ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ"

Transcript

1 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f, η οποία διέρχεται από την αρχή των αξόνων. 4) Να εξετάσετε αν η f έχει ακρότατα. Τι μπορείτε να πείτε για τη μονοτονία της συνάρτησης; ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, + ) Να μελετήσετε την f ως προς τη μονοτονία. ) Να βρείτε την εξίσωση της εφαπτομένης της C f στο σημείο Μ(,0) και να αποδείξετε ότι σχηματίζει με τον άξονα οξεία γωνία. ) Έστω δύο οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω. Να αποδείξετε ότι αν Α Β τότε ισχύει: α) f ( P( Α)) f( P( Β )). β) f ( P( Α)) = f( P( Α Β )).

2 ΘΕΜΑ Ο Έστω η συνάρτηση f ( ) = e ) Να μελετήσετε την f ως προς τη μονοτονία και να βρείτε την ελάχιστη τιμή της. ) Να αποδείξετε ότι f ( ) > 0, για κάθε R. ) Η μεταβλητή ενός δείγματος Α μεγέθους ν N, έχει τιμές t, t, t,..., t ν και η μεταβλητή ενός άλλου δείγματος Β μεγέθους ν N, έχει τιμές t t t tν e t, e t, e t,..., e t. Να συγκρίνετε τις μέσες τιμές των δύο δειγμάτων. ν ΘΕΜΑ 4 Ο Στον παρακάτω πίνακα δίνεται η κατανομή συχνοτήτων σε δεκάδες των μισθών 60 Μισθός v [70,80) [80,90) 9 [90,00) [00,0) 6 [0,0) υπαλλήλων μιας εταιρείας. ) Να βρείτε τη μέση τιμή και τη διάμεσο. ) Επιλέγουμε τυχαία έναν υπάλληλο. Α) Ποια η πιθανότητα να έχει μισθό μικρότερο ή ίσο του μέσου μισθού; Β) Ποια η πιθανότητα να έχει μισθό μεγαλύτερο ή ίσο των 000 ; Γ) Ποια η πιθανότητα να έχει μισθό μικρότερο των 950 ;

3 ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΘΕΜΑ Ο ), ) y =, 4) Γνησίως αύξουσα στο (,0) και γνησίως αύξουσα στο (0, + ). 4 ΘΕΜΑ Ο ) Γνησίως αύξουσα στο (, ], γνησίως φθίνουσα στο [, ), γνησίως φθίνουσα στο (, + ] και γνησίως αύξουσα στο [ +, + ). ) y =, ο συντελεστής διευθύνσεως της εφαπτομένης είναι θετικός κ.τ.λ. ) α) Είναι P( Α) P( Β) και η συνάρτηση είναι γνησίως αύξουσα στο διάστημα [0,], στο οποίο οι πιθανότητες παίρνουν τις τιμές τους κ.τ.λ. β) Ισχύει Α Β Α=Α Β κ.λ.π. ΘΕΜΑ Ο ) Ελάχιστη τιμή f (ln ) = ( ln ) κ.τ.λ. t t ) Ισχύει e t > 0 e t > t, ομοίως μέλη και προκύπτει Α < Β. t t e t > 0 e t > t κ.τ.λ. προσθέτουμε κατά ΘΕΜΑ 4 Ο ) = 9,5, δ = 90 ) P =,8, P 8 6 =, P =

4 ΘΕΜΑ 5 Ο Δίνεται η συνάρτηση f( ) = e + λ, λ Ζ με 5 λ 5. ) Να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατα. ) Να αποδείξετε ότι lm f ( ) e λ e =. 4 4 ) Να βρείτε την πιθανότητα του ενδεχομένου Α: Η ελάχιστη τιμή της συνάρτησης να είναι τουλάχιστον. e ΘΕΜΑ 6 Ο Το συνολικό κέρδος μιας εταιρείας από την πώληση ενός προϊόντος της, από t t σήμερα και για t χρόνια δίνεται από τον τύπο Pt () A. ( e ) = σε ευρώ, όπου Α >0 σταθερά. Να βρείτε : ) Για πόσα χρόνια η εταιρεία θα παρουσιάζει κέρδος ; ) Για ποια τιμή του t το κέρδος γίνεται μέγιστο ; ) Αν 0 t, σε πόσα χρόνια ο ρυθμός μεταβολής του κέρδους γίνεται μέγιστος ; 4

5 ΘΕΜΑ 7 Ο Έστω ο δειγματικός χώρος Ω= {,,,4,5,6,7,8,9,0 } με ισοπίθανα απλά ενδεχόμενα. Για τα ενδεχόμενα Α, Β, Γ του Ω είναι : Α Β= {,,,4,5,6 }, Α Β= {,, 4 }, Α Β= {,6} και + Γ= Ω/. ) Να υπολογίσετε τις πιθανότητες P( Α), P( Β), P( Γ ) ) Να βρείτε την πιθανότητα, ώστε να πραγματοποιηθεί το Β και όχι το Γ. ) Να βρείτε την πιθανότητα, ώστε να πραγματοποιηθεί μόνο ένα από τα Β και Γ. 4) Αν s είναι η διακύμανση των τιμών λ, λ, 5λ, όπου λ Ω, να βρείτε την Δ= λ Ω/ s 4. πιθανότητα του ενδεχομένου { } (ΘΕΜΑ Ιούλιος 005) ΘΕΜΑ 8 Ο Σε μία κανονική ή περίπου κανονική κατανομή το 50% των παρατηρήσεων έχουν τιμή μεγαλύτερη του 0. Το 8,5% των παρατηρήσεων βρίσκεται στο διάστημα (6,) με άκρα του διαστήματος χαρακτηριστικές τιμές της κανονικής κατανομής ± s, ± s, ± s,. ) Αποδείξτε ότι = 0 και s =. * ) Να βρείτε τον a N, αν είναι γνωστό ότι στο διάστημα ( as, + as) ανήκει το 95% περίπου των παρατηρήσεων. ) Αν R είναι το εύρος της κατανομής, να βρείτε την ελάχιστη τιμή της συνάρτησης R f ( ) = ( + 4) + 9s. 5

6 ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΘΕΜΑ 5 Ο ) Γνησίως φθίνουσα στο (, ] και γνησίως αύξουσα στο [, + ). Ελάχιστη τιμή της συνάρτησης η f ( ) = + λ. e ) 6 P( Α ) =. ΘΕΜΑ 6 Ο ) Πρέπει Pt () > 0, βρίσκουμε 0<t<6, ) t=, ) Χρησιμοποιούμε την P () t, βρίσκουμε t = 5/ ΘΕΜΑ 7 Ο ) Γ= {,}. 5 4 P( Α ) =, P( Β ) =, P( Γ ) =, ) 4 P( Β Γ ) =, ) P( ( Β Γ) ( Γ Β )) =, 4) s = λ, ( λ ), 8 P( Δ ) =. 0 ΘΕΜΑ 8 Ο ) α =, ) mn f = f ( ) = 6. 6

7 ΘΕΜΑ 9 Ο Έστω η συνάρτηση f ( ) = + κ + λ+ 6, κ, λ R. Α) Να βρείτε τα κλ, R, ώστε η γραφική παράσταση της f να δέχεται οριζόντια εφαπτομένη την y = στο σημείο 0 =. Β) Αν κ = 9 και λ =, ) Να μελετήσετε η f ως προς τη μονοτονία και τα ακρότατα. ) Να αποδείξετε ότι f ( ) lm = ) Αν A Β, να συγκρίνετε τους αριθμούς f ( PA ( )) και f ( P( Β )) ΘΕΜΑ 0 Ο Ταξιδιωτική εταιρεία παρέχει στους πελάτες της 4 διαφορετικά πακέτα διακοπών σε ποσοστά 0%, 5%, 0%, 5% με κόστος 500, 400, 50, 00 αντιστοίχως, ανά άτομο. ) Να υπολογίσετε το μέσο κόστος των τεσσάρων πακέτων των διακοπών. ) Να υπολογίσετε το συντελεστής μεταβολής CV. ) Να βρείτε πόσο πρέπει να αυξηθεί τουλάχιστον κάθε πακέτο, ώστε το κόστος των τεσσάρων πακέτων να είναι ομοιογενές. 4) Αν ελαττωθεί το κόστος κάθε πακέτου κατά 0% και στη συνέχεια γίνει αύξηση εξόδων διαμονής κατά 0 ανά πακέτο, να βρεθεί ο νέος συντελεστής μεταβολής 7

8 ΘΕΜΑ Ο Για τα ισοπίθανα ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει: P( Α ) = P( Β ) = 0,7 Να αποδείξετε ότι: ) Τα Α, Β δεν είναι ασυμβίβαστα. ) P( Α Β) 0,7 ) 0, 4 P( Α Β) 0,7 ΘΕΜΑ Ο Το 50% των προϊόντων ενός θερμοκηπίου ζυγίζουν το πολύ 800 γραμμάρια, ενώ το 4% από 400 έως 800 γραμμάρια. Υποθέτουμε ότι η κατανομή του βάρους είναι κατά προσέγγιση κανονική. ) Να βρείτε το μέσο βάρος και την τυπική απόκλιση του βάρους των προϊόντων. ) Να εξετάσετε αν το δείγμα είναι ομοιογενές. Αν όχι, πόσο πρέπει να μεταβληθεί το βάρος κάθε προϊόντος για να γίνει ομοιογενές; ) Αν τα προϊόντα που ζυγίζουν πάνω από, κιλά είναι 6, να βρείτε τον αριθμό των προϊόντων που παράγονται στο θερμοκήπιο. 8

9 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΔΕΙΞΕΙΣ ΘΕΜΑ 9 ο Β) ) + ) f ( P( A)) f ( P( Β)) Τοπικό μέγιστο το f () = f + + f Τοπικό ελάχιστο το f () = 0 τ.μ τ.ε. ΘΕΜΑ 0 ο Κόστος f f f 500 0, , , , Σύνολο ) = 60. ) s = Σ f = =650, άρα s 60, 4, ή 60, 4 CV = περίπου 0,67 ή 6, 7 %. 60 s = ( t ) f κ.τ.λ. ) a 44, τουλάχιστον 44. 4) 54,6 CV = περίπου 0,55 ή 5,5 % 54 ΘΕΜΑ ο ) = 800 γραμμάρια, s = 400 γραμμάρια ) Πρέπει να αυξηθεί τουλάχιστον κατά 00 γραμμάρια ) 5 προϊόντα. 9

10 ΘΕΜΑ Ο Έστω η συνάρτηση f ( ) = e + 005, R και Α, Β δύο ενδεχόμενα του ίδιου δειγματικού χώρου Ω με Α Β. ) Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία και τα ακρότατα. ) Αν P( Α ) η θέση του τοπικού μέγιστου και P( Β ) η θέση του τοπικού ελάχιστου της f, να υπολογίσετε τις πιθανότητες: P( Α Β), P( Α Β), P(Β Α ) ) Έστω,, οι τετμημένες των κοινών σημείων της C f και της γραφικής παράστασης της συνάρτησης 7 g ( ) = e Θεωρούμε μία μεταβλητή με τιμές τις,, με συχνότητες v = +, =,,. Να υπολογίσετε τη μέση τιμή. ΘΕΜΑ 4 Ο Έστω Α, Β ενδεχόμενα ενός δειγματικού χώρου Ω, για τα οποία ισχύουν: ν P( Α ) = ν + 7 ν P( Β ) = ν + 7, ν και P( Α Β ) = ν + 7, όπου * ν Ν. * ) Να βρείτε το ευρύτερο υποσύνολο του Ν, στο οποίο παίρνει τιμές το ν. ) Αν τα ενδεχόμενα Α, Β είναι ασυμβίβαστα, να βρείτε την τιμή του ν. ) Να βρείτε για ποια τιμή του αυτή η μέγιστη τιμή. * ν Ν η ( P Α Β ) γίνεται μέγιστη και ποια είναι 0

11 ΘΕΜΑ 5 Ο Έστω οι παρατηρήσεις 4,, 5, 4, 5, 6, 8, α, β. Η μέση τιμή αυτών είναι = 5 και ο συντελεστής μεταβολής CV = 0 %. Να υπολογίσετε: ) Τη διακύμανση των παρατηρήσεων. ) Τις παρατηρήσεις α, β. ) Τη διάμεσο των παρατηρήσεων. 4) Να εξετάσετε αν το δείγμα είναι ομοιογενές. 5) Αν οι παρατηρήσεις υποστούν μείωση κατά 0 % η καθεμία πως διαμορφώνεται ο νέος συντελεστής μεταβολής CV ; ΘΕΜΑ 6 Ο Οι χρόνοι σε mn που χρειάζονται οι μαθητές μιας γειτονιάς να πάνε στο σχολείο τους έχουν ομαδοποιηθεί σε 4 κλάσεις ίσου πλάτους με αντίστοιχες συχνότητες 6, 0, 7 και 7. Θεωρούμε τη συνάρτηση f ( ) = 6( ) + 0( ) + 7( ) + 7( ), όπου,,, 4 τα κέντρα των αντίστοιχων κλάσεων. 4 Έστω ότι η f παρουσιάζει ελάχιστο στο 0 = 7 το f (7) = 4. ) Να αποδείξετε ότι το πλάτος των κλάσεων είναι c =. ) Να βρείτε τις συχνότητες f. ) Να βρείτε την τυπική απόκλιση. 4) Να εξετάσετε το δείγμα ως προς την ομοιογένεια. (ΠΑΡΑΤΗΡΗΣΗ: Βλέπε εφαρμογή σελ. 98 Σχολικού βιβλίου)

12 ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΘΕΜΑ ο ) 5 + f + + f P( Α ) =, P( B) = 5 τ.μ τ.ε. ) P( Α Β ) = P( Α ) =, P( Α Β ) = P( B) =, 5 ) =, =, =, 0 4 =. P( Β Α ) = 0 ΘΕΜΑ 4 ο ) ν. ) Είναι P( Α Β ) = P( Α ) + P( Β) P( Α Β) και P( Α Β ) = 0 κ.λ.π. βρίσκουμε ν =. ) Θεωρούμε τη συνάρτηση P( Α Β ) =. 4 ΘΕΜΑ 5 ο f ( ) =, + 7 κ.τ.λ. βρίσκουμε ν = 7 και μέγιστη τιμή της ) s = ) Από τη μέση τιμή και τη διακύμανση βρίσκουμε α =4 και β =6 ή α =6 και β =4. ) δ =5 ΘΕΜΑ 6 ο Σύμφωνα με την εφαρμογή, σελ = = και επειδή = + c, = + c, 4 = + c κ.τ.λ. βρίσκουμε c=. Άρα = 4, = 6, = 8, 4 = 0. = 7, s = 4, 46 s,, CV= 0 %.

13 ΘΕΜΑ 7 Ο Οι χρόνοι σε ώρες (παρατηρήσεις) που έξι από τους επίγειους σταθμούς δεν είχαν επαφή με τον Ελληνοκυπριακό δορυφόρο είναι: t = 0, t = 0, t =, t =, t = 4, t = ) Να βρείτε τη μέση τιμή ( ) και τη διάμεσο ( δ ) των παρατηρήσεων. ) Αν f ( ) = ( t ) + ( t ) + ( t ) + ( t ) + ( t ) + ( t ), τότε: α) Να αποδείξετε ότι f ( ) = 0. β) Να αποδείξετε ότι f ( ) = 6s ( όπου s η διακύμανση των παρατηρήσεων). γ) Να βρείτε την εξίσωση της εφαπτομένης της συνάρτησης f στο σημείο A(, f( )). ΘΕΜΑ 8 Ο Από τους μαθητές ενός Λυκείου το 0% αυτών συμμετέχει στο διαγωνισμό της Ε.Μ.Ε. ενώ το 85% δεν συμμετέχει στο διαγωνισμό της Ε.Ε.Φ. και το 8% συμμετέχει και στους δύο διαγωνισμούς. Επιλέγουμε τυχαία ένα μαθητή. Να βρείτε την πιθανότητα των ενδεχομένων: α) Γ: Ο μαθητής να μη συμμετέχει σε κανένα από τους δύο διαγωνισμούς. β) Δ: Ο μαθητής να συμμετέχει σ ένα μόνο διαγωνισμό. γ) Ε: Ο μαθητής να συμμετέχει μόνο στο διαγωνισμό της Ε.Μ.Ε. δ) Ζ: Ο μαθητής να συμμετέχει το πολύ σ ένα διαγωνισμό.

14 ΘΕΜΑ 9 Ο Το πολύγωνο συχνοτήτων ( ν ) της κατανομής (Χ) του μηνιαίου τζίρου των βιοτεχνιών μιας κωμόπολης, ( σε εκατοντάδες ευρώ ) ομαδοποιημένη σε κλάσεις ίσου πλάτους έχει κορυφές τα σημεία: A(0,0), B(40,5), Γ(60,0), Δ(80,0), Ε(00,0), Ζ(0,ν 5) Η(40,0), Θ (60,0) Η κατακόρυφη γραμμή = 00 χωρίζει το χωρίο που ορίζεται από το πολύγωνο συχνοτήτων και τον οριζόντιο άξονα σε δύο ισεμβαδικά χωρία. α) Να αποδείξετε ότι ν 5 = 5. β) Να κατασκευάσετε το ιστόγραμμα συχνοτήτων ( ν ) της κατανομής γ) Να υπολογίσετε τη μέση τιμή και τη διάμεσο της ( Χ ) δ) Αν ως όριο βιωσιμότητας της βιοτεχνίας είναι τα 700 ευρώ, να εκτιμήσετε το ποσοστό ( % ) των βιοτεχνιών που δεν μπορούν να επιβιώσουν. ε) Να χαρακτηρίσετε την κατανομή ως προς τη συμμετρία της. ΘΕΜΑ 0 Ο Έστω Ω το σύνολο των ακεραίων λύσεων της ανίσωσης 9. Δίνεται η συνάρτηση ανήκει στο σύνολο Ω. f ( ) = + a + 6 5, όπου a ακέραιος αριθμός που α) Να βρείτε την πιθανότητα του ενδεχομένου Α : Η συνάρτηση f είναι γνησίως αύξουσα στο R. β) Να βρείτε την πιθανότητα του ενδεχομένου Β : Η συνάρτηση f έχει δύο τοπικά ακρότατα. γ) Να βρείτε την πιθανότητα του ενδεχομένου Γ : Η γραφική παράσταση της f έχει στο σημείο Μ(, f ()) εφαπτομένη παράλληλη στην ευθεία με εξίσωση y= 4. 4

15 ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΘΕΜΑ 7 ο ) =, δ = ) γ) Α(, ), y =. ) Βλέπε εφαρμογή σελ. 98 Σχολικού βιβλίου. ΘΕΜΑ 8 ο α) 7 P( Γ ) =, β) 00 9 P( Δ ) =, γ) 00 P( Ε ) =, δ) 00 9 P( Ζ ) = 00 ΘΕΜΑ 9 ο ν 4 ν 4 α) Πρέπει ν+ ν + ν + = + ν5 + ν6 βρίσκουμε ν 5 = 5 γ) v 9800 = = = 98. δ=00 (κατασκευάζουμε το πολύγωνο της F ) ν 00 Κλάσεις v v f f % [0, 50) , [50, 70) ,0 0 5 [70, 90) ,0 0 5 [90, 0) , [0,0) 0 v 5 = , [0,50) , F % δ) 7 % ε) Επειδή είναι < δ έχουμε αρνητική ασυμμετρία ΘΕΜΑ 0 ο Ω={-9,-8,-7, 9,0} α) 6 a 6, P( A) = β) α > 6 ή α < -6, 0 γ) α = - 4, P( Γ ) =. 0 PB ( ) = 7 0 5

16 ΘΕΜΑ Ο Έστω η συνεχής συνάρτηση f για την οποία ισχύει κάθε 0. f ( ) ( ) f =, για α) Να αποδείξετε ότι lm f( ) = β) Να αποδείξετε ότι η εξίσωση της εφαπτομένης της C f στο σημείο Μ(, f () ) 7 είναι y=. 5 5 γ) Θεωρούμε 007 σημεία (, y ) της παραπάνω εφαπτομένης, των οποίων οι τετμημένες έχουν μέση τιμή = 400 και τυπική απόκλιση s = 00. ) Να βρείτε τη μέση τιμή ψ και την τυπική απόκλιση s ψ των τεταγμένων των παραπάνω σημείων. ) Να βρείτε ποια από τις δύο παραπάνω κατανομές, ψ παρουσιάζουν μεγαλύτερη διασπορά τιμών. ) Να βρείτε τη μέση τιμή των τετραγώνων των τετμημένων τους. Δίνεται : s ( Σ ) = Σ ν ν. ΘΕΜΑ Ο Δίνονται τα ενδεχόμενα Κ, Λ ενός δειγματικού χώρου Ω με πιθανότητες P(Κ), P(Λ) αντιστοίχως, όπου P(Κ) 0. Α) Δίνεται η συνάρτηση f ( ) = [ P( Λ )] + P( Κ), R. 5 Θεωρούμε ότι η συνάρτηση παρουσιάζει μέγιστο το f( [ ] 0) = P( Κ ). Να αποδείξετε ότι: α) 0 = P( Κ ) + P( Λ) β) P( Λ ) = P( Κ) 6

17 Β) Έστω επιπλέον οι παρατηρήσεις P( ), P( Κ), P( Λ), P( Κ Λ), P( Ω), P( Κ), P( ), P( Κ), P( Κ Λ), P( Κ Λ) οι οποίες έχουν διάμεσο δ =. Αν ισχύει 4 P[( Κ Λ) ( Λ Κ )] =, α) Nα υπολογίσετε τις πιθανότητες των ενδεχομένων Κ, Λ, Κ Λ, Κ Λ β) Να κάνετε το διάγραμμα συχνοτήτων και το αντίστοιχο πολύγωνο των παραπάνω παρατηρήσεων. ΘΕΜΑ Ο Έστω Ω = { -, -, 0,, } ο δειγματικός χώρος ενός πειράματος τύχης που για τα απλά ενδεχόμενά του ισχύει: P(-) = P(-) = P(0) = P() = P(). Θεωρούμε τη συνάρτηση f ( ) ln( a ) = +, όπου το α ανήκει στο σύνολο Ω. α) Να βρείτε τις πιθανότητες των απλών ενδεχομένων του Ω. β) Να βρείτε την πιθανότητα η εφαπτομένη της γραφικής παράστασης της f, να είναι παράλληλη προς τη διχοτόμο της πρώτης και της τρίτης γωνίας. γ) Να αποδείξετε ότι η πιθανότητα η συνάρτηση f να έχει μοναδικό ακρότατο στο R, είναι P = -P(0). Να βρείτε το είδος του ακρότατου. ΘΕΜΑ 4 Ο Έστω η παραγωγίσιμη συνάρτηση f : R (, + ), για την οποία ισχύει f ( ) = ln( f( )) + e για κάθε R. α) Να αποδείξετε ότι: ) e f( ) f ( ) =, R. f( ) ) f (004) < f (008). β) Θεωρούμε τη συνάρτηση g ( ) = e f( ). Να αποδείξετε ότι η g είναι γνησίως φθίνουσα στο R. 7

18 ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΘΕΜΑ ο γ) ) 7 ψ = =... = 58,6, 5 5 s = s = ψ... = 40 5 ) CV = 5%, 40 CV ψ = > 5% 58,6 ) = ΘΕΜΑ ο Β) α) P( Κ ) =, P( Λ ) =, P( Κ Λ ) =, P( Κ Λ ) = ΘΕΜΑ ο α) P(-) = P(-) = /7, P(0) = P() = P() = /7 β) α = -,, άρα P = P(-)+P() = /7 γ) α = -, -,, άρα P = P(0) ΘΕΜΑ 4 ο α) ) Να αποδείξετε ότι η f είναι γνησίως αύξουσα. 8

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,... Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 96) Άσκηση ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ Έστω οι παρατηρήσεις δυο δειγμάτων αντίστοιχα των μεταβλητών Χ και Ψ Δίνεται ότι η μέση τιμή

Διαβάστε περισσότερα

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56) ΓΕΝΙΚEΣ AΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Κώστας Βακαλόπουλος, Κώστας Παπαϊωάννου, Θανάσης Χριστόπουλος Άσκηση ( λ) λ λ 5 Δίνεται η συνάρτηση F(x) x λx. α) Να βρεθεί η F (x). Ν(Β) Άρα: Β = {5}, οπότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ 1 1) Δίνεται ο διπλανός πίνακας 43 παρατηρήσεων της μεταβλητής Χ και οι αντίστοιχες συχνότητές τους ν i. Αν 116 η μέση τιμή των παρατηρήσεων είναι x =, η διάμε- 43 σος είναι δ=3 και ισχύει κ>10, να υπολογιστούν

Διαβάστε περισσότερα

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α είναι f 1, για κάθε. Μονάδες

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

i μιας μεταβλητής Χ είναι αρνητικός αριθμός ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

x. Αν ισχύει ( ) ( )

x. Αν ισχύει ( ) ( ) ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ 000 ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος τις συνάρτησης c f είναι ίση με c f Θεωρία σχολικό σελίδα 0 Β. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και Β το σύνολο

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η 1 Ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ ΓΕΡΑΚΑ Απρίλης 014 Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος 013-14 του Μανώλη Ψαρρά Άσκηση 1 η Όπως γνωρίζουμε, ο στίβος του κλασσικού αθλητισμού σε ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ

Διαβάστε περισσότερα

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k. Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση () είναι παραγωγίσιμη στο R με () Α Έστω k οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β) ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 04 ΘΕΜΑ ο Α. Πότε δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ονομάζονται ασυμβίβαστα;

Διαβάστε περισσότερα

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3. Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.

Διαβάστε περισσότερα

P A B P(A) P(B) P(A. , όπου l 1

P A B P(A) P(B) P(A. , όπου l 1 ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, ΜΑΡΤΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο ενδεχόμενα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΘΕΜΑ Α Α1. Έστω μια συνάρτηση ff που έχει πεδίο ορισμού το ΔΔ. 1. Πότε η ffλέγεται συνεχής στο xx 0 ΔΔ ; 2. Πότε η ff λέγεται συνεχής; (Μονάδες

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 Ε_ΜλΓ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Α Για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις 01 Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 31 σχολικού βιβλίου Α. Θεωρία (ορισμός), σελίδα 18-19 σχολικού βιβλίου Α3. Θεωρία, (ορισμός), σελίδα 96 σχολικού βιβλίου Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε)

Διαβάστε περισσότερα

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Γ ΛΥΚΕΙΟΥ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ... ΝΟΕΜΒΡΙΟΣ 013 ΘΕΜΑ 1 Ο 1Α. α). Πότε λέμε ότι μια συνάρτηση f

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ). ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ() ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A. Να αποδείξετε ότι η παράγωγος της ταυτοτικής

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f 1 ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ Ι. Το πεδίο ορισμού της f είναι:, 1 υ -1, B. 1, Γ. -1,., 1. 1, f 1 ΙΙ. Το όριο lm είναι ίσο με: 0 Α. 0 Β. 1 Γ. -1 Δ. 1/ Ε. Τίποτε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Λύσεις θεμάτων πανελληνίων εξετάσεων. Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γ Λυκείου Γενικής Παιδείας. Δευτέρα, 20 Μαΐου 2013

Λύσεις θεμάτων πανελληνίων εξετάσεων. Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γ Λυκείου Γενικής Παιδείας. Δευτέρα, 20 Μαΐου 2013 Λύσεις θεμάτων πανελληνίων εξετάσεων Στο μάθημα: «Μαθηματικά και Στοιχεία Στατιστικής» Γ Λυκείου Γενικής Παιδείας Δευτέρα, 0 Μαΐου 0 Θέμα Α: Α. Θεωρία, σελ. 8 Σχολικό Βιβλίο (απόδειξη) Α. Θεωρία, σελ.

Διαβάστε περισσότερα

F x h F x f x h f x g x h g x h h h. lim lim lim f x

F x h F x f x h f x g x h g x h h h. lim lim lim f x 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 8 ΧΡΟΝΙ ΕΠΕΙΡΙ ΣΤΗΝ ΕΠΙΔΕΥΣΗ ΘΗΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΓΕΝΙΗΣ ΠΙΔΕΙΣ ΘΕΤ ΘΕ 1. ν οι συναρτήσεις f και g είναι παραγωγίσιμες στο, να αποδείξετε ότι f x g x f x g x, για κάθε x ονάδες 7. Έστω μια συνάρτηση

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ(3)

Διαβάστε περισσότερα

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ () ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 7 MAΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ 2016 ΘΕΜΑΤΑ - ΛΥΣΕΙΣ 20 ΜΑΪΟΥ 2016 ΕΠΙΜΕΛΕΙΑ ΛΥΣΕΩΝ: ASK4MATH WWW.ASKISIOLOGIO.GR Έκδοση 2η IE Τις λύσεις των θεμάτων επιμελήθηκαν τα μέλη της ask4math 1. Ανδριοπούλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 MAΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A1. Έστω η συνάρτηση

Διαβάστε περισσότερα

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΠΑΡΑΣΚΕΥΗ, 24 ΜΑΡΤΙΟΥ 207 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α. Να αποδείξετε

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό 1 ΦΡΟΝΤΙΣΤΗΡΙ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 2 0 1 6 Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς Τα θέματα επεξεργάστηκαν οι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α Ερώτηση θεωρίας Τι λέγεται ιστόγραμμα αθροιστικών απολύτων σχετικών συχνοτήτων; Ιστόγραμμα αθροιστικών απολύτων ή σχετικών συχνοτήτων είναι μια σειρά από

Διαβάστε περισσότερα

ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ

ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ Ημερομηνία και

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f και g είναι παραγωγίσιµες στο, να αποδείξετε ότι f ( x) + g( x) = f ( x) + g ( x), για κάθε

Διαβάστε περισσότερα

ΘΕΜΑ 1 Ο ( ) ( )( ( )) ΘΕΜΑ 2 Ο ΘΕΜΑ 3 Ο. ισχύει : ( ) ( ) ( ) ( ) P A B = P A + P B P A B. P A P A P B P B

ΘΕΜΑ 1 Ο ( ) ( )( ( )) ΘΕΜΑ 2 Ο ΘΕΜΑ 3 Ο. ισχύει : ( ) ( ) ( ) ( ) P A B = P A + P B P A B. P A P A P B P B ΘΕΜΑ Ο ) Αποδείξτε την πρόταση. Για δυο ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω P A B = P A + P B P A B. ισχύει : ( ) ( ) ( ) ( ) ) ίνεται η συνάρτηση f( ) = ( ), α) Να µελετηθεί ως προς τη µονοτονία

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 0-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Θερινά ΗΜΕΡΟΜΗΝΙΑ: /0/06 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Κατσαρός Δημήτρης - Συμεώνογλου Βασίλης ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι: ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΤΕΤΑΡΤΗ, 8 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. Α. Σχολικό βιβλίο σελ. 6 Α. Σχολικό βιβλίο σελ. 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες

Διαβάστε περισσότερα

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f είναι f, για κάθε. Μονάδες 7 Α. Έστω μια συνάρτηση f με πεδίο ορισμού Α.

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 20 ΜΑΪΟΥ 20 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι

Διαβάστε περισσότερα

1) ( ) ω Α άρα έχουμε: P( ω ) ( ' ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 20 ΜΑΪΟΥ 2013

1) ( ) ω Α άρα έχουμε: P( ω ) ( ' ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΪΟΥ ΘΕΜΑ Α Α. Θεωρία σχολικού βιβλίου, σελ. 8 Α. Θεωρία σχολικού βιβλίου, σελ. Α. Θεωρία σχολικού βιβλίου, σελ. 87 Α. α) Λ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β x + x+

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Μαθηματικός Περιηγητής σχ. έτος

Μαθηματικός Περιηγητής σχ. έτος =================================================================== ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 06 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η εκάδα. Στην αρχή της σχολικής χρονιάς, οι 50 µαθητές της τρίτης τάξης ενός λυκείου ρωτήθηκαν σχετικά µε τον αριθµό των βιβλίων που διάβασαν την περίοδο των διακοπών τους. Τα δεδοµένα

Διαβάστε περισσότερα

Χρόνια υπηρεσίας [ - )

Χρόνια υπηρεσίας [ - ) Το 4 ο Θέμα (Πανελλαδικές 000-03) ) 000 Στα σ χολεί α ενός Δή μου υπη ρετούν συνολικά 00 εκπ αιδευτικοί. Ο συνολικός χρόνος υ- πηρεσίας των εκπαιδευτικών δίνεται από τον παρακάτω πίνακα: Χρόνια υπηρεσίας

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 18 MAΪΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΕΠΑ.Λ. 8 ΙΟΥΝΙΟΥ 07 ΕΚΦΩΝΗΣΕΙΣ Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι: ( f (x) + g (x)) = f (x) + g(x) Μονάδες 0 Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) Οι απαντήσεις και οι λύσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 000-014 ΘΕΜΑ 4 ο 00 Έστω Α,Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α) + Ρ(Β) Ρ(Α Β). Δίνεται ακόμα η συνάρτηση: f(x) = (x - P(AB)) 3 - (x - P(AB)) 3, x R. α. Να δείξετε ότι P(AB) P(AB). Μονάδες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 000 0 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞETΑΣΕΙΣ 000 ΘΕΜΑ ο Α. α) Δίνεται η συνάρτηση F() = f()+g(). Αν οι συναρτήσεις f,g είναι παραγωγίσιμες, να αποδείξετε ότι F () f () g (). Μονάδες 8 β) Να γράψετε

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός 4 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1 0 i) Πρέπει Άρα πεδίο ορισμού της είναι το ii) Αφού η γραφική

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ / ΣΤΑΤΙΣΤΙΚΗ 03 06 000... ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ Γ. Ε. ΛΥΚΕΙΟ 008 43 Γ. Ε. ΛΥΚΕΙΟ 008 44 Α. Έστω f συνάρτηση με πεδίο ορισμού Α παραγωγίσιμη σε κάθε Α και c πραγματική σταθερά. Να αποδείξετε ότι: (cf ()) = cf () Μονάδες 5 Β. Να χαρακτηρίσετε με Σ (σωστό)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδειχθεί ότι: Ρ (Α Β ) = Ρ (Α) Ρ (Α Β ). Μονάδες 7 Α. Πότε δύο ενδεχόµενα

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ HMEΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΥΤΟΤΕΛΩΝ ΤΜΗΜΑΤΩΝ & ΤΜΗΜΑΤΩΝ ΣΥΝ Ι ΑΣΚΑΛΙΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B) Τα απλά ενδεχόµενα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f()= είναι f ()=, για κάθε R Μονάδες 7 Α. Έστω μια συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΡΟΝΤΙΣΤΗΡΙ «ΘΕΣΜΟΣ» 7 ΧΡΟΝΙ ΕΜΠΕΙΡΙ ΣΤΗΝ ΕΠΙΔΕΥΣΗ ΜΘΗΜΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΓΕΝΙΗΣ ΠΙΔΕΙΣ ΘΕΜΤ ΘΕΜ 1. ν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου Ω να αποδείξετε ότι για τις πιθανότητές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 10/4/017 ΕΩΣ /4/017 3η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΕΠΑΛ ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Τετάρτη 1 Απριλίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η παράγωγος της συνάρτησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΠΑΛ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1. Δίνεται η συνάρτηση f με f() s όπου η μέση τιμή και s η διακύμανση ενός δείγματος ν παρατηρήσεων μιας μεταβλητής Χ. Η εφαπτομένη της Α 1, f ( 1) έχει εξίσωση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Μαθηματικών www.othisi.gr 2 Παρασκευή, 20 Μαΐου 2016 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ

Διαβάστε περισσότερα