Διαχείριση λιμνοθαλασσών & υγροτόπων
|
|
- Εἰλείθυια Βασιλειάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΙ ΜΕΣΟΛΟΓΓΙΟΥ ΤΜΗΜΑ ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΩΝ ΚΑΙ ΑΛΙΕΥΤΙΚΗΣ ΔΙΑΧΕΙΡΙΣΗΣ υπερ-αλατότητα υπο-αλατότητα Περιοχή εσωτερικών υδάτων VI S%o S%o VI V Λογαρού IV V Ροδιά Τσουκαλιό IV III II I II III S%o Θαλασσια περιοχή Ιζήματα Εξά Διαχείριση λιμνοθαλασσών & υγροτόπων 30 m 15 m Κρέμαση 4 m ΑΣΚΗΣΕΙΣ 70 m Φύλλα Φύλλα Πήρες 8 m Δρ. Κούκου Κατερίνα Εργαστ. Συνεργάτης Κατσέλης Γεώργιος Επικ. καθηγητής Δεκέμβριος 2008
2 ΠΕΡΙΕΧΟΜΕΝΑ Άσκηση 1. Γεωμορφολογικά στοιχεία λιμνοθαλασσών με την χρήση του Google Earth...3 Άσκηση 2. Μελέτη μεταβλητότητας φυσικοχημικών χαρακτηριστικών λιμνοθάλασσας (I)...5 Άσκηση 3. Μελέτη μεταβλητότητας φυσικοχημικών χαρακτηριστικών λιμνοθάλασσας (II)...6 Άσκηση 4. Μελέτη σύνθεσης και ποικιλότητας ειδών ψαριών σε λιμνοθαλασσια συστήματα...7 Άσκηση 5. Μελέτη εποχικής σύνθεσης και ποικιλότητας ειδών ψαριών σε λιμνοθαλασσια συστήματα...8 Άσκηση 6.Μελέτη διαχρονικών μεταβολών στην σύνθεσης, ποικιλότητα και παραγωγή ειδών ψαριών σε λιμνοθαλασσια συστήματα...9 Κούκου Κ. - Κατσέλης Γ. 2
3 Άσκηση 1. Γεωμορφολογικά στοιχεία λιμνοθαλασσών με την χρήση του Google Earth Για τις κύριες λιμνοθάλασσες (περιοχή Μεσολογγίου Αιτωλικού, Αμβρακικού και Βιστωνίδα Πορτο Λαγός) να μαρκαρισθούν οι λιμνοθάλασσες (εικόνα 1), να μετρηθεί το μήκος, η κλίση του μετώπου και η περίμετρος της λιμνοθάλασσας. (επιλέγουμε εργαλεία->χάρακας->γραμμή: τοποθετούμε τον κέρσορα στο πρώτο σημείο επιλογής κάνοντας κλικ και με τα στο δεύτερο κάνοντας κλικ (εικόνα 2), κρατάμε την τιμή μήκους και κλίσης. Η περίμετρος μπορεί να μετρηθεί αντίστοιχα με το μήκος επιλέγοντας από την επιλογή χάρακας την υποεπιλογή «διαδρομή». κρατάμε την τιμή περιμέτρου. Εικόνα 1 Εικόνα 2 1. αρχείο.klm ή.kmz (αρχείο του Google Earth που περιέχει τα στοιχεία των θέσεων Κούκου Κ. - Κατσέλης Γ. 3
4 2. αρχείο.xls (αρχείο του excel που περιέχει, όνομα λιμνοθάλασσας, γεωγραφικές συντεταγμένες, μήκος μετώπου, κλίση μετώπου και περίμετρο) 3. τρεις ενδεικτικές φωτογραφίες (όπως εικόνα 1 και 2) των περιοχών μελέτης Κούκου Κ. - Κατσέλης Γ. 4
5 Άσκηση 2. Μελέτη μεταβλητότητας φυσικοχημικών χαρακτηριστικών λιμνοθάλασσας (I) Από στοιχεία θερμοκρασίας νερού τα οποία έχουν ληφθεί με καταγραφικό θερμοκρασίας κάθε μισή ώρα να υπολογισθεί η μέση ημερήσια θερμοκρασία και το εύρος διακύμανσή της. Ο υπολογισμός των παραπάνω παραμέτρων μπορεί να γίνει: Μοιράζουμε τα στοιχεία σε ημέρες (48 τιμές αντιστοιχούν σε μία ημέρα) και υπολογίζουμε την μέση τιμή της θερμοκρασίας και την τυπική απόκλιση της. Την τυπική απόκλιση εάν την πολλαπλασιάσουμε χ 6 (η ποσότητα ±3 χ τυπική απόκλιση σε μια κανονική κατανομή καλύπτει το 99% των τιμών) μας δίνει μια εκτίμηση του εύρους διακύμανσης της θερμοκρασίας Εργασία (σε word), στην οποία θα περιγράφεται ο σκοπός, η μεθοδολογία, παρουσίαση των αποτελεσμάτων και ο σχολιασμός τους. Τα αποτελέσματα να παρουσιασθούν σε 2 διαγράμματα διασποράς: 1 ο :διάγραμμα μέση τιμή /ημέρα και, 2 ο :διάγραμμα εύρος διακύμανσης/ ημέρα lagoon_management_lab_pract_1.xls Κούκου Κ. - Κατσέλης Γ. 5
6 Άσκηση 3. Μελέτη μεταβλητότητας φυσικοχημικών χαρακτηριστικών λιμνοθάλασσας (II) (Υποθετικό σενάριο): Σε λιμνοθάλασσα στην οποία την χρονική στιγμή t έχουν μετρηθεί και δίνονται στην άσκηση μια σειρά φυσικοχημικών στοιχείων, μετά την πάροδο της δράσης ενός φυσικού γεγονότος (πχ καταιγίδα) για την οποία γνωρίζουμε τα χαρακτηριστικά της επίδρασης (όγκοι, συγκεντρώσεις κτλ) να εκτιμηθούν οι τελικές τιμές των φυσικοχημικών χαρακτηριστικών της λιμνοθάλασσας. Η άσκηση είναι ανάλογη της ανάμειξης διαλυμάτων διαφορετικής συγκέντρωσης για τα οποία ζητείται ο τελικός όγκος και η τελική συγκέντρωση και έχετε διδαχθεί στα μαθήματα χημείας. Εργασία (σε word), στην οποία θα περιγράφεται ο σκοπός, η μεθοδολογία, τα αποτελέσματα και ο σχολιασμός τους. lagoon_management_lab_pract_2.xls Κούκου Κ. - Κατσέλης Γ. 6
7 Άσκηση 4. Μελέτη σύνθεσης και ποικιλότητας ειδών ψαριών σε λιμνοθαλασσια συστήματα Από μέση ετήσια ποσότητα ανά είδος και λιμνοθάλασσα να εκτιμηθεί η σύνθεση και η ποικιλότητα ειδών ψαριών σε λιμνοθαλασσια συστήματα. Η σύνθεση αφορά στον υπολογισμό της ποσοστιαίας συμμετοχής του κάθε είδους στην κάθε περιοχή Για την εκτίμηση της ποικιλότητας χρησιμοποιείστε τον δείκτη Shannon- Weinner: H = -Σln(p)*p όπου ln ο φυσικός λογάριθμος και p το ποσοστό του κάθε είδους (βλέπε ΘΑΛΑΣΣΙΑ ΒΙΟΛΟΓΙΑ) Εργασία (σε word), στην οποία θα περιγράφεται ο σκοπός, η μεθοδολογία, παρουσίαση των αποτελεσμάτων και ο σχολιασμός τους. Η παρουσίαση των αποτελεσμάτων της σύνθεσης με διαγράμματα πίτες (ένα για κάθε λιμνοθάλασσα άρα 6 διαγράμματα), της ποικιλότητας με διάγραμμα μπάρες (1 διάγραμμα). lagoon_management_lab_pract_3.xls Κούκου Κ. - Κατσέλης Γ. 7
8 Άσκηση 5. Μελέτη εποχικής σύνθεσης και ποικιλότητας ειδών ψαριών σε λιμνοθαλασσια συστήματα Από μηνιαίες ποσότητες ανά είδος και λιμνοθάλασσα να εκτιμηθεί η σύνθεση και η ποικιλότητα ειδών ψαριών σε ένα λιμνοθαλάσσιο σύστημα. Η σύνθεση αφορά στον υπολογισμό της ποσοστιαίας συμμετοχής του κάθε είδους ανά μήνα Για την εκτίμηση της ποικιλότητας χρησιμοποιείστε τον δείκτη Shannon- Weinner: H = -Σln(p)*p όπου ln ο φυσικός λογάριθμος και p το ποσοστό του κάθε είδους (βλέπε ΘΑΛΑΣΣΙΑ ΒΙΟΛΟΓΙΑ) Εργασία (σε word), στην οποία θα περιγράφεται ο σκοπός, η μεθοδολογία, παρουσίαση των αποτελεσμάτων και ο σχολιασμός τους. Η παρουσίαση των αποτελεσμάτων της σύνθεσης με διάγραμμα ποσοστιαίες μπάρες (ένα διάγραμμα), της ποικιλότητας με διάγραμμα γραμμές (1 διάγραμμα). lagoon_management_lab_pract_4.xls Κούκου Κ. - Κατσέλης Γ. 8
9 Άσκηση 6.Μελέτη διαχρονικών μεταβολών στην σύνθεσης, ποικιλότητα και παραγωγή ειδών ψαριών σε λιμνοθαλασσια συστήματα Από ετήσιες ποσότητες ανά είδος μια λιμνοθάλασσας να εκτιμηθεί η σύνθεση και η ποικιλότητα ειδών ψαριών καθώς η τάση αλλαγών της παραγωγής σε ένα λιμνοθαλάσσιο σύστημα. Η σύνθεση αφορά στον υπολογισμό της ποσοστιαίας συμμετοχής του κάθε είδους ανά ετος Για την εκτίμηση της ποικιλότητας χρησιμοποιείστε τον δείκτη Shannon- Weinner: H = -Σln(p)*p όπου ln ο φυσικός λογάριθμος και p το ποσοστό του κάθε είδους (βλέπε ΘΑΛΑΣΣΙΑ ΒΙΟΛΟΓΙΑ) Η διαχρονική τάση μεταβολών της παραγωγής αφορά στην συσχέτιση της συνολικής παραγωγής με τα χρόνια. Εργασία (σε word), στην οποία θα περιγράφεται ο σκοπός, η μεθοδολογία, παρουσίαση των αποτελεσμάτων και ο σχολιασμός τους. Η παρουσίαση των αποτελεσμάτων της σύνθεσης με διάγραμμα ποσοστιαίες μπάρες (ένα διάγραμμα), της ποικιλότητας με διάγραμμα γραμμές (1 διάγραμμα), της διαχρονικής τάσης της παραγωγής με διάγραμμα διασπορά με χ άξονα τα έτη και Ψ άξονα την συνολική παραγωγή ανά έτος. lagoon_management_lab_pract_5.xls Κούκου Κ. - Κατσέλης Γ. 9
ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.
Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ - ΤΟΜΕΑΣ ΒΙΟΛΟΓΙΑΣ ΦΥΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ - ΤΟΜΕΑΣ ΒΙΟΛΟΓΙΑΣ ΦΥΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΛΟΓΙΑ-ΔΙΑΧΕΙΡΙΣΗ & ΠΡΟΣΤΑΣΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διατριβή Μεταπτυχιακού Διπλώματος Ειδίκευσης
Στατιστική Ι. Ανάλυση Παλινδρόμησης
Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι
ΕΠΑΝ II, KOYΠΟΝΙΑ ΚΑΙΝΟΤΟΜΙΑΣ ΓΙΑ ΜΙΚΡΟΜΕΣΑΙΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Κωδικός Αριθμός Κουπονιού:
ΕΛΛΗΝΙΚΟ ΚΕΝΤΡΟ ΘΑΛΑΣΣΙΩΝ ΕΡΕΥΝΩΝ ΙΝΣΤΙΤΟΥΤΟ ΘΑΛΑΣΣΙΩΝ ΒΙΟΛΟΓΙΚΩΝ ΠΟΡΩΝ ΙΝΣΤΙΤΟΥΤΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ ΣΥΛΛΟΓΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ, ΟΙΚΟΛΟΓΙΚΩΝ, ΩΚΕΑΝΟΓΡΑΦΙΚΩΝ ΚΑΙ ΑΛΙΕΥΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΓΙΑ ΤΗΝ ΠΕΡΙΟΧΗ ΤΟΥ ΑΡΓΟΛΙΚΟΥ
ΣΥΝΙΣΤΩΣΕΣ ΜΙΑΣ ΧΡΟΝΟΣΕΙΡΑΣ
9-1 ΣΥΝΙΣΤΩΣΕΣ ΜΙΑΣ ΧΡΟΝΟΣΕΙΡΑΣ Χρονοσειρά (Time Series) είναι η καταγραφή δεδομένων κατά τη διάρκεια μιας χρονικής περιόδου. Η καταγραφή αυτή μπορεί να είναι ημερήσια, εβδομαδιαία, μηνιαία, τριμηνιαία,
Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς.
Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς Θέμα 1 Σε θέση ποταμού, όπου πρόκειται να κατασκευαστεί ταμιευτήρας,
Ερωτήσεις Πολλαπλών Επιλογών στο Μάθημα «Μέθοδοι Έρευνας»
Ερωτήσεις Πολλαπλών Επιλογών στο Μάθημα «Μέθοδοι Έρευνας» 1) Στη δειγματοληψία με πιθανότητα α) η πιθανότητα κάθε περίπτωσης να επιλεγεί στο δείγμα είναι άγνωστη β) η πιθανότητα κάθε περίπτωσης να επιλεγεί
γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9
ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Διάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
ΕΒΔΟΜΑΔΙΑΙΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ. (Επικαιροποιημενη εκδοση, αρχή εφαρμογής από 26-10-2015)
(Επικαιροποιημενη εκδοση, αρχή εφαρμογής από 26-10-2015) Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ, ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΕΞΑΜΗΝΟ Α' ΓΕΝΙΚΗ ΒΙΟΛΟΓΙΑ ΑΡΧΕΣ ΟΡΓΑΝΙΣΜΩΝ (Μπαταργιάς,
Διοίκηση Ολικής Ποιότητας ΔΙΑΛΕΞΗ 8 η : Στατιστικός Έλεγχος Ποιότητας. Δρ. Α. Στεφανή Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Δυτικής Ελλάδας - Μεσολόγγι
Διοίκηση Ολικής Ποιότητας ΔΙΑΛΕΞΗ 8 η : Στατιστικός Έλεγχος Ποιότητας Δρ. Α. Στεφανή Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Δυτικής Ελλάδας - Μεσολόγγι Πρόληψη - Επιθεώρησης Τεχνικές ελέγχου: Δειγματοληψία:
ΘΕΜΑ 5ο (ΜΟΝΑΔΕΣ 0) www.oleclassroom.gr Ένας οικονομικός αναλυτής θέλει να διερευνήσει τη σχέση μεταξύ της τιμής ενός αγαθού με τις σημειούμενες πωλήσεις του σε διαφορετικά καταστήματα μιας αστικής περιοχής.
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες
ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ 2015-2016
ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ 2015-2016 ΕΞΑΜΗΝΟ Α' ΩΡΑ ΔΕΥΤΕΡΑ ΑΙΘ ΤΡΙΤΗ ΑΙΘ ΤΕΤΑΡΤΗ ΑΙΘ ΠΕΜΠΤΗ ΑΙΘ ΠΑΡΑΣΚ ΑΙΘ 9-10 10-11 11-12 12-13 13-14 14-15 ΓΕΝΙΚΗ ΒΙΟΛΟΓΙΑ ΑΡΧΕΣ ΣΥΣΤΗΜΑΤΙΚΗΣ ΥΔΡΟΒΙΩΝ
ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός
Πακέτα λογισμικού μελέτης Φ/Β συστημάτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ Πακέτα λογισμικού μελέτης Φ/Β συστημάτων Ενότητα Διάλεξης: 4.1 Εισηγητής: Γ. Βισκαδούρος Εργαστήριο
ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,
ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Γιατί μετράμε την διασπορά;
Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.
Ασκήσεις στις συναρτήσεις, όρια και παράγωγο
Ασκήσεις στις συναρτήσεις, όρια και παράγωγο Σπύρος Γλένης, Μαθηματικός Εάν α) 0,, β) να βρείτε τα παρακάτω: t,,, Να βρείτε το ( h) ( ) για τις παρακάτω συναρτήσεις: h i) ii) iii), ρητός 0, άρρητος Δίνονται
Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)
Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή
ΥΔΡΟΛΟΓΙΑ. Ενότητα 4: Όμβριες Καμπύλες - Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 4: Όμβριες Καμπύλες - Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ - Τμήμα πολιτικών μηχανικών ΥΠΟΛΟΓΙΣΜΟΣ ΧΩΜΑΤΙΣΜΩΝ σύγκριση μεθόδων 17/11/2011. Πανεπιστήμιο Θεσσαλίας
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΥΓΚΡΙΣΗ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΧΩΜΑΤΙΣΜΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΗΛΙΟΥ ΝΙΚΟΛΑΟΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΚΑΛΙΑΜΠΕΤΣΟΣ ΓΕΩΡΓΙΟΣ
& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από
f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα
1 ΣΤΑΤΙΣΤΙΚΗ 1) Οι παρακάτω αριθμοί παρουσιάζουν τα ύψη σε cm, των φυτών ενός θερμοκηπίου 4 3 6 5 3 1 4 5 4 6 6 3 3 1 4 3 α) Να κάνετε τον πίνακα όλων των συχνοτήτων β) Από τον προηγούμενο πίνακα να βρείτε,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegean.gr Τηλ: 7035468 Εκτίμηση
Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια
ΔΕΟ 13 1 η Γραπτή Εργασία Ενδεικτική απάντηση
ΔΕΟ 13 1 η Γραπτή Εργασία 2017-18 Ενδεικτική απάντηση Άσκηση 1 1 (25%) Ας θεωρήσουμε ότι οι εξισώσεις ζήτησης και προσφοράς για κάποιο αγαθό είναι: =50 2,5 όπου είναι η τιμή, σε ευρώ, στην οποία ζητείται
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 15 3η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση, χρησιμοποιώντας ως δεδομένα τα στοιχεία που προέκυψαν από την 1η
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Οι καταιγίδες διακρίνονται σε δύο κατηγορίες αναλόγως του αιτίου το οποίο προκαλεί την αστάθεια τις ατμόσφαιρας:
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΡΑΓΔΑΙΩΝ ΒΡΟΧΩΝ Καταιγίδα (storm): Πρόκειται για μια ισχυρή ατμοσφαιρική διαταραχή, η οποία χαρακτηρίζεται από την παρουσία μιας περιοχής χαμηλών ατμοσφαιρικών πιέσεων και από ισχυρούς
Χρόνος Διατήρησης: Βαθμός Ασφαλείας:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΙΟΝΙΩΝ ΝΗΣΙΩΝ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ, ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΥΠΟΔΟΜΩΝ Δ/ΝΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΧΩΡΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΥΔΡΟΟΙΚΟΝΟΜΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ
Φύλλο Υπολογισμών (Η. Καίσαρης)
65 ο Γυμνάσιο Αθηνών Φύλλο Υπολογισμών (Η. Καίσαρης) Δραστηριότητες Χρησιμοποιώντας όποιο λογισμικό υπολογιστικών φύλλων θέλετε (Microsoft Office Excel, OpenOffice.org Calc ή άλλο) να πραγματοποιήσετε
ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ
ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ Μέτρα διασποράς - Συντελεστής μεταβολής ΤΑΥΤΟΤΗΤΑ ΣΕΝΑΡΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Καραγιάννης Βασίλης ΑΜ: 201118 Οικονόμου Κυριάκος AM: 201102 ΓΝΩΣΤΙΚΗ ΠΕΡΙΟΧΗ: Στατιστική Γ Λυκείου
Β. Τα μερίσματα θα αυξάνονται συνεχώς με ένα σταθερό ρυθμό 5% ανά έτος.
Τελικές 009 Θέμα 4 Η οικονομική διεύθυνση της «ΓΒΑ ΑΕ» εξετάζει την αξία των κοινών μετοχών της εταιρίας. Το τελευταίο μέρισμα που διανεμήθηκε () ήταν 6 ανά μετοχή. Έχει εκτιμηθεί ότι ο συστηματικός κίνδυνος
ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;
ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Εργαστήριο ΑΠΕ I. Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Β «Πειραματική Μελέτη Ηλιακών Θερμικών Συστημάτων»
Εργαστήριο ΑΠΕ I Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Β «Πειραματική Μελέτη Ηλιακών Θερμικών Συστημάτων» Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Συστήματα Ηλιακών Θερμικών Συλλεκτών
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 0BΠρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ 1BΘεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι 2BΑκαδημαϊκό Έτος: 2013-14 Τρίτη Γραπτή Εργασία στη Στατιστική 3BΓενικές
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να
Άσκηση 2 ΕΛΕΓΧΟΣ ΤΗΣ ΟΜΟΙΟΓΕΝΕΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΔΙΠΛΩΝ ΑΘΡΟΙΣΤΙΚΩΝ ΚΑΜΠΥΛΩΝ
Άσκηση 2 ΕΛΕΓΧΟΣ ΤΗΣ ΟΜΟΙΟΓΕΝΕΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΔΙΠΛΩΝ ΑΘΡΟΙΣΤΙΚΩΝ ΚΑΜΠΥΛΩΝ Στον παρακάτω πίνακα, δίνονται τα ετήσια ύψη δύο γειτονικών βροχομετρικών σταθμών Α και Β. Ζητείται να γίνει έλεγχος της συνέπειας
«Εργαστήριο σε Πακέτα λογισμικού μελέτης Φ/Β συστημάτων»
Η ΠΡΑΞΗ ΥΛΟΠΟΙΕΙΤΑΙ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ «Εκπαίδευση και Δια Βίου Μάθηση» ΚΑΙ ΣΥΓΧΡΗΜΑΤΟΔΟΤΕΙΤΑΙ ΑΠΟ ΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΕΚΤ) ΚΑΙ ΑΠΟ ΕΘΝΙΚΟΥΣ ΠΟΡΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική. Γενικές οδηγίες για την εργασία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2017-2018 Τρίτη Γραπτή Εργασία στη
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl
Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Οµάδα (I): Οµάδα (II): Οµάδα (III):
I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0
6.6 ΥΠΟΒΛΗΤΕΑ ΣΤΟΙΧΕΙΑ : ΠΡΟΜΕΛΕΤΕΣ (Pre-Studies) Τα ακόλουθα άρθρα µπορούν να χρησιµοποιηθούν για :
6.6 ΥΠΟΒΛΗΤΕΑ ΣΤΟΙΧΕΙΑ : ΠΡΟΜΕΛΕΤΕΣ (Pre-Studies) Τα ακόλουθα άρθρα µπορούν να χρησιµοποιηθούν για : (i) (ii) Συµβάσεις "Μόνο Κατασκευής", κατά τις οποίες δεν απαιτούνται τεύχη σύµβασης σ' αυτή τη φάση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΕ ΝΕΡΟ ΓΕΝΙΚΑ Με το πείραμα αυτό μπορούμε να προσδιορίσουμε δύο βασικές παραμέτρους που χαρακτηρίζουν ένα
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
ΥΔΡΟΛΟΓΙΑ. Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις. Καθ. Αθανάσιος Λουκάς
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 3:Στατιστική και πιθανοτική ανάλυση υδρομετεωρολογικών μεταβλητών- Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών
Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.
.. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή
Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος
Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο
Επιλογή επενδύσεων κάτω από αβεβαιότητα
Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν
www.onlneclassroom.gr www.onlneclassroom.gr Α. Το διάγραμμα διασποράς των μεταβλητών διαθέσιμο εισόδημα (Χ) και κατανάλωσης (Υ), όπως σχηματίστηκε στο excel, είναι 3000 Δ ιάγραμμα Δ ιασ π οράς 500 Δ ηλω
Στοχαστική ανάλυση και προσοµοίωση υδροµετεωρολογικών διεργασιών σχετικών µε την αιολική και ηλιακή ενέργεια
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Στοχαστική ανάλυση και προσοµοίωση υδροµετεωρολογικών διεργασιών σχετικών µε την αιολική και ηλιακή ενέργεια
ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ
ΕΠΑΛ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1. Δίνεται η συνάρτηση f με f() s όπου η μέση τιμή και s η διακύμανση ενός δείγματος ν παρατηρήσεων μιας μεταβλητής Χ. Η εφαπτομένη της Α 1, f ( 1) έχει εξίσωση
ΔΕΟ 13 1 η Γραπτή Εργασία Ενδεικτική απάντηση. Επιμέλεια: Γιάννης Πουλόπουλος
ΔΕΟ 13 1 η Γραπτή Εργασία 016-17 Ενδεικτική απάντηση Άσκηση 11 (0%) Μια επιχείρηση παράγει δύο προϊόντα Χ και Υ με την ίδια παραγωγική διαδικασία. Δεδομένου ότι η επιχείρηση διαθέτει περιορισμένους πόρους
Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων
Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί
Χρησιμοποιούμενες Συναρτήσεις του Microsoft Excel
Χρησιμοποιούμενες Συναρτήσεις του Microsoft Excel A.1 Μέση Τιμή - Συνάρτηση AVERAGE Δίνει τον μέσο όρο (αριθμητικό μέσο) των ορισμάτων. AVERAGE(umber1; umber;...) Number1, umber,... είναι 1 έως 30 ορίσματα
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ
1 ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Κώστας Κύρος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Ανοίξτε το λογισμικό Google Earth και προσπαθήστε να εντοπίσετε τη θέση της Ευρώπης στη Γη. Κατόπιν για να
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης
Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα
Οι Κορμοί των δέντρων διηγούνται την ιστορία τους
Οι Κορμοί των δέντρων διηγούνται την ιστορία τους Εισαγωγικός τομέας και προκαταρτική φάση Μικρή Περιγραφή: Πρόκειται για μια εργαστηριακή δραστηριότητα που δίνει τη δυνατότητα στους μαθητές να εργαστούν
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 14: Επαναληπτικά Θέματα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
2.6.2 Φυσικές σταθερές των χημικών ουσιών
1 2.6.2 Φυσικές σταθερές των χημικών ουσιών Ερωτήσεις θεωρίας με απαντήσεις 6-2-1. Ποιες χημικές ουσίες λέγονται καθαρές ή καθορισμένες; Τα χημικά στοιχεία και οι χημικές ενώσεις. 6-2-2. Ποια είναι τα
15, 11, 10, 10, 14, 16, 19, 18, 13, 17
ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:
Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το
2742/ 207/ /07.10.1999 «&»
2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,
i Σύνολα w = = = i v v i=
ΜΕΤΡΑ ΘΕΣΗΣ ΆΣΚΗΣΗ Η βαθμολογία στα 0 μαθήματα ενός μαθητή είναι: 3, 9, 6, 0, 5,,, 0, 0, 4. Να υπολογίσετε: α) Τη μέση τιμή. β) Τη διάμεσο. Απάντηση t t + t + t 0 = = = = 3 + 9 + 6 + 0 + 5 + + + 0 + 0
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Value at Risk (VaR) και Expected Shortfall
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Value at Risk (VaR) και Expected Shortfall Ορισμός του VaR VaR, Value at Risk, Αξία σε Κίνδυνο. Η JP Morgan εισήγαγε την χρήση του. Μας δίνει σε ένα μόνο νούμερο, την
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
σ = και σ = 4 αντιστοίχως. Τότε θα ισχύει
Θέματα ομάδας A 1. Σε κάποιο πείραμα τύχης μία τυχαία μεταβλητή λαμβάνει τις τιμές = 10 και = 10. Τότε η μέση τιμή x της θα είναι α. 10 β. 10 γ.,5 10 δ. 19,5 10 1= 10, = 10,. Δυο τυχαίες μεταβλητές, ακολουθούν
Α. Έστω Α,Β δυο ενδεχόμενα του δειγματικού χώρου Ω. Να δείξετε ότι αν A B τότε P A P B. (7 Μονάδες )
Τάξη Μάθημα : Γ Λυκείου : ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 2 - ΚΕΦΑΛΑΙΟ 3 Καθηγητής : Καμπάς Νικόλαος Ημερομηνία : 3/02/2013 ΘΕΜΑ 1: Α. Έστω Α,Β δυο ενδεχόμενα του δειγματικού χώρου
Αντικείμενα 3 ου εργαστηρίου
1.0 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α 3 ο Φυλλάδιο Ασκήσεων
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης
ΟΛΟΚΛΗΡΩΜΕΝΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ ΤΗΣ Ε.Δ.Ε.Υ.Α.
ΟΛΟΚΛΗΡΩΜΕΝΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ ΤΗΣ Ε.Δ.Ε.Υ.Α. 1. Υποσύστημα Παρακολούθησης Ποιότητας Νερού 1.1 Γενική Περιγραφή Υποσυστήματος Το Υποσύστημα Παρακολούθησης Ποιότητας Νερού είναι ένα διαδικτυακό σύστημα
Στατιστική Ι Ασκήσεις 3
Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους n = 5 με παρατηρήσεις 10, 0, 1, 17 και 16. Υπολογίστε τον αριθμητικό μέσο και τη διάμεσο. Υπολογίστε το εύρος και το ενδοτεταρτημοριακό εύρος. Υπολογίστε
ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40
ΣΤΑΤΙΣΤΙΚΗ 1.Να συμπληρωθούν οι πίνακες x i v i f i f i % x 1 7 x 2 5 x 3 15 x 4 14 x 5 9 Άθροισμα 50 x i v i f i f i % 1 12 2 3 24 40 5 0,05 Σύνολο x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40
1 ο Διαγώνισμα (με χρήση μικροϋπολογιστή) ΜΕΡΟΣ Β. Ερώτηση Β1 Ανάλυση. Η παράγωγος f μιας συνάρτησης f δίνεται από τον τύπο f (x)=e x -2x 2.
1 ο Διαγώνισμα (με χρήση μικροϋπολογιστή) ΜΕΡΟΣ Β Ερώτηση Β1 Ανάλυση Η παράγωγος f μιας συνάρτησης f δίνεται από τον τύπο f (x)=e x -2x 2. a) Χρησιμοποιείστε τον μικροϋπολογιστή για να δείξετε ότι η συνάρτηση
ΥΔΡΟΛΟΓΙΑ. Ενότητα 9: Μέθοδοι εκτίμησης πλημμύρας σχεδιασμού- Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων
Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 9: Μέθοδοι εκτίμησης πλημμύρας σχεδιασμού- Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα
Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)
Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν
Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη
Τίτλος Μαθήματος: Στατιστική Ι Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας Τμήμα: Οικονομικών Επιστημών Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων
ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και
ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΑΝΑΚΛΑΣΤΙΚΩΝ ΥΛΙΚΩΝ
ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΝ ΑΠΟΔΟΣΗΣ ΤΩΝ ΑΝΑΚΛΑΣΤΙΚΩΝ ΥΛΙΚΩΝ MONOSTOP THERMO ΚΑΙ MONOSTOP THERMO ROOF ΤΗΣ ΕΤΑΙΡΕΙΑΣ BERLING ΣΤΟΝ ΚΤΙΡΙΑΚΟ ΤΟΜΕΑ Ιούλιος 2015 ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΝ ΑΠΟΔΟΣΗΣ ΤΩΝ ΑΝΑΚΛΑΣΤΙΚΩΝ
Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η
1 Ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ ΓΕΡΑΚΑ Απρίλης 014 Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος 013-14 του Μανώλη Ψαρρά Άσκηση 1 η Όπως γνωρίζουμε, ο στίβος του κλασσικού αθλητισμού σε ένα
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας
Δράση 2.2: Συσχέτιση μετεωρολογικών παραμέτρων με τη μετεωρολογική παλίρροια - Τελικά Αποτελέσματα
Δράση 2.2: Συσχέτιση μετεωρολογικών παραμέτρων με τη μετεωρολογική παλίρροια - Τελικά Αποτελέσματα OCE Group: Γ. Κρεστενίτης Γ. Ανδρουλιδάκης Κ. Κομπιάδου Χ. Μακρής Β. Μπαλτίκας Ν. Διαμαντή Εργαστήριο
ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ
ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάς, Σεπτεμβρίου 20 ΔΕΛΤΙΟ ΤΥΠΟΥ ΕΡΕΥΝΑ ΕΡΓΑΤΙΚΟΥ ΔΥΝΑΜΙΚΟΥ: 20 Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ) ανακοινώνει τον εποχικά προσαρμοσμένο δείκτη ανεργίας για τον Ιούνιο 20.
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Γραφικές παραστάσεις Μαρία Κατσικίνη E-mail: katsiki@auth.gr Web: users.auth.gr/katsiki Παρουσίαση αποτελεσμάτων με τη μορφή πινάκων Πίνακας : χρόνος και ταχύτητα του κινητού
Network Analysis, CPM and PERT Assignment 2 - Λύσεις
Network Analysis, CPM and PERT Assignment 2 - Λύσεις Άσκηση 1 - CPM Μια εταιρία έχει αναλάβει την ανάπτυξη ενός μεγάλου πληροφοριακού συστήματος. Το όλο έργο απαιτεί για την ολοκλήρωσή του την υλοποίηση