Generalizatio n of Funda mental Theore m of Pro bability Lo gic
|
|
- reek Μπουκουβαλαίοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ACTA ELECTRONICA SINICA Vol. 35 No. 7 July ,2, 1,3 (1., ; 21, ; 31, ) :,,., gp, 2. : ; ; ; ; ; gp2 : O142 : A : (2007) Geeralizatio of Fuda metal Theore m of Pro bability Lo gic WANG Guo2ju 1,2,HUI Xiao2jig 1,3 (1. Istitute of Mathematics, Shaaxi Normal Uiversity, Xi a, Shaaxi , Chia ; 2. Research Ceter for Sciece, Xi a Jiaotog Uiversity, Xi a, Shaaxi , Chia ; 3. College of Mathematics ad Computer Sciece, Ya Uiversity, Ya, Shaaxi , Chia) Abstract : By itroducig the cocepts of geeratig states set ad geeratig probability a simple ad direct proof of the fudametal theorem of probability logic is proposed. Next, by itroducig the cocept of aturally merged probability the fuda2 metal theorem has bee geeralized. Moreover,the preset paper exteds the cocept of 2cosistecy degree of fiite logic theo2 ries to be the cocept of gp2cosistecy degree ad therefore certai relatioship betwee probability logic ad quatitative logic has bee obtaied. Key words : ucertaity ; geeratig states set ; geeratig probability ; aturally merged probability ; quatitative logic ; gp2co2 sistecy degree 1 { A 1,, A } A 3,, A 1 ( A 2 ( A A 3 ) ),,v A 1,, A, v A 3., { A 1,, A } A 3.,,,., 20 70,(,, [1 5 ])., (), (Ucertaity) (Degree of Essetialess)., 1 : ; : : (No ),.. 1 [1] { A 1,, A } A 3 A 3, U( A 3 ) e( A 1 ) U( A 1 ) + + e( A ) U( A ) (1) U( ) e( )., [1 ]1, [6 ], [7 ][8 ]. 1, 1 ( 5), A 3.,, ( [9,10 ]).,
2 ,, ( ) ( [ 11 16]),[17][ 18 ], (,, [1924]).,.,. 2 Kol2 mogorov ( [25 ]), ( ), [1 ],. 4 : K1. 0 P( A) 1. K2. A,P( A) = 1. K3. A B,P( A) P( B). K4. A B,. P( A B) = P( A) + P( B). A, B,, A B A B. F( S) ( [16 ]), F P : F [0,1 ]. K3,. 1 [1] A F, P : F [0,1 ]F, U( A) = 1 - P( A) (2) U( A) A P,. 2 [1] { A 1,, A } Α F, A 3 F, { A 1,, A } A 3, { A 1,, A } A 3, A 1,, A,A 3. { A 1,, A } A 3,,, A 3 { A 1,, A } { A i1,, A ik } ( k < )., [1 ] : 3 [1] { A 1,, A } A 3, F { A 1,, A },E F, A 3 F - E, E. A i F, ( A i ) F A i ( ), e ( A i ) = 1/ ( A i ),e( A i ) A i. A i,e( A i ) = 0. 4 [9] S = { q 1, q 2, }, F( S) S (, ), F( S). {0,1} 0 = 1, 1 = 0, a b = 0 a = 1 b = 0, { 0,1} (, ), (, ) v : F( S) { 0,1} F( S).,Π v v( A) = v( A), v( A B) = v( A) v( B), A, B F( S)., A B = A B, A B = ( A B),,{ 0,1} a b = max{ a, b}, a b = mi{ a, b},π v v( A B) = v( A) v( B), v( A B) = v( A) v( B). F( S) F, v : F( S) { 0,1} F v F.,[9 ], Π v, v S v S, F S F,v F v S F, v ( F). Π q S F, v ( q) = 1 v ( q) = 0,ΠA F, v( A) = 1 v( A) = 0., A = q q,π v,v ( A) = 1, v ( A) = 0., B = q q, v ( B) = 0,v ( B) = 1. 5 F = { A 1,, A }, v ( F), T( v) = ( v( A 1 ),, v ( A ) ) { 0,1} F. 1 (i) T( v) 0-1. (ii) v, T( v) { 0, 1} 0-1., A 1,, A,v T( v) = (1,,1). (iii) A 1,, A, v, T( v) { 0,1} 0-1. : 1 F = { A 1,, A }, F 2. 2 F 2. 1 { q, q r, r s, q r} q ( r s), q, r, s, A 1 = q, A 2 = q r, A 3 = r s, A 4 = q r, A 3 = q ( r s).
3 7 : 1335 F = { A 1, A 2, A 3, A 4 },F ( 1). 1 q q r r s q r q ( r s) T( v 1 ) T( v 2 ) T( v 3 ) T( v 4 ) T( v 5 ) ? A 3 = q ( r s),, F 4, F 2 4 = 16. (0,0,1,1) F, 0 v( q) = 0, v ( q r) = 0, 4 1. F 1 5, 11.,F, A 3,, F T( v 5 ) = (1, 0,1,0). v( q) = 1 v( q r) = 0 v ( r) = 0. v( r s) = 1. v ( s) 0 1 v( r s) = 1. v( s) T ( v 5 ). v( s) = 1, v ( A 3 ) = v ( q ( r s) ) = 1, v( s) = 0, v ( r) = 0v( A 3 ) = 0. A 3,?., { q, r, s} (1,0,1) (1,0,0) F (1,0,1,0). 3 1,. 6 { A 1,, A } A 3, F = { A 1,, A },,F Auto( F) = { q 1,, q t },Auto( F) 2 t t t 0-1 u 1,, u 2. F T( v) Auto ( F) u i1,, u ik, { u i1,, u ik } T( v), f ( T( v) ) = { u i1,, u ik } (3) 7 { A 1,, A } A 3, F = { A 1,, A }, F m T ( v 1 ),, T( v m ). P T = { T( v 1 ),, T( v m ) } : P( T( v i ) ) = a i, m a i = 1 0 a i 1, i = 1,, m (4) i = 1 (i) F T ( v i ) v i ( A k ) = 1 a i A k T( v i ) P2, A k i2, P i ( A k ). v i ( A k ) = 0, a i A k T( v i ) P2, A k i2, U i ( A k )., v i ( A 3 ) = 1, a i A 3 T( v i ) P2,A 3 i2, P i ( A 3 ). v i ( A 3 ) = 0 v i ( A 3 ) =?, a i A 3 T( v i ) P2,A 3 i2, U i ( A 3 ). (ii) P T ( A k ) = { P i ( A k ) v i ( A k ) = v i ( A 3 ) = 1} (5) U T ( A k ) = { U i ( A k ) v i ( A k ) = 0 v i ( A 3 ) = 0 v i ( A 3 ) =?} (6) P T ( A 3 ) = { a i v i ( A 3 ) = 1} (7) U T ( A 3 ) = { a i v i ( A 3 ) = 0 v i ( A 3 ) =?} (8) P T ( A k ) U T ( A k ) A k P T2 T2, P T ( A 3 ) U T ( A 3 ) A 3 P T2T F = { q, q r, r s, q r} P. 2 q q r r s q r q ( r s) P T( v 1 ) T( v 2 ) T( v 3 ) T( v 4 ) T( v 5 ) ? : a 1 = 0130, a 2 = 0110, a 3 = 0120, a 4 = 0125, a 5 = 0115, P T ( A 1 ) = P T ( q) = a 1 + a 3 = 0150, U T ( A 1 ) = a 2 + a 4 = 0135 ; P T ( A 2 ) = P T ( q r) = a 1 + a 3 = 0150, U T ( A 2 ) = a 5 = 0115 ; P T ( A 3 ) = P T ( r s) = a 1 = 0130, U T ( A 3 ) = a 4 = 0125 ; P T ( A 4 ) = P T ( q r) = a 1 + a 3 = 0. 50, U T ( A 4 ) = a 2 + a 4 + a 5 = P T ( A 3 ) = P T ( q ( r s) ) = a 1 + a 3 = 0. 50, U T ( A 3 ) = a 2 + a 4 + a 5 = ,, (i) A k (v( A k ) = 1) A k,, P( r s) = P 1 ( r s) + P 2 ( r s) + P 5 ( r s) = a 1 + a 2 + a 5 = 0155
4 ,, A k A k U( r s) = U 3 ( r s) + U 4 ( r s) = a 3 + a 4 = (ii) A 3, A 3,2, F T ( v 5 ) v( A 3 ), P( A 3 ), A 3. 2 P( A 3 ) P T ( A 3 ) = U( A 3 ) U T ( A 3 ) = 0150 (9) 2 { A 1,, A } A 3, F = { A 1,, A }, F T = { T ( v 1 ),, T( v m ) }, P T, (i) A k, P( A k ) = { P i ( A k ) v i ( A k ) = 1}, U( A k ) = { U i ( A k ) v i ( A k ) = 0}, P( A k) P T ( A k ), U( A k ) U T ( A k ), (ii) A 3, (10) k = 1,, (11) P( A 3 ) P T ( A 3 ), U( A 3 ) U T ( A 3 ) (12) P T ( A 3 ) P T ( A k ), k = 1,,. (13) (i), A k, A k,(10). (11) (5) (6). (ii) ( 12) (7) ( 8)., T( v j ) F. (5),v j ( A k ) = 1 v j ( A 3 ) = 1 a j P T ( A k ), v j ( A k ) = 0 v j ( A 3 ) = 1 a j P T ( A k ),(7) a j P T ( A 3 ), (13). F = { A 1,, A } P, (7) (8) P T ( A 3 ) U T ( A 3 ), (12) P( A 3 ) U ( A 3 ), { A 1,, A } A 3, F = { A 1,, A }, F T = { T ( v 1 ),, T( v m ) }. F Auto ( F) = { q 1,, q t },{ w 1,, w 2 t }. P F, gp Auto( F), f ( T( v) ) = { u i1,, u ik } k P( T( v) ) = gp( u ij ), T( v) T. (14) j = 1 gp P, P = G ( gp). 4 T P gp. (14), P T( v) gp. A 3 gp (, ) , 2 3 : 3 gp q r s q q r r s q r q ( r s) P T( v 1 ) b b b T( v 2 ) T( v 3 ) T( v 4 ) b b T( v 5) ? , ( q, r, s) = (1,1,1) T ( v 1 ), P gp, gp(1,1,1) = P(1,1,1,1) = gp(1,1,0) = P(1,1,0,1) = 0. 20, gp(0,1,0) = P(0,1,0,0) = f ( T( v 2 ) ) = { (0,0,0), (0,0,1), (0,1,1) } gp (0,0,0), (0,0,1) (0,1,1), b 1 + b 2 + b gp (1,0, 1) (1,0,0) b 4 b gp P A 3 = q ( r s) P., b 4 b 5,, b 4 = 0. 08, b 5 = 0. 07, A 3 P( A 3 ) = P T ( A 3 ) = A 3. : 1 { A 1,, A } A 3, F = { A 1,, A }, E = { A k1,, A ks } Α F. T( v), (i) v( A ki ) = 0, i = 1,, s. (ii) v ( A j ) = 1, A j F - E (iii) v( A 3 ) = 0 v( A 3 ) =?. e( A ki ) 1 s, i = 1,, s (15) (ii) (iii) 3 A 3 F - E, E, A ki
5 7 : 1337 ( A ki ) s, e ( A ki ) = 1/ ( A ki ) (15). 1 : 3 { A 1,, A } A 3, F = { A 1,, A }, T = { T ( v 1 ),, T ( v m ) } F, P T, A 3.,T( v i ) F, v i ( A 3 ) = 0 v i ( A 3 ) =?, A 1,, A v i, v i ( A k1 ) = = v i ( A ks ) = 0, v i ( A kj ) = 1, k j {1,, } - { k 1,, k s } 1 (15)., P ( T ( v i ) ) = a i, 7 U i ( A k1 ) = = U i ( A ks ) = a i, U i ( a 3 ) = a i (16) (15) (16) U i ( A 3 ) = 1 s U i ( A k1 ) s U i ( A ks ) e ( A k1 ) U i ( A k1 ) + + e( A ks ) U i ( A ks ). (17) T ( v j ) F v j ( A 3 ) = 0 v j ( A 3 ) =?, (17), { A k1,, A ks }, (17) T( v i )., : v i ( A k ) = 1, U i ( A k ) = 0 ( P i ( A k ) = a i ), v i ( A k ) = 0, P i ( A k ) = 0 ( U i ( A k ) = a i ). (17) : U i ( A 3 ) e( A k ) U i ( A k ) (18) k = 1 I = { i 1 i m, v i ( A 3 ) = 0 v i ( A 3 ) =?} (19) (18) (19) U i ( A 3 ) i I k =1 (8) (6) U i ( A 3 ) = U T ( A 3 ), i I (20) (21) e( A k ) i I U i ( A k ) (20) U i ( A k ) = U T ( A k ) (21) i I U T ( A 3 ) e( A k ) U T ( A k ) (22) k = 1 (11) (12) U( A 3 ) e( A k ) U( A k ) (23) k = 1 (23) (23) 3, ( 23) U( A 3 ).. 9 { A 1,, A } A 3, F = { A 1,, A }. E = { A i1,, A ik } Α F. { A i1,, A ik } A 3,, E., A ij E2, e E ( A ij ) ( j = 1,, k). 10 { A 1,, A } A 3, F = { A 1,, A }, T = { T ( v 1 ),, T ( v m ) } F, P T. { A i1,, A ik } A 3, E{ A i1,, A ik }, T E = { T ( u 1 ),, T( u l ) } E. P E T E, : k 0-1 T( u ) = ( x i1,, x ik ) T E,T m 0-1 i j x ij ( j = 1,, k) T( v 1 ),, T( v t ), P E ( T( u ) ) = P( T( v 1 ) ) + + P( T( v t ) ) (24) P E P. 4 { q, r, s} q r. { q, r} q r. { q, r, s} T 2 3 = , P. 4 q r s q r P T( v 1 ) T( v 2 ) T( v 3 ) T( v 4 ) T( v 5 ) T( v 6 ) T( v 7 ) T( v 8 ) E = { q, r} 4, T E = { (0,0), (0, 1), (1,0), (1,1) } T (0,0,0) (0,0, 1) (0,0), P E (0,0) = P(0,0,0) + P(0,0,1) = = 0. 23,, P E (0,1) = P(0,1,0) + P(0,1,1) = = 0. 27, P E (1,0) = = 035, P E (1,1) = = 0. 15, P E P. 5.
6 q r q r P E T( u 1 ) T( u 2 ) T( u 3 ) T( u 4 ) () { A 1,, A } A 3, F = { A 1,, A }, T F, P T., { A i1,, A ik } A 3, E = { A i1,, A ik }, T E E, P E P., A ij, A ij P A ij P E ( j = 1,, k). A ij P E T E i j 0 k P E. (24) T i j 0 m 0-1 P. 1 (i) 4. 5, P E P,, U( A k ) A k, A k.,, F = { A 1,, A },E = { A i1,, A ik },,{ A i1,, A ik } A 3, U E ( A 3 ) A 3, 3 4 U E ( A 3 ) e E ( A i1 ) U( A i1 ) + + e E ( A ik ) U( A ik ) (25) U( A ij ) A ij. ( E) (25), E, (25) U E ( A 3 ) ( E) (26) F T = { T ( v 1 ),, T ( v m ) }, P T. P E P (10), gp P (8), P E gp P E., 4 A 3 gp P P E,(26) U( A 3 ) ( E) (27) F E 1,, E 3 : 5 { A 1,, A } A 3, F = { A 1,, A }, E 1,, E F, U( A 3 ) mi{ ( E 1 ),, ( E ) } (28), , [9,10 ]. [9,10 ][16],: 11 A 3 = A 3 ( q 1,, q t ) t, A 3 ( x 1,, x t ) A 3 Boole A 3 :{0,1} t { 0,1}. ( A 3 ) A 3. ( A 3 ) = 1 2 t A 3-1 (1) (29), A 3 2 t, A 3-1 (1) A 3,, ( A 3 ) A 3., { A 1,, A } A 3, F = { A 1,, A }, T = { T( v 1 ),, T( v m ) } F, P T. Auto( F) = { q 1,, q t }, 6 T Auto( F) }. Auto ( F) } 2 t,,1/ 2 t. 8,P gp, (29) A 3. : 6 { A 1,, A } A 3, F = { A 1,, A }, T = { T ( v 1 ),, T ( v m ) } F, P T. P gp,a 3 : U( A 3 ) = 1 - ( A 3 ) = 1 2 t A 3-1 (0), ( A 3 ) = 1 - U( A 3 ). (30)., (30), A 3 U( A 3 ) A 1,, A,, { A 1,, A } A 3, gp A 1,, A. 3 (23)., 3,.
7 7 : { A 1,, A } A 3, F = { A 1,, A }, T = { T ( v 1 ),, T ( v m ) } F, T P gp.,,, e( A k ) 1 (1 - U( A k ) ( A 3 ) ), k = 1,, (31) P gp, 6 U( A 3 ) = 1 - ( A 3 ),3 (23) e( A k ) U( A k ) 1 - ( A 3 ) (32) k = 1 e( A 1 ) = = e( A ) U ( A 1 ) = = U ( A ) 0 (32) (31). gp gp2. 12 F = { A 1,, A }, A 3 = A 1 A, { A 1,, A } A 3. T = { T( v 1 ),, T( v m ) } F, P T, gp P, 1 - U( A 3 ) F gp2, gp ( F). gp2 [10 ] 2 : 8 F = { A 1,, A }, gp Auto( F),F gp2 F 2: gp ( F) = ( F) (33) 6 (30) gp ( F) = 1 - U( A 3 ) = ( A 3 ) (34),[10] ( F) = 1 - div ( F) = 1 - (1 - ( A 1 A ) ) = ( A 3 ). (35) (34) (35) (33). 8, 2 gp2 gp, gp2 2.,. 6.,,.,, gp, 2 gp gp2... : [1 ] Adams E W. A Primer of Probability Logic [ M ]. Staford : CSLI Publicatios,1998. [ 2 ] Hailperi T. Setetial Probability Logic [ M ]. Lodo : Associ2 ated Uiversity Presses,1996. [3] Coletti G,Scozzafava R. Probabilistic Logic i A Coheret Set2 tig[ M ]. Lodo : Kluwer Academic Publishers,2002. [ 4 ] Dubois D, Prade H. Possibility theory, Probability theory ad multiple2valued logics [J ]. Aals of Mathematics ad Artificial Itelligece,2001,32 (1-4) : [5 ] Baioletti M, Capotopti A, et al. Simplificatio rules for the co2 heret probability assessmet problem[j ]. Aals of Mathemat2 ics ad Artificial Itelligece,2002,35 (1-4) : [6 ] Adams E W, Levie H. O the ucertaities trasmitted from premises to coclusios i deductive ifereces [J ]. 1975,Sy2 these,30 (3) : [7 ] Nillso N J. Probability logic [J ]. Artificial Itelligece, 1986, 28 (1) : [8 ] Pearl J. Probabilistic Reasoig i Itelliget Systems [ M ]. Sa Mateo, Califoria :Morga Kaufma Publishers,1988. [9 ]. (I) [J ]., 2006, 23 (2) : Wag G J. Quatitative logic ( I) [J ]. J oural of Egieerig Mathematics,2006,23 (2) :1-26. (i Chiese) [10 ]. () [ M ]. :,2006. [ 11 ] Wag G J, Leug Y. Itegrated sematics ad logic metric spaces [J ]. Fuzzy Sets ad Systems,2003,136 (1) : [12 ],,. [J ].,A,2001,31 (11) : Wag G J, Fu L,Sog J S. Theory of truth degrees of proposi2 tios i two2valued logic[j ]. Sciece i Chia (Ser. A),2002, 45 (9) : (i Chiese) [13 ] Wag G J. Compariso of deductio theorems i diverse logic systems [ J ]. New Mathematics ad Natural Computatio, 2005,1 (1) : [14 ],. ukasiewicz [J ]. ( E ),2005,35 (6) : Li B J, Wag G J. Theory of truth degrees of formulas i ukasiewicz 2valued propositioal logic ad a limit theorem [J ]. Sciece i Chia (Ser. E), 2005, 48 (6) : (i
8 Chiese) [15 ],,. [J ].,2005,33 (1) :1-6. Wag G J, Qig X Y, Zhou X N. Theory of quasi2truth de2 grees of formulas i two2valued predict logic [J ]. J oural of Shaaxi Normal Uiversity,2005,33 (1) :1-6. (i Chiese) [16 ],. [J ].,2006,34 (2) : Wag G J, Sog J S. Graded method i propositioal logic [J ]. Acta Electroica Siica,2006,34 (2) : (i Chi2 ese) [17 ] Pavelka J. O fuzzy logic I. II. III[J ]. Z. Math Logic Grudla2 ge Math,1979,25 :45-52; ; [18 ] Yig M S. A logic for approximate reasoig [J ]. J oural of Symbolic Logic,1994,59 (3) : [19 ]. I [J ]. ( E ),1999,29 (1) : Wag G J. Fully implicatio Triple I method of fuzzy reaso2 ig[j ]. Sciece i Chia (Ser. E),1999,29 (1) : (i Chiese) [20 ] Wag G J, Fu L. Uified forms of Triple I method[j ]. Com2 puters & Mathematics with Applicatios,2005,49 : [21 ],. I [J ]. ( E ),2002,32 (2) : [22 ] Sog S J, Feg C B,Lee E S. Triple I method of fuzzy rea2 soig[j ]. Computers &Mathematics with Applicatios,2002, 44 (3) : [ 23 ] Pei D W, Wag G J. The extesios L 3 of formal systems L 3 ad their completeess [ J ]. Iformatio Scieces, 2003, 152 (2) : [24 ],,. I [J ].,2005,15 (4) : Peg J Y, Hou J,Li H X. Opposite directio Triple I method based o some commoly used implicatio operators [ J ]. Progress i Natural Sciece,2005,15 (4) : (i Chi2 ese) [ 25 ] Kolmogorov N. The Foudatio of Probability [ M ]. New : York : Chelsea Publishig Compay,1950., ,.. E2mail edu. c,1973 5,.. E2mail su. edu. c
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
K. Hausdorff K K O X = SDA. symbolic data analysis SDA SDA. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA
16 3 013 3 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 16 No 3 Mar 013 1 K 30007 K Hausdorff K K K O1 4 A 1007-9807 013 03-001 - 08 0 3 X = 5 36 K SDA 1 symbolic data aalysis SDA 3 5 SDA 1 011-06 - 15
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
PACS: Pq, Tp
Acta Phys. Si. Vol. 61, No. 4 (212) 456 * 1)2) 1) 1) (, 213 ) 2) (, 3325 ) ( 211 4 18 ; 211 7 6 ),., ; Rossler,,, ;. :,,, PACS: 5.45.Pq, 5.45.Tp 1,,. Takes [1] [2 5],,,,.,, [6]., [7] Lyapuov [8],,,. (extreme
CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT
2003 6 RESEARCH & DEVELOPME 00-893X(2003) 06-003 - 06 3 CDMA Ξ,, (, 36005), roecker Delta, CDMA, DS - CDMA, CDMA, CDMA CDMA, CDMA, Gold asami DS - CDMA CDMA ; ; ; 929. 5 ;O45. 5 A Performace Aalysis of
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Research on Real-Time Collision Detection Based on Hybrid Hierarchical Bounding Volume
20 2 Vol. 20 o. 2 2008 Joural of System Simulatio Ja., 2008 6024 SphereOBB X Z X Sphere OBB-Sphere Z OBB Sphere Sphere OBB OBB OBB OBB TP9.9 A 004-7X (2008) 02-72-06 Research o Real-Time Collisio Detectio
Pro duction Technology and Technical Efficiency in ( k, y) Sp ace
15 5 Vol. 15 No. 5 006 10 OPERA TIONS RESEARCH AND MANA GEMEN T SCIENCE Oct. 006 ( 150001) : K L Y k ( L ) y ( K L Y) ( k y) ( k y) ( k y) ( K L Y) ( C R ) C R ( k y) : ; ;; : F4. 0 :A :100731 (006) 05007505
Distributed method for measuring moisture content of soils based on C-DTS
DOI1.11779/CJGE14515 C-DTS C-DTS C-DTS T t T t w DTS DTS TU441.3 A 14548(14)5916 (1988 )E-mail: caodigfeg1@163.com Distributed method for measurig moisture cotet of soils based o C-DTS CAO Dig-feg 1, SHI
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1
Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
M in ing the Com pa tib ility Law of M ultid im en siona l M ed ic ines Ba sed on D ependence M ode Sets
39 4 ( Vol. 39 No. 4 2007 7 JOURNAL OF SICHUAN UN IVERSITY ( ENGINEER ING SC IENCE ED ITION July 2007 : 100923087 (2007 0420134205 1, 1, 2, 1, 1, 3 (1., 610065; 2., 610075; 3., 150000 :, MM2 DE (MultidimesioalMedicie
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
An A lgor ithm of M ea sur ing Var ia tion D egree for Fea ture M odel
35 2 2010 4 ( ) http: / /www. kustjoura l. com / Joural of Kum ig Uiversity of Sciece ad Techology ( Sciece ad Techology) Vol. 35 No12 Ap r. 2010 doi: 10. 3969 / j. iss. 1007-855x. 2010. 02. 018 1, 2 (1.,
Journal of Central South University (Science and Technology) Jun i p i q
4 3 ( ) Vol.4 No.3 6 Joural of Cetral South Uiversity (Sciece ad Techology) Ju. pq i p i q (. 483. 483) pq i p i q pq TM74 A 6777()357 A improved i p i q detectio approach of positive fudametal active
Fuzzifying Tritopological Spaces
International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Rapid Acquisitio n of Doppler Shift in Satellite Co mmunicatio ns
7 3 7 ATA ELETRONIA SINIA Vol. 31 No. 7 July 3 1, 1, (1., 184 ;., 444) :., PN,.,,. : ; ; ; : TN9 : A : 3711 (3) 7155 Rapid Acquisitio of Doppler Shift i Satellite o mmuicatio s HUAN Zhe 1,LU Jiahua 1,YAN
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
PACS: Mj, Dp, Ta
* )2)3) 2) 4) 4) ) (, 26607 ) 2) (, 26606 ) 3) (, 00049 ) 4) (, 266003 ) ( 20 8 22 ; 20 0 2 ),.,,, ;,,,.. :,, PACS: 42.68.Mj, 42.8.Dp, 92.60.Ta,, 4., 5 7. 9, Mouche, :, HH VV, Mouche., Zhag 0 Wag, HH VV,.,
Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΙΔΙΟΤΗΤΑΣ IFR ΣΕ ΜΑΡΚΟΒΙΑΝΑ ΕΜΦΥΤΕΥΣΙΜΑ ΣΥΣΤΗΜΑΤΑ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ217-224 Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΙΔΙΟΤΗΤΑΣ IFR ΣΕ ΜΑΡΚΟΒΙΑΝΑ ΕΜΦΥΤΕΥΣΙΜΑ ΣΥΣΤΗΜΑΤΑ MΒ Κούτρας και ΠE Μαραβελάκης Πανεπιστήμιο
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
ΣΠΟΥΔΑΣΤΡΙΑ : ΕΙΣΗΓΗΤΗΣ: Δρ. Στέφανος Γκούμας. Πτυχιακή Εργασία. Υβριδικά Συστήματα τταραγωγής Ηλεκτρικής Ενέργειας. Ευδοκία Πέλλη ΑΕΜ 1871
Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ Ά / ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ij ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ Πτυχιακή Εργασία Υβριδικά Συστήματα τταραγωγής Ηλεκτρικής Ενέργειας. Γ,ίΜ1ΠΗΣί' ^ : ΣΠΟΥΔΑΣΤΡΙΑ : Ευδοκία Πέλλη ΑΕΜ 1871
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2, 3 (, 76 ;2, 749 ; 3, 64) :, ;,,, ;,, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Arbitrage Analysis of Futures Market with Frictions
2007 1 1 :100026788 (2007) 0120033206, (, 200052) : Vignola2Dale (1980) Kawaller2Koch(1984) (cost of carry),.,, ;,, : ;,;,. : ;;; : F83019 : A Arbitrage Analysis of Futures Market with Frictions LIU Hai2long,
Sensitivity analysis of microseismic positioning accuracy based on distribution models of influencing factors
46 9 ( ) Vol.46 No.9 15 9 Joural of Cetral South Uiversity (Sciece ad Techology) Sep. 15 DOI: 1.11817/j.iss.167-77.15.9.36 ( 183) 3 16 3 V e T e D e 3 TU46 A 167 77(15)9 349 8 Sesitivity aalysis of microseismic
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Certain Sequences Involving Product of k-bessel Function
It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives
America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Solving Agent coalition using adaptive particle swarm optimization algorithm
2 2 Vol. 2. 2 2007 4 CAA I Trasactios o Itelliget Systems Apr. 2007 Aget,, (,230009) : Aget, Aget A2 get., c0, cadp,.,. :Aget ;; ; : TP18 :A :167324785 (2007) 0220069205 Solvig Aget coalitio usig adaptive
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2 3, (, 76 ;2, 749 ; 3, 64) :, ;,, ;, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod
2003 6 6 00026788 (2003) 0620042206 H arlow, 2 3, (., 70049; 2., 7006; 3., 200433) H arlow,,,,, ;, ; ; F832. 5; F830. 9 A T he Op tim al L PM Po rtfo lio M odel of H arlow s ad Its So lvig M ethod W AN
GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Πανεπιζηήμιο Πειπαιώρ Τμήμα Πληποθοπικήρ
Πανεπιζηήμιο Πειπαιώρ Τμήμα Πληποθοπικήρ Ππόγπαμμα Μεηαπηςσιακών Σποςδών «Πληποθοπική» Μεηαπηστιακή Διαηριβή Τίηλορ Διαηπιβήρ Ονομαηεπώνςμο Φοιηηηή Παηπώνςμο Απιθμόρ Μηηπώος Επιβλέπων Ειδικές Μορφές Εξισώσεων
Study of the Structure of Photonic Crystal Fiber with High Negative Dispersion Coefficient
Stu of the Structure of Photoic Crstal Fiber with igh Negative Dispersio Coefficiet Su Che-ag, Li Xi-lu, Jiag Xig-fag, School of Mathematics a Phsics, Chagzhou Uiversit, Gehu, Chagzhou, 364, Chia Istitute
JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering TP (2012)
30 1 01 1 JOURNAL OF APPLIED SCIENCES Electroics ad Iformatio Egieerig Vol. 30 No. 1 Ja. 01 DOI: 10.3969/j.iss.055-897.01.01.007 OFDM 1, 1,, 1, 1 1. 400065. 400035 OFDMAF amlify ad forward...... P393.04
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Ranking method of additive consistent fuzzy judgment matrix considering scale
@ 38 G@ 7 ffi u_o$xmd:) Vol.38, No.7 2018 Π 7 J Systems Egieerig Theory & Practice July, 2018 doi: 10.12011/1000-6788(2018)07-1836-06 jas_wξ: O223; C934 m}ffibo: A flψz ~ 6>L8"ffl(ΛρI~&: Π wffl`, T q,
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,
Finite-time output regulation method for a class of uncertain nonlinear systems
0 07 0 Electri c Machies ad Cotrol Vol. No. 0 Oct. 07 54088 :,,, ;, : ; ; ; ; DOI: 0. 5938 /j. emc. 07. 0. 05 TP 7 A 007-449X 07 0-008- 08 Fiite-time output regulatio method for a class of ucertai oliear
Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water
31 1 2010 1 ENVIRONMENTAL SCIENCE Vol. 31,No. 1 Jan.,2010, 3, (,, 100084) :,.,, ( Microcystis aeruginosa),3 (A 2 O ) 10 6 ml - 1,> 0139 d - 1. A 2 O222,. TP ( K max ) ( R max ), Monod. :; ; ; ; :X173 :A
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS
IFSCOM016 1 Proceeding Book No. 1 pp. 84-90 (016) ISBN: 978-975-6900-54-3 SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS SINEM TARSUSLU(YILMAZ), GÖKHAN ÇUVALCIOĞLU,
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Adaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
DOI /J. 1SSN
4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Εφαρμογές των μαθηματικών θεωριών πολέμου
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set
Mathematics and Statistics (): 6-7 04 DOI: 0.89/ms.04.000 http://www.hrpub.org New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set Said Broumi * Florentin Smarandache Faculty of Arts
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H
57 6 2008 6 100023290Π2008Π57 (06) Π3486208 ACTA PHYSICA SINICA Vol. 57,No. 6,June,2008 ν 2008 Chin. Phys. Soc. 3 1) 2) 1) g 1) (, 130033) 2) (, 100049) (2007 9 11 ;2007 11 14 ),Littrow,,.,., Litrrow.
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα
Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα Γιώργος Γιαννής, Παναγιώτης Παπαντωνίου, Ελεονώρα Παπαδημητρίου, Αθηνά Τσολάκη Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής,
PE CVVH PE+HP HP+CVVH HP+CVVH+PE CVVH. ENLAV of HCO - 3 ENLAV-HCO ± μmol /L HP+PE HP+CVVH HP+CVVH+PE
2624 54 plasma exchange PE hemoperfusion HP continuous venovenous hemofiltration CVVH 54 PE CVVH PE+HP HP+CVVH HP+CVVH+PE 183 exceed normal limit absolute value ENLAV prothrombin time PT PE total bilirubin
Reading Order Detection for Text Layout Excluded by Image
19 5 JOURNAL OF CHINESE INFORMATION PROCESSING Vol119 No15 :1003-0077 - (2005) 05-0067 - 09 1, 1, 2 (11, 100871 ; 21IBM, 100027) :,,, PMRegion,, : ; ; ; ; :TP391112 :A Reading Order Detection for Text
Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,