχόµενα. Στοιχειώδης Λογικές Συναρτήσεις. Αποκωδικοποίηση (Decoding) Ενεργοποίηση Συνάρτησης (Enabling)

Περιεχόµενα. Στοιχειώδης Λογικές Συναρτήσεις. Αποκωδικοποίηση (Decoding) Ενεργοποίηση Συνάρτησης (Enabling) Περιεχόµενα Κεφάλαιο 4: Συνδυαστικές Συναρτήσεις και Κυκλώµατα Συναρτήσεις και µονάδες συναρτήσεων Στοιχειώδες λογικές συναρτήσεις Αποκωδικοποίησης Κωδικοποίηση Επιλογή (πολυπλέκτης) Chapter 4 Chapter

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 8//28 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων

Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ 20: Σχεδιασμός Ψηφιακών Συστημάτων 5//200 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Σχεδιασμός Ακολουθιακών Κυκλωμάτων Αρχή: Μια λίστα/περιγραφή

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)

Διαβάστε περισσότερα

ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων

ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Πλήρης Αθροιστής, Αποκωδικοποιητής και Πολυπλέκτης ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λύσεις

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος B) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( DECODERS )

ΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( DECODERS ) 6.1. ΣΚΟΠΟΣ ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών ΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( ECOERS ) Η κατανόηση της λειτουργίας των αποκωδικοποιητών και των εφαρμογών τους. 6.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Ο

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Δυαδική λογική Πύλες AND, OR, NOT, NAND,

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδυαστική Λογική / Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδυαστική Λογική / Κυκλώματα ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος ) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX)

ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX) ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX) 8.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των πολυπλεκτών και αποπλεκτών και της χρήσης αυτών των ολοκληρωμένων κυκλωμάτων (Ο.Κ.)

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Προγραμματιζόμενη Λογική Γιατί;

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Προγραμματιζόμενη Λογική Γιατί; ΗΜΥ 20: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ- ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστικές Λογικές ιατάξεις Διδάσκουσα: Μαρία Κ. Μιχαήλ Περίληψη Λογικές ιατάξεις (Programmable Logic Devices PLDs)

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες

K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Λειτουργία Πολυπλέκτης (Mul plexer) Ο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 ΠΟΛΥΠΛΕΚΤΕΣ (MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMUX)

ΑΣΚΗΣΗ 6 ΠΟΛΥΠΛΕΚΤΕΣ (MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMUX) ΑΣΚΗΣΗ 6 ΠΟΛΥΠΛΕΚΤΕΣ (MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMUX) Αντικείμενο της άσκησης: Η κατανόηση των εννοιών πολύπλεξης - απόπλεξης, η σχεδίαση σε επίπεδο πυλών ενός πολυπλέκτη και εφαρμογές με τα ολοκληρωμένα κυκλώματα

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

PLD. Εισαγωγή. 5 η Θεµατική Ενότητα : Συνδυαστικά. PLAs. PLDs FPGAs

PLD. Εισαγωγή. 5 η Θεµατική Ενότητα : Συνδυαστικά. PLAs. PLDs FPGAs 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI και Εισαγωγή Οι προγραµµατιζόµενες διατάξεις είναι ολοκληρωµένα µε εσωτερικές πύλες οι οποίες µπορούν να υλοποιήσουν οποιαδήποτε συνάρτηση αν υποστούν

Διαβάστε περισσότερα

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης

Διαβάστε περισσότερα

ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών

ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Απλοποίηση Συναρτήσεων Boole Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Απλοποίηση Συναρτήσεων Boole Η πολυπλοκότητα του κυκλώματος

Διαβάστε περισσότερα

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία

Διαβάστε περισσότερα

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005 ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 2-ii: Συνδυαστικά Λογικά Κυκλώµατα (2.6 2.8, ) Περίληψη Υλοποίηση κυκλωµάτων πολλαπλών επιπέδων (µετασχηµατισµοί)

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών

Διαβάστε περισσότερα

Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών μεταβλητών a,

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΣΠΟΥΔΑΣΤΗΣ : Λιασένκο Ρομάν ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ : Τόλιου Κατερίνα NEA

Διαβάστε περισσότερα

ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ Οι έξοδοί τους είναι συναρτήσεις αποκλειστικά των εισόδων τους Χαρακτηρίζονται από μία καθυστέρηση στη διάδοση του σήματος της τάξης των ns Συνδιαστικά Κυκλώματα O ΣΥΓΚΡΙΤΗΣ Συγκρίνει

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

3. Απλοποίηση Συναρτήσεων Boole

3. Απλοποίηση Συναρτήσεων Boole 3. Απλοποίηση Συναρτήσεων Boole 3. Μέθοδος του χάρτη Η πολυπλοκότητα ψηφιακών πυλών που υλοποιούν μια συνάρτηση Boole σχετίζεται άμεσα με την πολύπλοκότητα της αλγεβρικής της έκφρασης. Η αλγεβρική αναπαράσταση

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Συστημάτων

Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 27 Νοε-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα:

Διαβάστε περισσότερα

Κατ οίκον Εργασία ΚE5

Κατ οίκον Εργασία ΚE5 Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Χειμερινό Εξάμηνο ΗΜΥ Εισαγωγή στην Τεχνολογία Διδάσκων: Δρ. Στέλιος Τιμοθέου Κατ οίκον Εργασία ΚE5 Ασκήσεις Ασκήσεις:. Μετατρέψτε

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 4: Ελαχιστοποίηση και Λογικές Πύλες ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Βελτιστοποίηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ. ΗΜΥ-210: Εαρινό Εξάµηνο Σκοπός του µαθήµατος. Ψηφιακά Συστήµατα. Περίληψη. Εύρος Τάσης (Voltage(

Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ. ΗΜΥ-210: Εαρινό Εξάµηνο Σκοπός του µαθήµατος. Ψηφιακά Συστήµατα. Περίληψη. Εύρος Τάσης (Voltage( ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Σκοπός του µαθήµατος Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ Κεφάλαιο 1: Υπολογιστές και Πληροφορία (1.1-1.2) Βασικές έννοιες & εργαλεία που χρησιµοποιούνται

Διαβάστε περισσότερα

ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ένα συνδυαστικό κύκλωµα µπορεί να περιγραφεί από: Φεβ-05. n-είσοδοι

ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ένα συνδυαστικό κύκλωµα µπορεί να περιγραφεί από: Φεβ-05. n-είσοδοι ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 3 -i: Σχεδιασµός Συνδυαστικών Κυκλωµάτων Περίληψη Αρχές σχεδιασµού Ιεραρχία σχεδιασµού Σχεδιασµός

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Μετρητής Ριπής (Ripple Counter) Μετρητές (Counters) Μετρητής Ριπής (συν.

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Μετρητής Ριπής (Ripple Counter) Μετρητές (Counters) Μετρητής Ριπής (συν. ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 ii: Μετρητές Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μετρητής Ριπής Περίληψη Σύγχρονος υαδικός Μετρητής Σχεδιασµός µε Flip-Flops

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Συστημάτων

Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 28 Νοε-8 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008 ΗΜΥ : Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 8 Σεπτέμβριος 8 ΗΜΥ-: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 8 Συνδυαστική Λογική: Ελαχιστοποίηση με τη μέθοδο Κατάταξης σε Πίνακα Διδάσκουσα: Μαρία

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Ερωτήσεις Επανάληψης 1. Ένας καθηγητής λογικής μπαίνει σε ένα εστιατόριο και λέει : Θέλω ένα σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες. Δυστυχώς,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και

Διαβάστε περισσότερα

Διδάσκουσα: Μαρία Κ. Μιχαήλ. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκουσα: Μαρία Κ. Μιχαήλ. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ : Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 9 ΗΜΥ-: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 9 Συνδυαστική Λογική: Ελαχιστοποίηση με τη μέθοδο Κατάταξης σε Πίνακα Διδάσκουσα: Μαρία Κ.

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ

ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Αντικείμενο της άσκησης: Μεθοδολογία ανάλυσης και σχεδίασης συνδυαστικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB. Συνδυαστικά

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S = set, σύνολο Συνηθισµένα Αξιώµατα (α,

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε

Διαβάστε περισσότερα

Σχεδιασμός Αποκωδικοποιητή και υλοποίηση του στο Logisim και στο Quartus. Εισαγωγή στο Logisim

Σχεδιασμός Αποκωδικοποιητή και υλοποίηση του στο Logisim και στο Quartus. Εισαγωγή στο Logisim ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Σχεδιασμός Αποκωδικοποιητή και υλοποίηση του στο Logisim και στο Quartus. Εισαγωγή στο Logisim Διδάσκoντες: Δρ. Γιώργος Ζάγγουλος και Δρ. Παναγιώτα Μ. Δημοσθένους

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση υαδική Πρόσθεση

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 17: Αναδιατασσόµενη Λογική Προγραµµατιζόµενο Υλικό

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 17: Αναδιατασσόµενη Λογική Προγραµµατιζόµενο Υλικό ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 17: Αναδιατασσόµενη Λογική Προγραµµατιζόµενο Υλικό ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Προγραµµατιζόµενες

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χάρτες Karnaugh, Οικουµενικές Πύλες (NAND & NOR) και Αποκλειστικό Η (ΧΟR) Εβδοµάδα: 3 Εργαστήριο Ψηφιακών Συστηµάτων

Διαβάστε περισσότερα

Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων

Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων Καθηγητής Αντώνιος Γαστεράτος Τμήμα Ε.ΔΙ.Π. Μηχανικών Δρ. Αθανάσιος Παραγωγής Ψωμούλης και Διοίκησης, Δ.Π.Θ. Τμήμα Μηχανικών Παραγωγής

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης

Διαβάστε περισσότερα

Κεφάλαιο 4. Λογική Σχεδίαση

Κεφάλαιο 4. Λογική Σχεδίαση Κεφάλαιο 4 Λογική Σχεδίαση 4.1 Εισαγωγή Λογικές συναρτήσεις ονομάζουμε εκείνες για τις οποίες μπορούμε να αποφασίσουμε αν είναι αληθείς ή όχι. Χειριζόμαστε τις λογικές προτάσεις στην συγγραφή λογισμικού

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 2: Συνδυαστικά Λογικά ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων Ψηφιακή Σχεδίαση Κεφάλαιο 2: Συνδυαστικά Λογικά Κυκλώματα Γ. Κορνάρος Περίγραμμα Μέρος 1 Κυκλώματα Πυλών και

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Περίληψη

Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Περίληψη ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 27 Οκτ-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Συνδυαστική Λογική / Ολοκληρωμένα Κυκλώματα (Μέρος Γ) Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει

Διαβάστε περισσότερα

f(x, y, z) = y z + xz

f(x, y, z) = y z + xz Λύσεις θεμάτων Εξεταστικής Περιόδου Ιανουαρίου Φεβρουαρίου 27 ΘΕΜΑ Ο (2, μονάδες) Δίνεται η λογική συνάρτηση : f (, y, z ) = ( + y )(y + z ) + y z. Να συμπληρωθεί ο πίνακας αλήθειας της συνάρτησης. (,

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6. ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.3) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

Ενότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ

Ενότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ Ενότητα 2 ΛΓΕΡ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ Άλγεβρα Boole Γενικές Γραμμές ξιώματα Huntington και Θεωρήματα ρχή του Δυϊσμού Λογικές πύλες NAND και NOR Υλοποιήσεις με πύλες NAND ή πύλεςnor πομονωτές τριών καταστάσεων

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.tua.gr/ml232/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.tua.gr URL: http://users.tua.gr/leo Λογικές Πράξεις Λογικές Συναρτήσεις

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Κεφάλαιο 2: Συνδιαστικά Λογικά Κυκλώματα (Ελαχιστοποίηση με Κατάταξη σε Πίνακα) 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Κεφάλαιο 2: Συνδιαστικά Λογικά Κυκλώματα (Ελαχιστοποίηση με Κατάταξη σε Πίνακα) 1 ΗΜΥ : Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος ΗΜΥ-: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική: Ελαχιστοποίηση με τη μέθοδο Κατάταξης σε Πίνακα Διδάσκουσα: Μαρία Κ. Μιχαήλ Αλγοριθμική Ελαχιστοποίηση

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Καταχωρητές Παράλληλης

Διαβάστε περισσότερα

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Ενότητα 8 Η ΠΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Γενικές Γραμμές Πύλες XOR και XNOR λοποιήσεις με AND-OR-INV Κώδικας Ισοτιμίας (Parity) Άρτια και Περιττή Συνάρτηση Κυκλώματα ανίχνευσης λαθών Συγκριτές

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα