Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
|
|
- Χριστός Ρέντης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών
2
3 ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα δείγματα εμφανίζονται συνήθως στις ακόλουθες περιπτώσεις: α) Σε πειράματα, μελέτες των οποίων ο σκοπός είναι η διερεύνηση της αποτελεσματικότητας μίας θεραπείας. Για το λόγο αυτό οι τιμές μίας ή περισσοτέρων μεταβλητών καταγράφονται στην ίδια πειραματική μονάδα πριν και μετά την εφαρμογή της μεθόδου. β) Στην περίπτωση των διδύμων. γ) Όταν θεωρούμε πειραματικές μονάδες που μοιάζουν σε όλα τα υπόλοιπα χαρακτηριστικά πλην αυτού που θέλουμε να μελετήσουμε (ταιριαστά δεδομένα). Στη βάση των εξαρτημένων δειγμάτων θα ασχοληθούμε με το ακόλουθο πρόβλημα: Έστω ένα τυχαίο δείγμα X,, 1 X n μεγέθους n από έναν πληθυσμό με μέση τιμή μ 1 και διακύμανση σ. Επιπλέον έστω ένα τυχαίο δείγμα Y,, 1 Yn μεγέθους n από έναν 2 1 πληθυσμό με μέση τιμή μ 2 και διακύμανση σ Επιπρόσθετα υποθέτουμε ότι τα δύο δείγματα είναι εξαρτημένα. Ενδιαφερόμαστε για τον έλεγχο, σε επίπεδο σημαντικότητας α, της μηδενικής υπόθεσης ως προς μία εκ των H : μ μ, a 2. 2 H : μ = μ, > 2 H a : μ1 < μ2, H a : μ1 μ2. Το πρώτο βήμα για τη μελέτη του προβλήματος είναι η δημιουργία των διαφορών Di = Xi Yi, i = 1,..., n. Το παραπάνω πρόβλημα ελέγχεται υπό κάποιες υποθέσεις με τον παραμετρικό έλεγχο του t-test. Όταν κάποιες από τις υποθέσεις αυτές δεν ικανοποιείται και δεν υπάρχει τρόπος διόρθωσης του προβλήματος ο έλεγχος ανάγεται σε αυτόν ότι οι πληθυσμιακές 143
4 διάμεσοι είναι ίσες. Τα αποτελέσματα του τελευταίου ελέγχου γενικεύονται για τον δοθέν έλεγχο όταν τα δεδομένα είναι συμμετρικά. 6.1 Μεθοδολογία-Υλοποίηση στο S.P.S.S. Η μεθοδολογία που θα χρησιμοποιηθεί για τη στατιστική ανάλυση ενός τέτοιου προβλήματος εξαρτάται από το αν πληρούνται ή όχι κάποιες προϋποθέσεις, τις οποίες και πρέπει αρχικά να ελέγξει ο ερευνητής. Πιο συγκεκριμένα, ελέγχουμε α) αν το ποσοστό των ακραίων τιμών στις διαθέσιμες παρατηρήσεις Di = Xi Yi, i = 1,..., n, ξεπερνά το 10% αυτών, και β) αν ο πληθυσμός από τον οποίο λαμβάνεται το τυχαίο δείγμα Di = Xi Yi, i = 1,..., n, μπορούμε να ισχυριστούμε ότι περιγράφεται ικανοποιητικά από την κανονική κατανομή. Ανάλογα με τα αποτελέσματα των παραπάνω ελέγχων προβαίνουμε στον παραμετρικό ή στο μη παραμετρικό έλεγχο. Για το λόγο αυτό στη συνέχεια παρουσιάζονται όλα τα πιθανά αποτελέσματα των α) και β), τα διάφορα βήματα της ανάλυσης και οι αποφάσεις στις οποίες οδηγούμαστε. 1. Αρχικά ελέγχουμε αν υπάρχουν ακραίες τιμές στις διαθέσιμες δειγματικές τιμές D i. Αν το ποσοστό των ακραίων τιμών δε ξεπερνά το 10%, τότε προχωρούμε στο επόμενο βήμα. Αν το ποσοστό των ακραίων τιμών ξεπερνά το 10%, τότε δοκιμάζουμε μήπως ο μετασχηματισμός του λογαρίθμου διορθώνει το πρόβλημα. Αν το πρόβλημα αυτό διορθώνεται τότε μεταβαίνουμε στο βήμα 2, σε διαφορετική περίπτωση συμπεραίνουμε ότι θα χρησιμοποιηθεί ο μη παραμετρικός έλεγχος (βλέπε βήμα 4). 2. Στο βήμα 2, χρησιμοποιώντας το τεστ των Shapiro-Wilk καθώς και γραφικούς τρόπους, ελέγχουμε αν οι διαθέσιμες δειγματικές παρατηρήσεις D i (είτε οι αρχικές είτε οι μετασχηματισμένες του βήματος 1) μπορούν να θεωρηθούν ότι προέρχονται από έναν πληθυσμό που περιγράφεται ικανοποιητικά από την κανονική κατανομή. Αν ο έλεγχος της κανονικότητας μας υποδεικνύει ότι η υπόθεση της κανονικότητας δεν απορρίπτεται (p-τιμή >α), τότε η ανάλυση θα συνεχιστεί με τον παραμετρικό έλεγχο (βλέπε βήμα 3). Αν η υπόθεση της κανονικότητας απορρίπτεται (τεστ Shapiro-Wilk, p-τιμή <α), τότε ελέγχουμε αν το πρόβλημα της μη κανονικότητας διορθώνεται μετασχηματίζοντας κατάλληλα τα δεδομένα (Box-Cox μετασχηματισμός) και επανελέγχοντας την ύπαρξη ακραίων τιμών, δηλαδή ξεκινώντας την ανάλυση από το βήμα 1. Αν με κάποιο μετασχηματισμό των δεδομένων 144
5 επιτυγχάνεται η κανονικότητα συνεχίζουμε την ανάλυση παραμετρικά (βήμα 3). Σε αντίθετη περίπτωση, αν το πλήθος των δειγματικών παρατηρήσεων D i, μη λαμβάνοντας υπόψη αυτές που έχουν αφαιρεθεί στο βήμα 1, είναι μεγάλο (συνήθως μεγαλύτερο του 30), κάνοντας χρήση του Κεντρικού Οριακού Θεωρήματος, προβαίνουμε στον παραμετρικό έλεγχο της υπό έλεγχο υπόθεσης (βλέπε βήμα 3), όπου η p-τιμή του ελέγχου και το διάστημα εμπιστοσύνης θα είναι προσεγγιστικά. Στην περίπτωση τώρα που το πρόβλημα της μη κανονικότητας δε διορθώνεται (τεστ Shapiro-Wilk, p-τιμή <α), και ταυτόχρονα το πλήθος των δειγματικών παρατηρήσεων, μη λαμβάνοντας υπόψη αυτές που έχουν αφαιρεθεί στο βήμα 1, είναι μικρό (συνήθως μικρότερο του 30), συνεχίζεται η περαιτέρω ανάλυση μη παραμετρικά (βήμα 4). 3. Παραμετρικός έλεγχος- T τεστ συγκρίσεως ζευγών: Χρησιμοποιούμε τη στατιστική συνάρτηση t H0 = ~ tn 1, όπου D και D S D D / n S η μέση τιμή και τυπική απόκλιση του δείγματος των διαφορών D = X Y, i = 1,2,..., n. Οι κρίσιμες περιοχές του ελέγχου είναι αντίστοιχα t tn 1, a, t tn 1, Δ.Ε. για την μ1 μ2 είναι: i i i a, t tn 1, a/2 ( t tn 1, a/2 ή t tn 1, a/2). Επιπλέον το 100(1-α)% S D t D+ t D D n 1, a/ 2, n 1, a/ 2 n n. Επισήμανση: Σε περίπτωση που έχει χρησιμοποιηθεί κάποιος μετασχηματισμός διόρθωσης του προβλήματος είτε της ύπαρξης πολλών ακραίων τιμών είτε της μη κανονικότητας, τότε όλα τα παραπάνω αναφέρονται στις μετασχηματισμένες τιμές και στο τροποποιημένο σε μέγεθος δείγμα. Ειδικότερα, αν έχει χρησιμοποιηθεί ο μετασχηματισμός του λογαρίθμου, θα προβούμε στον έλεγχο αν ο μέσος λογάριθμος του ενός πληθυσμού δε διαφέρει στατιστικά σημαντικά από το μέσο λογάριθμο του άλλου. S Υλοποίηση στο S.P.S.S. Για τη διεξαγωγή του t τεστ συγκρίσεως ζευγών, από το κύριο μενού του λογισμικού επιλέγουμε i. Analyze Compare Means Paired-Samples T Test. ii. Στο νέο παράθυρο διαλόγου που προκύπτει διαλέγουμε αρχικά τη μεταβλητή που καταγράφει π.χ. τις τιμές του βάρους πριν την εφαρμογή της δίαιτας και η οποία θα χαρακτηρισθεί ως Variable 1. Έπειτα επιλέγουμε εκείνη που καταγράφει τις τιμές του 145
6 βάρους μετά την εφαρμογή της δίαιτα και η οποία θα πάει στο πλαίσιο Variable2. Στη συνέχεια μετακινούμε το ζεύγος των μεταβλητών στο πλαίσιο Paired Variables. iii. Από την επιλογή Options έχουμε τη δυνατότητα να καθορίσουμε τον τρόπο χειρισμού των ελλιπών τιμών καθώς και να προσδιορίσουμε το βαθμό εμπιστοσύνης του διαστήματος εμπιστοσύνης που θα κατασκευαστεί για τη μέση απώλεια βάρους. Σχόλιο: Εναλλακτικά ο έλεγχος της υπόθεσης H0: μ D = d0 θα μπορούσε να διενεργηθεί μέσω της διαδικασίας Compare Means One Sample για τη μεταβλητή όπου καταγράφονται οι δειγματικές τιμές της διαφοράς και με Test Value την τιμή d Μη παραμετρικός έλεγχος-wilcoxon: Σύμφωνα με αυτόν θεωρούμε προς έλεγχο την ισοδύναμη μηδενική υπόθεση ότι οι διαφορές Di = Xi Yi, i = 1,..., n, προέρχονται από μία συμμετρική περί το μηδέν κατανομή. Για την υλοποίηση του αρχικά τοποθετούμε τις διαφορές Di = Xi Yi, i = 1,..., n, σε αύξουσα τάξη μεγέθους μη λαμβάνοντας υπόψη το πρόσημο. Έπειτα αντικαθιστούμε την j κατά σειρά μεγέθους διαφορά με + j ή j ανάλογα με το αν η συγκεκριμένη διαφορά είναι θετική ή αρνητική αντίστοιχα. Αν υπάρχουν μηδενικές διαφορές απορρίπτονται από τη μελέτη με ανάλογη μείωση του μεγέθους του δείγματος. Έπειτα υπολογίζουμε το στατιστικό T min ( T +, T ) =, όπου T + και T αντίστοιχα είναι το άθροισμα των θετικών και αρνητικών τάξεων αντίστοιχα. Αποδεικνύεται τότε ότι για 8 nn ( + 1) T προσ. 4 0,1, και ο έλεγχος γίνεται κατά τα γνωστά nn ( + 1)(2n+ 1) H0 24 n, Z = N( ) 146
7 χρησιμοποιώντας αυτήν τη στατιστική συνάρτηση, με τις p-τιμές να προσδιορίζονται κατά ανάλογο τρόπο με το Z τεστ. Σχόλιο: Για τον έλεγχο της υπό μελέτης μηδενικής υπόθεσης έχει προταθεί στη βιβλιογραφία και το προσημικό τεστ για συγκρίσεις κατά ζεύγη. Όμως, το τεστ του Wilcoxon είναι αποτελεσματικότερο για αυτό και δεν αναφέρθηκε το προσημικό τεστ. Υλοποίηση στο S.P.S.S. Από το κύριο μενού επιλέγουμε i. Analyze Non Parametric Tests Related Samples. ii. Στο νέο παράθυρο διαλόγου που προκύπτει επιλέγουμε στο πλαίσιο Objective την επιλογή Customize analysis, έτσι ώστε στη συνέχεια από τα πλαίσια Fields και Settings να καθορίσουμε τον έλεγχο τον οποίο θέλουμε να διενεργηθεί όπως φαίνεται στα σχήματα που ακολουθούν. 147
8 Στο παράθυρο διαλόγου Settings επομένως επιλέγουμε τον προσημικό έλεγχο (Sign test) και τον έλεγχο των Mann-Whiney. 6.2 Παραδείγματα Παράδειγμα 1 ο Στον πίνακα που ακολουθεί (βλέπε Ζωγράφος, 2003, σελ. 206) δίνεται το βάρος σε κιλά 9 γυναικών πριν και μετά την εφαρμογή μίας δίαιτας αδυνατίσματος τεσσάρων εβδομάδων Πριν: Μετά: Με βάση τα δεδομένα αυτά να ελεγχθεί αν είναι εφικτό ο ισχυρισμός ότι η δίαιτα είναι αποτελεσματική. Επειδή πρόκειται για μετρήσεις του βάρους στα ίδια άτομα πριν και μετά την εφαρμογή μίας δίαιτας τα δύο δείγματα είναι εξαρτημένα. Επομένως, αρχικά ελέγχουμε αν 148
9 δεν υπάρχουν ακραίες τιμές στις δειγματικές τιμές της απώλεια βάρους και αν αυτές μπορούμε να ισχυριστούμε ότι προέρχονται από κανονικό πληθυσμό (δημιουργία στήλης διαφορών μέσω της διαδικασίας Transform Compute). Προκύπτει από το θηκόγραμμα έχουμε ότι δεν υπάρχουν ακραίες τιμές και χρησιμοποιώντας το στατιστικό τεστ των Shapiro-Wilk προκύπτει ότι η υπόθεση της κανονικότητας δεν μπορεί να απορριφθεί (pτιμή=0,727>0.05). Από τη διεξαγωγή του t τεστ συγκρίσεως ζευγών, που επιτυγχάνεται μέσω της διαδικασίας Analyze Compare Means Paired-Samples T Test όπως φαίνεται στο σχήμα που ακολουθεί προκύπτουν τα αποτελέσματα που παρατίθενται και ερμηνεύονται Ερμηνεία αποτελεσμάτων Από τον πίνακα Paired Samples Statistics έχουμε ότι το μέσο βάρος των 9 ατόμων πριν την δίαιτα ήταν κιλά με τυπική απόκλιση και τυπικό σφάλμα για τη μέση τιμή Οι αντίστοιχες ποσότητες μετά τη διενέργεια της δίαιτας είναι κιλά, και , αντίστοιχα. Παρατηρούμε δηλαδή μία μείωση του βάρους κατά 5 κιλά. Θα εξεταστεί στη συνέχεια αν αυτή είναι στατιστικά σημαντική. Στον πίνακα Paired Samples Correlations έχουμε ότι το βάρος πριν και το βάρος μετά την δίαιτα είναι συσχετισμένα (υψηλή στατιστικά σημαντική θετική γραμμική συσχέτιση). 149
10 Paired Samples Statistics Pair 1 Βάρος πριν την δίαιτα Βάρος μετά την δίαιτα Std. Mean N Std. Deviation Error Mean 67, , , , , ,92931 Paired Samples Correlations Pair 1 Βάρος πριν την δίαιτα & Βάρος μετά την δίαιτα N Correlatio n Sig. 9,906,001 Τα σημαντικότερα όμως αποτελέσματα δίνονται στον πίνακα Paired Samples Test. Προκύπτει ότι η μέση απώλεια βάρους είναι 5 κιλά (δίνεται στη στήλη Mean), ενώ η τυπική απόκλιση των διαφορών και το τυπικό σφάλμα για τη μέση τιμή είναι και κιλά αντίστοιχα. Επιπλέον μας δίνεται το 95% διάστημα εμπιστοσύνης για τη μέση διαφορά ( , ), καθώς και η τιμή του t τεστ για τον έλεγχο ότι δεν υπάρχουν στατιστικά σημαντικές διαφορές στο μέσο βάρος των ατόμων πριν και μετά τη δίαιτα. Από την p-τιμή του ελέγχου συμπεραίνουμε ότι υπάρχουν στατιστικά σημαντικές διαφορές στο μέσο βάρος πριν και μετά τη δίαιτα και αφού η μέση διαφορά είναι 5 καταλαβαίνουμε ότι η δίαιτα επιφέρει στατιστικά σημαντική μείωση του βάρους. 150
11 Paired Samples Test Paired Differences 95% Confidence Interval of the Std. Difference Std. Error Sig. (2- Mean Deviation Mean Lower Upper t df tailed) Pair Βάρος 1 πριν την δίαιτα - Βάρος 5 4, , , , ,72 1 8,006 μετά την δίαιτα Η αναφορά αφήνεται ως άσκηση. Παράδειγμα 2 ο Παρακάτω παρατίθενται οι επιδόσεις 15 μαθητών στα Μαθηματικά και στις Καλές Τέχνες (βλέπε Παπαΐωάννου και Φερεντίνος, 2000, σελ. 263). Να ελεγχθεί με επίπεδο σημαντικότητας 5% αν υπάρχει στατιστικά σημαντική διαφορά στις επιδόσεις των μαθητών στα δύο γνωστικά αντικείμενα. Μαθηματικά: Καλές Τέχνες: Πρόκειται για μετρήσεις της επίδοσης σε δύο γνωστικά αντικείμενα και στους ίδιους μαθητές. Επομένως γίνεται εύκολα κατανοητό ότι έχουμε δύο εξαρτημένα δείγματα. Επειδή πρόκειται για μετρήσεις της επίδοσης στα ίδια άτομα τα δύο δείγματα είναι εξαρτημένα. Επομένως, αρχικά ελέγχουμε αν δεν υπάρχουν ακραίες τιμές στις δειγματικές 151
12 τιμές της διαφοράς της επίδοσης και αν αυτές μπορούμε να ισχυριστούμε ότι προέρχονται από κανονικό πληθυσμό. Αρχικά σχηματίζουμε στο S.P.S.S. τη στήλη των διαφορών των επιδόσεων στα Μαθηματικά και στις Καλές τέχνες (έστω κωδική ονομασία diafora και Label Διαφορά Επίδοσης). Το πρώτο βήμα της ανάλυσης είναι ο έλεγχος της ύπαρξης ακραίων τιμών και της κανονικότητας των διαφορών. Διαπιστώνεται (αφήνεται ως άσκηση) ότι υπάρχουν ακραίες τιμές σε ποσοστό μεγαλύτερο του 10% και το πρόβλημα δε διορθώνεται με το μετασχηματισμό του λογαρίθμου, επομένως καταφεύγουμε σε μη παραμετρικούς τρόπους ελέγχου. Ακολουθώντας τα βήματα που αναλυτικά περιγράφηκαν στην παράγραφο 6.1 προκύπτουν τα ακόλουθα αποτελέσματα Από την p-τιμή του στατιστικού τεστ του Wilcoxon συμπεραίνουμε ότι υπάρχουν στατιστικά σημαντικές διαφορές στην επίδοση στα Μαθηματικά και στις Τέχνες (p-τιμή=0.009<0.05). Επιπλέον από τον πίνακα που ακολουθεί (και αποκτήθηκε μέσω της διαδικασίας Analyze Descriptive Statistics Explore) προκύπτει ότι η πληθυσμιακή διάμεσος της επίδοση στις τέχνες είναι στατιστικά σημαντικά μεγαλύτερη και τα αποτελέσματα δεν μπορούν να γενικευτούν στις μέσες τιμές. 152
13 Descriptives Statistic Std. Error Επίδοση στα Μαθηματικά Mean 53,0000 3, % Confidence Interval for Mean Lower Bound 45,1683 Upper Bound 60,8317 5% Trimmed Mean 53,9444 Median 58,0000 Variance 200,000 Std. Deviation 14,14214 Minimum 22,00 Maximum 67,00 Range 45,00 Interquartile Range 27,00 Skewness -,949,580 Kurtosis -,278 1,121 Επίδοση στισ Τέχνες Mean 61,0667 2, % Confidence Interval for Mean Lower Bound 55,5428 Upper Bound 66,5905 5% Trimmed Mean 61,4074 Median 65,0000 Variance 99,495 Std. Deviation 9,97473 Minimum 42,00 Maximum 74,00 Range 32,00 Interquartile Range 17,00 Skewness -,466,580 Kurtosis -1,062 1,121 Παράδειγμα 3 ο Αρχείο Teaching.sav * Στο αρχείο αυτό υπάρχει η βαθμολογία 60 μαθητών οι οποίοι επιλεχθήκαν τυχαία από το σύνολο των μαθητών μια πόλης. Σκοπός της μελέτης αυτής ήταν να εξετάσει, αν μια καινούργια μέθοδος διδασκαλίας ενός μαθήματος βελτιώνει την απόδοση των μαθητών. Pretest είναι η βαθμολογία των μαθητών στο συγκεκριμένο μάθημα πριν την 153
14 διδασκαλία με την νέα μέθοδο και Posttest είναι η βαθμολογία των ίδιων μαθητών στο συγκεκριμένο μάθημα μετά την διδασκαλία της νέας μεθόδου. Να εξετασθεί η αποτελεσματικότητα της νέας μεθόδου διδασκαλίας. Η υλοποίηση αφήνεται ως άσκηση, ενώ δίνεται η αναφορά. Αναφορά: Στο πρόβλημα αυτό θέλουμε να εξετάσουμε την αποτελεσματικότητα της νέας μεθόδου διδασκαλίας σε σχέση με την υπάρχουσα μέθοδο. Το πρόβλημα μας είναι ένα πρόβλημα ελέγχου ισότητας των μέσων τιμών δυο πληθυσμών. Επειδή όμως οι μετρήσεις μας, και για τις δυο μεθόδους, γίνονται στις ίδιες πειραματικές μονάδες συμπεραίνουμε ότι τα δείγματα μας δεν είναι ανεξάρτητα. Το πείραμα αυτό είναι της μορφής ΠΡΙΝ-ΜΕΤΑ. Για να απαντήσουμε στο αρχικό μας ερώτημα θα πρέπει να σχηματίσουμε τις διαφορές π. χ. pretest-posttest και έτσι το πρόβλημά μας μετατρέπετε σε ένα πρόβλημα ελέγχου για την μέση τιμή ενός πληθυσμού. Πιο συγκεκριμένα για το αν μέση τιμή της διαφοράς στη βαθμολογία πριν και μετά τη μέθοδο διδασκαλίας είναι ίση με μηδέν (0). Για να κάνουμε χρήση του t-τεστ για έναν πληθυσμό θα πρέπει, για το δείγμα μας, να ικανοποιούνται οι επόμενες προϋποθέσεις: 1. Να είναι τυχαίο. 2. Να μην έχει ακραίες τιμές σε ποσοστό μεγαλύτερο του 10%. 3. Να προέρχεται από πληθυσμό που περιγράφεται ικανοποιητικά από την κανονική κατανομή.. Από το θηκόγραμμα προέκυψε ότι υπάρχουν δύο ακραίες παρατηρήσεις στις δειγματικές τιμές των διαφορών στην βαθμολογία πριν και μετά την εφαρμογή της μεθόδου διδασκαλίας οι παρατηρήσεις με αύξοντα αριθμό 6 και 1 με τιμές -53 και -47 αντίστοιχα (βλέπε θηκογράμματα 1,2,3). Οι παρατηρήσεις αυτές αποκλείονται από την περαιτέρω ανάλυση, επειδή ο συνολικός τους αριθμός δεν υπερβαίνει το 10% των παρατηρήσεων, 2/60*100%<10%). 154
15 155
16 Στη συνέχεια ελέγχουμε αν οι 58 δειγματικές παρατηρήσεις της διαφοράς της βαθμολογίας προέρχονται από κανονικό πληθυσμό. Η κρίσιμη πιθανότητα του τεστ των Shapiro-Wilk είναι p=0,021. Αυτό σημαίνει ότι η υπόθεση της κανονικής κατανομής με επίπεδο σημαντικότητας 5% θα πρέπει να απορριφθεί, ενώ με επίπεδο σημαντικότητας 1% δεν μπορεί να απορριφθεί. Αποτέλεσμα αυτού ήταν να καθορίσουμε το επίπεδο σημαντικότητας στο 1% σε όσα έπονται και θα χρησιμοποιηθεί για τον έλεγχο της υπό μελέτης υπόθεσης ο παραμετρικός έλεγχος του t-τεστ. Tests of Normality Kolmogorov-Smirnov a Shapiro-Wilk Statistic df Sig. Statistic df Sig. diafora,158 58,001,951 58,021 a. Lilliefors Significance Correction Σαν συμπέρασμα από την υλοποίηση του t-τεστ προέκυψε ότι: οι δύο μέθοδοι διδασκαλίας, η παλαιά και η καινούργια, διαφέρουν στατιστικά σημαντικά μεταξύ τους (p<0,001). Πιο συγκεκριμένα η μέση απόδοση της καινούργιας μεθόδου είναι κατά 10,5172 βαθμούς καλύτερη από την παλαιά. Ένα 99% διάστημα εμπιστοσύνης για την διαφορά protest-posttest είναι το (-14,0858, -6,9487). 156
17 One-Sample Statistics N Mean Std. Deviation Std. Error Mean diafora 58-10, , ,33912 One-Sample Test Test Value = 0 t df Sig. (2-tailed) Mean Difference 99% Confidence Interval of the Difference Lower Upper diafora -7,854 57,000-10, ,0858-6,
18 158
19 Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας
20 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης. «Στατιστική Ανάλυση Δεδομένων». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1]
Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα
ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ
Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή. μεγέθους n από έναν πληθυσμό με μέση τιμή μ
ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Έστω ένα τυχαίο δείγμα X,, 1 X n μεγέθους n από έναν πληθυσμό με μέση τιμή μ 2 και διακύμανση σ, άγνωστη.
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ
Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Θέλοντας να εξετάσουμε τις μέσες τιμές δύο πληθυσμών πρέπει να διακρίνουμε κατά τα γνωστά από τη θεωρία δύο περιπτώσεις
Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ. Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών.
Έλεγχος υποθέσεων ΚΛΑΣΙΚΟΙ ΈΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Ημέσητιμήενόςπληθυσμούείναιίσημε δοθείσα γνωστή τιμή. Έλεγχος για τις μέσες τιμές δύο πληθυσμών. Η μέση τιμή ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε
Έλεγχος για τις παραμέτρους θέσης περισσοτέρων των δύο πληθυσμών με ανεξάρτητα δείγματα
ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ Έλεγχος για τις παραμέτρους θέσης περισσοτέρων των δύο πληθυσμών με ανεξάρτητα δείγματα Έστω Y,, j1 Yjn, j το πλήθος j = 1,..., k, k 2 τυχαία ανεξάρτητα δείγματα j μεγέθους n j από έναν
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης περισσοτέρων των δύο πληθυσμών με ανεξάρτητα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών
Δείγμα (μεγάλο) από οποιαδήποτε κατανομή
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες
1991 US Social Survey.sav
Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Ενότητα 5 η : Επαγωγική Στατιστική ΙΙ Ανάλυση ποσοτικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 5 η : Επαγωγική
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 : 1. Να χρησιμοποιηθεί το αρχείο gssft.sav για να γίνει έλεγχος της υπόθεσης ότι στους εργαζόμενους με πλήρη απασχόληση η τιμή του μέσου
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Γ: κατά Ζεύγη t test Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς
Κεφάλαιο 3: Ανάλυση μιας μεταβλητής
Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Γενικά Στο Κεφάλαιο αυτό θα παρουσιάσουμε κάποιες μεθόδους της Περιγραφικής Στατιστικής και της Στατιστικής Συμπερασματολογίας που αφορούν στην ανάλυση μιας μεταβλητής.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών
Εισαγωγή στην Ανάλυση Δεδομένων
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ
Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ενότητα 3 η : Περιγραφική Στατιστική Ι. Πίνακες και Γραφικές παραστάσεις. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 3 η : Περιγραφική
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων
Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική
ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ
ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 7 η : Ανάλυση
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
Ιατρικά Μαθηματικά & Βιοστατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Β: t test για Ανεξάρτητα Δείγματα Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Λυμένες Ασκήσεις για το μάθημα:
Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ
ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές
ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test) Σε ορισμένες περιπτώσεις απαιτείται ο έλεγχος της ύπαρξης στατιστικά
Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς
Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με
Βοήθημα Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων
Βοήθημα Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων 2 1. Περιγραφική Στατιστική Θα δίνονται το ιστόγραμμα των σχετικών συχνοτήτων και τα στατιστικά. 1. Να μπορείτε να εξάγετε
ΗΥ-SPSS Statistical Package for Social Sciences 6 ο ΜΑΘΗΜΑ. ΧΑΡΑΛΑΜΠΟΣ ΑΘ. ΚΡΟΜΜΥΔΑΣ Διδάσκων Τ.Ε.Φ.Α.Α., Π.Θ.
ΗΥ-SPSS Statistical Package for Social Sciences 6 ο ΜΑΘΗΜΑ ΧΑΡΑΛΑΜΠΟΣ ΑΘ. ΚΡΟΜΜΥΔΑΣ Διδάσκων Τ.Ε.Φ.Α.Α., Π.Θ. Κανονική Κατανομή Τυπική Απόκλιση Διακύμανση z τιμές Περιεχόμενα 6 ου μαθήματος Έλεγχος κανονικής
Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική
ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Το πρώτο βήμα στην ανάλυση ενός συνόλου δεδομένων, που αποτελούν μετρήσεις ενός δείγματος είναι η παρουσίαση και σύνοψη των πληροφοριών
Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας
ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr
Τμήμα Λογιστικής και Χρηματοοικονομικής. Δρ. Αγγελίδης Π. Βασίλειος
Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής Εφαρμοσμένη Στατιστική 2 Περιεχόμενα Εισαγωγή Επαγωγική Στατιστική Έλεγχος κανονικότητας Έλεγχος
Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 3: One-Way ANOVA
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ιαστήµατα εµπιστοσύνης και έλεγχοι υποθέσεων για τη µέση τιµή Για µια ποσοτική µεταβλητή
Ενότητα 4 η : Ανάλυση ερευνητικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 4 η : Ανάλυση
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων
Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Έλεγχος κανονικότητας P-P Plot και Q-Q Plot Τεστ Κανονικότητας Τεστ Κανονικότητας
Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 6 η :Έλεγχοι Υποθέσεων V Διδάσκουσα: Κοντογιάννη Αριστούλα Έλεγχος υποθέσεων για τους μέσους εξαρτημένων δειγμάτων Επίδραση παρέμβασης:
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Α: Ανάλυση Συσχέτισης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
τατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Επαναληπτικζς ασκήσεις Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μη Παραμετρικοί Έλεγχοι & Η Δοκιμασία Χ 2
Μη Παραμετρικοί Έλεγχοι & Η Δοκιμασία Χ 2. Μη Παραμετρικοί Έλεγχοι Παραμετρικοί είναι οι κλασικοί έλεγχοι υποθέσεων της Στατιστικής οι οποίοι διεξάγονται κάτω από κάποιες προϋποθέσεις για τις παραμέτρους
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα Γκριζιώτη Μαρία ΜSc Ιατρικής Ερευνητικής Μεθοδολογίας Όταν ανοίγουµε µία βάση στο SPSS η πρώτη εικόνα που
Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Έλεγχοι υποθέσεων Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Κατανομές και έλεγχοι υποθέσεων με τη γλώσσα R Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν
Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως
Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics
Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics Στόχοι του κεφαλαίου Εξοικείωση με το περιβάλλον του SPSS Εξοικείωση με τις διαδικασίες περιγραφικής ανάλυσης μιας μεταβλητής Εξοικείωση με τη
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές
ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΧΡΗΣΗ SPSS Πανεπιστήμιο Θεσσαλίας-Τμήμα Πολιτικών Μηχανικών Εργαστήριο Κυκλοφορίας, Μεταφορών και Διαχείρισης Εφοδιαστικής Αλυσίδας Αντικείμενα διάλεξης Σύντομη εισαγωγή
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...
Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
T-tests One Way Anova
William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές