Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά
|
|
- Ἀμβρόσιος Ζωγράφου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά
2 Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι Δυναμικού Σκέδαση σε μια διάσταση: Τετραγωνικό Φράγμα Δυναμικού Σκέδαση σε μια διάσταση: δ-συνάρτηση Σύνοψη Ασκήσεις
3 Τετραγωνικό Πηγάδι Δυναμικού Θα βρούμε τις ιδιοκαταστάσεις και τις ιδιοτιμές σωματίου με Hamiltonian που έχει δυναμικό της μορφής Κλασσική περίπτωση (Ε<V 0 ): Το σωμάτιο περιορίζεται σε x <a και μπορεί να έχει οποιαδήποτε ενέργεια με Ε<V 0 Στην αναπαράσταση της θέσης η χρονοανεξάρτητη εξίσωση Schrodinger γράφεται ως:
4 Εξίσωση Schrodinger Στην αναπαράσταση της θέσης η χρονοανεξάρτητη εξίσωση Schrodinger γράφεται ως: Η χρονοανεξάρτητη εξίσωση Schrodinger σπάει σε δυο εξισώσεις ως: Θεωρούμε δέσμιες καταστάσεις: σταθερά κανονικοποίησης 8a+ όπου
5 Ιδιοκαταστάσεις της Hamiltonian Θεωρούμε δέσμιες καταστάσεις: σταθερά κανονικοποίησης 8a+ όπου Για να είναι κανονικοποίησιμη η κυματοσυνάρτηση u(x) θα πρέπει να μηδενίζεται στο άπειρο. Επιλέγοντας τις κατάλληλες μορφές έχουμε: + : αρτια συνάρτηση - : περιττή συνάρτηση 8b+ Η Hamiltonian μετατίθεται με το τελεστή της Parity ([H,P]=0) και επομένως υπάρχει κοινή βάση ιδιοκαταστάσεων. Άρα οι ιδιοκαταστάσεις είναι είτε άρτιες είτε περιττές συναρτήσεις (P u(x) = u(-x) = ± u(x)).
6 Ιδιοκαταστάσεις της Hamiltonian + : αρτια συνάρτηση - : περιττή συνάρτηση Η Hamiltonian μετατίθεται με το τελεστή της Parity ([H,P]=0) και επομένως υπάρχει κοινή βάση ιδιοκαταστάσεων. Άρα οι κοινές ιδιοκαταστάσεις είναι είτε άρτιες είτε περιττές συναρτήσεις (P u(x) = u(-x) = ± u(x)). a x a άρτια συνάρτηση 8c+ περιττή συνάρτηση Οριακές συνθήκες: u(x) πρέπει να είναι συνεχής στα σημεία ±α για να υπάρχει η 1 η και η 2 η παράγωγος du(x)/dx πρέπει να είναι συνεχής στα σημεία ±α για να υπάρχει η 2 η παράγωγος
7 Οριακές Συνθήκες a x a 8c+ άρτια συνάρτηση περιττή συνάρτηση Οριακές συνθήκες: u(x) πρέπει να είναι συνεχής στα σημεία ±α για να υπάρχει η 1 η και η 2 η παράγωγος du(x)/dx πρέπει να είναι συνεχής στα σημεία ±α για να υπάρχει η 2 η παράγωγος άρτια συνάρτηση 8d+ περιττή συνάρτηση Στην θέση x=-a οι οριακές συνθήκες είναι ισοδύναμες με αυτές στην θέση x=a λόγω καθορισμένης parity. 8e+
8 Ιδιοτιμές (άρτιες καταστάσεις) Εύρεση επιτρεπόμενων τιμών ενέργειας (ιδιοτιμών): άρτιες λύσεις διαίρεση κατά μέλη Αύξουσα ως προς ka Υπάρχει πάντα τουλάχιστον ένα σημείο τομής και άρα τουλάχιστον μια λύση (μια ιδιοτιμή της Hamiltonian με Ε < V 0. Φθίνουσα ως προς ka 8f+ δεύτερη λύση τρίτη λύση
9 Ιδιοτιμές (περιττές καταστάσεις) άρτιες λύσεις δεύτερη λύση τρίτη λύση Αύξουσα ως προς ka Υπάρχει πάντα τουλάχιστον ένα σημείο τομής και άρα τουλάχιστον μια λύση (μια ιδιοτιμή της Hamiltonian με Ε < V 0. Φθίνουσα ως προς ka Περιττές λύσεις 8g+ Με όμοιο τρόπο δείχνουμε ότι για περιττές ιδιοκαταστάσεις υπάρχει σημείο τομής (ιδιοτιμή) μόνο αν W>π/2 Επιπλέον σημεία τομής εμφανίζονται όταν W=(r+1/2)π/2, r=1,2,
10 Πηγάδι αυθαίρετου σχήματος Σε κάθε πηγάδι δυναμικού της μορφής που φαίνεται στο σχήμα (όχι σε όλα τα πηγάδια) μπορούμε να εγγράψουμε ένα τετραγωνικό πηγάδι δυναμικού που είναι πιο ρηχό και πιο στενό. Αφού το τετραγωνικό πηγάδι δυναμικού που είναι λιγότερο επιδεκτικό σε δέσμια κατάσταση έχει τουλάχιστον μια δέσμια κατάσταση το ίδιο θα ισχύει και για το πιο βαθύ και πλατύ γενικό πηγάδι δυναμικού.
11 Τετραγωνικό Πηγάδι απείρου Βάθους Γραφική εύρεση ιδιοτιμών για πηγάδι πεπερασμενου βάθους: Αύξουσα ως προς ka Υπάρχει πάντα τουλάχιστον ένα σημείο τομής και άρα τουλάχιστον μια λύση (μια ιδιοτιμή της Hamiltonian με Ε < V 0. Φθίνουσα ως προς ka δεύτερη λύση τρίτη λύση Για πηγάδι απείρου βάθους έχουμε:
12 Τετραγωνικό Πηγάδι απείρου Για πηγάδι απείρου βάθους έχουμε: Βάθους άρτια συνάρτηση Η ασυνέχεια της παραγώγου είναι συμβατή με τον απειρισμό του δυναμικού στην θέση x=a. Όμοια εργαζόμαστε και για τις περιττες κυματοσυναρτήσεις (parity -1) (ka= s π). 8h+
13 Ιδιοτιμές Hamiltonian Η γενική μορφή για το k προκύπτει από τα παραπάνω ως: 2mE ka n / 2 a n / 2 2 n ακέραιος Αρχή αβεβαιότητας: Τάξη μεγέθους ορμής (n=1): 8i+ Αυθαιρεσία προσήμου p=ћk Σε συμφωνία με αρχή αβεβαιότητας
14 Απειρωστά Στενό Πηγάδι Απείρου Βάθους Για απειροστά στενό πηγάδι (V 0 a = σταθ) έχουμε: 0 Το σημείο W=ka μεταφέρεται κοντά στο 0 και έτσι υπάρχει μόνο ένα σημέιο τομής του W με την tan(ka). Υπάρχει μόνο μια δεσμια κατάσταση! Στην ειδική αυτή περίπτωση το δυναμικό μπορεί να γραφεί σαν:
15 Απειρωστά Στενό Πηγάδι Εξίσωση Schrodinger: Απείρου Βάθους Με ολοκλήρωση σε μικρή περιοχή από ε σε ε παίρνουμε: 8j+ Λόγω συμμετρίας του δυναμικού (μετάθεση Η με parity) οι ιδιοκαταστάσεις της Η θα είναι είτε άρτιες είτε περιττές. 8k+
16 Απειρωστά Στενό Πηγάδι Εξίσωση Schrodinger: Απείρου Βάθους Λόγω συμμετρίας του δυναμικού (μετάθεση Η με parity) οι ιδιοκαταστάσεις της Η θα είναι είτε άρτιες είτε περιττές: 8l+ Ικανοποιεί εξ. Schrodinger και οριακή συνθήκη ασυνέχειας 8m+
17 Απειρωστά Στενό Πηγάδι Απείρου Βάθους Οι ιδιοτιμές της ενέργειας προκύπτουν από την εξ. Schrodinger: 8n+ Η πιθανότητα u 2 Δx να βρεθεί το σωμάτιο μέσα στο πηγάδι (μηδενικού εύρους Δx) είναι 0 (αρχή αβεβαιότητας και σε πλήρη αντίθεση με το κλασσικά αναμενόμενο!!) 8o+
18 Σκέδαση σε Σκαλοπάτι Δυναμικού Έστω βήμα δυναμικού σε μια διάσταση (x) της μορφής: Εξίσωση Schrodinger (Ε>V): 8p+
19 Εξίσωση Schrodinger (E>V) Έστω βήμα δυναμικού σε μια διάσταση (x) της μορφής: Εξίσωση Schrodinger (E<V): 8q+
20 Λύσεις Εξίσωσης Schrodinger Έστω βήμα δυναμικού σε μια διάσταση (x) της μορφής: Ε>V 0 προσπίπτον κύμα ανακλώμενο κύμα Δεν επιστρέφουν σωμάτια από το -. Άρα θέτουμε Α 2 =0
21 Οριακές Συνθήκες προσπίπτον κύμα ανακλώμενο κύμα Δεν επιστρέφουν σωμάτια από το -. Άρα θέτουμε Α 2 =0 Συνέχεια κυματοσυνάρτησης: Συνέχεια παραγώγου κυματοσυνάρτησης: 8r+ 8s+
22 Προσδιορισμός Σταθερών Υπολογισμός σταθερών ανακλώμενου και διαδιδόμενου μέρους κυματοσυνάρτησης: διαδιδόμενο μέρος 8t+ ανακλόμενο μέρος
23 Ρεύμα Πιθανότητας Ε>V 0 Για το ρεύμα πιθανότητας στις δύο περιοχές έχουμε: εισερχόμενο ρεύμα 8u+
24 Συντελεστές Ανάκλασης και Διάδοσης 8w+ Ε>V 0 8v+ Για το ρεύμα πιθανότητας στις δύο περιοχές έχουμε: 8x+ 8y+
25 Τετραγωνικό Φράγμα Δυναμικού Έστω δυναμικό της μορφής: Προσπίπτοντα σωμάτια από το x=- : Εξίσωση Schrodinger:
26 Εξίσωση Schrodinger Έστω δυναμικό της μορφής: Προσπίπτοντα σωμάτια από το x=- : Εξίσωση Schrodinger:
27 Λύσεις εξίσωσης Schrodinger Έστω δυναμικό της μορφής: Προσπίπτοντα σωμάτια από το x=- : Εξίσωση Schrodinger (λύση): 8z+ Δεν έρχονται προσπίπτοντα σωμάτια από το x=+ :
28 Οριακές Συνθήκες- Προσδιορισμός Σταθερών Συνέχεια κυματοσυνάρτησης στην θέση x=l: Συνέχεια παραγώγου κυματοσυνάρτησης στην θέση x=l: 8aa+
29 Οριακές Συνθήκες- Προσδιορισμός Σταθερών Συνέχεια κυματοσυνάρτησης στην θέση x=0: Συνέχεια παραγώγου κυματοσυνάρτησης στην θέση x=0: 8ab+ Διαιρούμε με ik 1 και προσθέτουμε κατά μέλη.
30 Προσδιορισμός Σταθερών για Συντελεστή Διέλευσης Εκφράζουμε το Α 1 συναρτήσει του Α 3 για να βρούμε το ποσοστό του ρεύματος πιθανότητας που περνάει μετά το φράγμα: 8ac+
31 Προσδιορισμός Σταθερών για Συντελεστή Ανάκλασης Εκφράζουμε το Α 1 συναρτήσει του Α 3 για να βρούμε το ποσοστό του ρεύματος πιθανότητας που ανακλάται από το φράγμα: 8ad+ Διαιρούμε με ik 1 την δεύτερη ισότητα και αφαιρούμε τις δύο ισότητες κατά μέλη.
32 Προσδιορισμός Σταθερών για Συντελεστή Ανάκλασης Εκφράζουμε το Α 1 συναρτήσει του Α 3 για να βρούμε το ποσοστό του ρεύματος πιθανότητας που ανακλάται από το φράγμα: 8ae+
33 Συντελεστής Ανάκλασης Ο συντελεστής ανάκλασης ορίζεται ως: Άρα για το παρόν σύστημα έχουμε: 8af+
34 Συντελεστής Διέλευσης Ο συντελεστής διέλευσης ορίζεται ως: Άρα για το παρόν σύστημα έχουμε: R+T=1 (διατήρηση πιθανότητας) 8ag+ 8ah+ Όταν k 2 l = n π τότε ο συντελεστής διέλευσης της ροής πιθανότητας μεγιστοποιείται και ο συντελεστής ανάκλασης μηδενίζεται (ελαχιστοποιήται). Τότε έχουμε συντονισμό σκέδασης.
35 Συντονισμός Σκέδασης 8ai+ R+T=1 (διατήρηση πιθανότητας) Όταν k 2 l = n π τότε ο συντελεστής διέλευσης της ροής πιθανότητας μεγιστοποιείται και ο συντελεστής ανάκλασης μηδενίζεται (ελαχιστοποιήται). Τότε έχουμε συντονισμό σκέδασης.
36 Τετραγωνικό Φράγμα Δυναμικού Έστω δυναμικό της μορφής: (E<V 0 ) Προσπίπτοντα σωμάτια από το x=- : Εξίσωση Schrodinger: V 0
37 Λύσεις Εξίσωσης Schrodinger Έστω δυναμικό της μορφής: Προσπίπτοντα σωμάτια από το x=- : Ορίζουμε: Η λύση της εξίσωσης Schrodinger σε κάθε περιοχή γράφεται: 8aj+
38 Οριακές Συνθήκες- Προσδιορισμός Σταθερών Προσπίπτοντα σωμάτια από το x=- : Συνέχεια κυματοσυνάρτησης και της παραγώγου της για x=l: 8ak+
39 Οριακές Συνθήκες- Προσδιορισμός Σταθερών Προσπίπτοντα σωμάτια από το x=- : Συνέχεια κυματοσυνάρτησης και της παραγώγου της για x=0: 8al+
40 Προσδιορισμός Σταθερών για Συντελεστή Διέλευσης Προσπίπτοντα σωμάτια από το x=- : 8am+ Τώρα μπορούμε να βρούμε τον συντελεστή διέλευσης:
41 Συντελεστής Διέλευσης Προσπίπτοντα σωμάτια από το x=- : Τώρα μπορούμε να βρούμε τον συντελεστή διέλευσης:
42 Συντελεστής Διέλευσης 8an+ Σε αντίθεση με τα αναμενόμενα από την κλασσική μηχανική υπάρχει ρεύμα πιθανότητας που ρέει πέρα από το φράγμα δυναμικού (φαινόμενο σήραγγας).
43 Σκέδαση σε δ-συνάρτηση- Οριακές Συνθήκες Έστω σωμάτιο με Ε>0 σε δυναμικό V 0 δ(x-α). Να μελετηθεί η σκέδαση. Λύση Η εξίσωση Schrodinger γράφεται ως: Με ολοκλήρωση γύρω από το α παίρνουμε: Άρα η παράγωγος της κυματοσυνάρτησης είναι ασυνεχής για x=a 8ao+
44 Οριακές Συνθήκες Έστω σωμάτιο με Ε>0 σε δυναμικό V 0 δ(x-α). Να μελετηθεί η σκέδαση. Λύση Άρα η παράγωγος της κυματοσυνάρτησης είναι ασυνεχής για x=a Με δεύτερη ολοκλήρωση προκύπτει η συνέχεια της κυματοσυνάρτησης για x=a: Εφαρμόζουμε την οριακή συνθήκη για την ασυνέχεια της 1 ης παραγώγου: 8ap+ 8aq+
45 Προσδιορισμός Σταθερών 8ar+ Από τις σχέσεις αυτές προκύπτουν οι συντελεστές διέλευσης και ανάκλασης
46 Σύνοψη Οι δέσμιες κβαντικές καταστάσεις για σωμάτιο σε πηγάδι δυναμικού προκύπτουν από την λύση της εξίσωσης Schrodinger σε κάθε περιοχή και χρήση των οριακών συνθηκών (συνέχεια κυματοσυνάρτησης και παραγώγου της) Σε πηγάδι δυναμικού με δυναμικο V 0 υπάρχει πάντα τουλάχιστον μια δέσμια κατάσταση. Κατά την κβαντική σκέδαση σωματίου σε βήμα δυναμικού υπάρχει μη μηδενική πιθανότητα εύρεσης του σωματίου στην κλασικά απαγορευμένη περιοχή. Κατά την κβαντική σκέδαση σωματίου σε φράγμα δυναμικού υπάρχει μη μηδενική πιθανότητα διέλευσης του σωματίου πέρα από το φράγμα ακόμα και αν η ενέργειά του είναι μικρότερη από το ύψος του δυναμικου στο φράγμα (φαινόμενο σήραγγας). Όταν στο δυναμικό υπάρχει δέλτα συνάρτηση, οι οριακές συνθήκες περιλαμβάνουν ασυνέχεια την παραγώγου και συνέχεια της κυματοσυνάρτησης.
47 Άσκηση 1:Σωμάτιο σε Δυναμικό Απείρου Βάθους Βρείτε τις ιδιοτιμές και τις ιδιοκαταστάσεις για σωμάτιο σε δυναμικό Λύση Το πρόβλημα έχει μελετηθεί προηγούμενως σαν οριακή περίπτωση αλλά τώρα θα μελετηθεί αυτοδύναμα. Αφού το δυναμικό απειρίζεται πέρα από τα όρια, η πιθανότητα να βρούμε εκεί το σωμάτιο θα είναι 0. Άρα από την συνέχεια την κυματοσυνάρτησης προκύπτει ότι: Για Ε>0 στην περιοχή μεταξύ των ορίων έχουμε: όπου
48 Άσκηση 1:Ιδιοτιμές Hamiltonian Στην περιοχή μεταξύ των ορίων έχουμε: όπου Πολλ/ζουμε με 8as+ ακέραιος 8at+
49 Άσκηση 1:Κυματοσυναρτήσεις Άρα οι ιδιοτιμές της Hamiltonian είναι: Οι αντίστοιχες ιδιοσυναρτησεις είναι: σταθερά κανονικοποίησης 8au+
50 Άσκηση 1:Κανονικοποίηση Οι αντίστοιχες ιδιοσυναρτησεις είναι: σταθερά κανονικοποίησης νέα μεταβλητή: Άρα: 8av+
51 Άσκηση 1: Ε<0 Για αρνητικές ενέργειες έχουμε: Θέτουμε: Τότε η γενική λύση της εξίσωσης Schrodinger στην επιτρεπόμενη περιοχή γράφεται ως: 8aw+
52 Άσκηση 1: Ε<0 Για αρνητικές ενέργειες έχουμε: επί 8ax+ E 0 Δεν υπάρχει αποδεκτή λύση για την ενέργεια.
53 Άσκηση 1: Ε=0 Για μηδενική ενέργεια έχουμε: 8ay+ Δεν υπάρχει αποδεκτή λύση κυματοσυνάρτησης για Ε=0
54 Άσκηση 2:Δυναμικό σε 3 Διαστάσεις Έστω σωμάτιο μάζας m σε δυναμικό τριών διαστάσεων της μορφής: Χρησιμοποιήστε την μέθοδο των χωριζομένων μεταβλητών για να μετατρέψετε το πρόβλημα σε 3 μονοδιάστατα προβλήματα. Μετά βρείτε την ενέργεια του τρισδιάστατου συστήματος Λύση Η εξίσωση του Schrodinger σε τρεις διαστάσεις γράφεται ως: Δοκιμαστική λύση χωριζομένων μεταβλητών:
55 Άσκηση 2: Χωριζόμενες Μεταβλητές Η εξίσωση του Schrodinger σε τρεις διαστάσεις γράφεται ως: Δοκιμαστική λύση χωριζομένων μεταβλητών: 8az+ συνάρτηση του x συνάρτηση των y, z
56 Άσκηση 2: Χωριζόμενες Μεταβλητές συνάρτηση του x συνάρτηση των y, z Άρα κάθε μέρος της ισότητας θα ισούται με μια σταθερά (έστω E x ) Μονοδιάστατο πρόβλημα 8ba+ συνάρτηση του y συνάρτηση του z Άρα κάθε μέρος της ισότητας θα ισούται με μια σταθερά (έστω E y ) 8bb+ Μονοδιάστατο πρόβλημα Μονοδιάστατο πρόβλημα
57 Άλυτες Ασκήσεις 1. Θεωρείστε σωμάτιο σε δυναμικό απείρου βάθους με αρχική κυματοσυνάρτηση γραμμικό συνδιασμό της θεμελιώδους και της 1 ης διεγερμένης ιδιοσυνάρτησης της Hamiltonian: Βρείτε την χρονικά εξελιγμένη κυματοσυνάρτηση ψ(x,t) και την αντίστοιχη αναμενόμενη τιμή της θέσης <x> t την χρονική στιγμή t. 2. Θεωρείστε σωμάτιο σε δυναμικό απείρου βάθους της μορφής: Βρείτε τις ιδιοκαταστάσεις και τις ιδιοτιμές της Hamiltonian. 3. Θεωρείστε σωμάτιο σε δυναμικό απείρου βάθους της μορφής: Απ.: Βρείτε τις ιδιοκαταστάσεις και τις ιδιοτιμές της Hamiltonian.
58 Άλυτες Ασκήσεις 4. Λύστε πρόβλημα με το σκαλοπάτι δυναμικού όταν Ε<V 0. Βρείτε την πιθανότητα εύρεσης του σωματίου στην κλασικά απαγορευμένη περιοχή.
Αρμονικός Ταλαντωτής
Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
Η Αναπαράσταση της Θέσης (Position Representation)
Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης
ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το
Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου
Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ ΔΙΔΑΣΚΩΝ: Δ. ΣΚΑΡΛΑΤΟΣ, ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ
ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ ΕΝΟΤΗΤΑ 5 Επίλυση της εξίσωσης Schrödinger σε απλά κβαντικά συστήματα Ι. ΕΙΣΑΓΩΓΗ Κάθε φυσικά πραγματοποιήσιμη φυσική κατάσταση ενός (μονοσωματιδιακού) κβαντικού συστήματος περιγράφεται
ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής
ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις
Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής
Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L
Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις
Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί
Μετασχηματισμοί Καταστάσεων και Τελεστών
Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity
Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο
Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.
ΘΕΜΑ [5575] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Αυγούστου ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης,5 ώρες (α) Να αποδειχθεί ότι για οποιοδήποτε µη εξαρτώµενο από τον χρόνο τελεστή Α, ισχύει d A / dt = A,
Κβαντική Φυσική Ι. Ενότητα 23: Σκέδαση σε τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 23: Σκέδαση σε τετραγωνικά δυναμικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την περίπτωση σκέδασης σε σκαλοπάτι
Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση
Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. spiroskonstantogiannis@gmail.com Δεκεμβρίου 07 //07 Coprigt Σπύρος Κωνσταντογιάννης,
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού
Συστήματα Πολλών Σωματίων
Συστήματα Πολλών Σωματίων Δομή Διάλεξης Βασικές γενικεύσεις: Κυματοσυνάρτηση-Ενέργεια συστήματος πολλών σωματίων Μη αλληλεπιδρώντα σωμάτια: Μέθοδος χωριζόμενων μεταβλητών Σύστημα δύο αλληλεπιδρώντων σωματίων:
ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εφαρμογές κβαντικής θεωρίας
Εφαρμογές κβαντικής θεωρίας Στοιχειώδες μαθηματικό υπόβαθρο Σχέση Euler Χρησιμοποιώντας τη σχέση Euler, ένα αρμονικό κύμα της μορφής Acos(kx) (πραγματική συνάρτηση), μπορεί να γραφτεί ως Re[Ae ikx ] που
Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017
Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.
x όπου Α και a θετικές σταθερές. cosh ax [Απ. Οι 1, 2, 5] Πρόβλημα 3. Ένα σωματίδιο μάζας m κινείται στο πεδίο δυναμικής ενέργειας ( x) exp
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ (Υποχρεωτικό 4 ου Εξαμήνου) Διδάσκων : Δ. Σκαρλάτος Προβλήματα Σειρά # 5 : Η εξίσωση Schrödinger και η επίλυσή της σε απλά κβαντικά συστήματα
(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΣΩΝ ΤΙΜΩΝ ΜΕ ΧΡΗΣΗ ΤΩΝ ΤΕΛΕΣΤΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ Για μια τυχαία ιδιοκατάσταση της ενέργειας,, υπολογίζουμε
Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης
Σκέδαση Δομή Διάλεξης Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης Κβαντική θεωρία σκέδασης Πλάτος σκέδασης Υπολογισμός διατομής σκέδασης με την μέθοδο στοιχειωδών κυμάτων (partial waves) Υπολογισμός
KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο
Κεφάλαιο 11. Η Εξίσωση Schrödinger σε μια διάσταση
Κεφάλαιο 11. Η Εξίσωση Schrödinger σε μια διάσταση Εισαγωγικές Παρατηρήσεις Στο προηγούμενο κεφάλαιο είχαμε μια πρώτη επαφή με την εξίσωση του Schrödinger, σε μια διάσταση, και την «επίλυση» της για ένα
και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Κεφάλαιο 38 Κβαντική Μηχανική
Κεφάλαιο 38 Κβαντική Μηχανική Περιεχόμενα Κεφαλαίου 38 Κβαντική Μηχανική Μια καινούργια Θεωρία Η κυματοσυνάρτηση και η εξήγησή της. Το πείραμα της διπλής σχισμής. Η αρχή της αβεβαιότητας του Heisenberg.
Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις.
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα), < Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( ) = VΘ( ), Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις V Ε Ι ΙΙ Σχήµα ΑΚΠα1
Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.
Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.
ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση
Η άλγεβρα της στροφορμής
Η άλγεβρα της στροφορμής Στην κλασική μηχανική, η τροχιακή στροφορμή L ενός σωματιδίου είναι L r p (1) όπου r το διάνυσμα θέσης του σωματιδίου και p η ορμή του. Σε καρτεσιανές συντεταγμένες, η (1) γράφεται
Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του
Τίτλος: Κυµατοσυνάρτηση-Φράγµα δυναµικού Χρόνος: min. Σωµάτιο προσπίπτει απο αριστερά στο παρακάτω φράγµα δυναµικού. Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών
Χρονοανεξάρτητη Μη-Εκφυλισμένη Θεωρία Διαταραχών Δομή Διάλεξης Ανασκόπηση συμβολισμού Dirac Διαταραχές σε σύστημα δύο καταστάσεων Η γενική μέθοδος μη-εκφυλισμένης θεωρίας διαταραχών Εφαρμογή: Διαταραχή
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
Κεφάλαιο 9: Συστήματα Πολλών σωματίων
Κεφάλαιο 9: Συστήματα Πολλών σωματίων Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό, είναι τα εξής (Βαγιονάκης, 1996 Μοδινός, 1994 Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013
Κβαντομηχανική σε μία διάσταση
vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική
Â. Θέλουμε να βρούμε τη μέση τιμή
ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου
Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική
Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τµήµα Α Λαχανά) Φεβρουαρίου ΘΕΜΑ : Θεωρήστε τις δύο περιπτώσεις όπου η κυµατική συνάρτηση ψx) που περιγράφει µονοδιάστατη κίνηση σωµατιδίου σε απειρόβαθο πηγάδι δυναµικού µε τα τοιχώµατα
21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ
ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή
Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής
Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d
Θεωρία Χρονοεξαρτώμενων Διαταραχών
Θεωρία Χρονοεξαρτώμενων Διαταραχών Δομή Διάλεξης Γενική μέθοδος μελέτης συστημάτων με χρονοεξαρτώμενο μέρος Χαμιλτονιανής. Εύρεση πιθανότητας μετάβασης Απλό παράδειγμα με ακριβή λύση: Σύστημα δύο καταστάσεων
Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1
Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Μη- Σχετικιστική Κβαντομηχανική Η μη- σχετικιστική έκφραση για την ενέργεια: Στην QM αντιστοιχούμε την ενέργεια και την ορμή με Τελεστές:
ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω) Εξέταση: 17 Ιούνη 2013 ( ιδάσκων: Α.Φ. Τερζής) ΘΕΜΑ 1[ ]
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω Εξέταση: 17 Ιούνη 13 ( ιδάσκων: ΑΦ Τερζής ΘΕΜΑ 1[1515] Θεωρούµε κβαντικό σύστηµα που περιράφεται από την Χαµιλτονιανή, ε H 4ε 1 1 3i 1 1, µε 1, ιδιοσυναρτήσεις κάποιου
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων
Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά
Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού
Κβαντική Φυσική Ι. Ενότητα 23: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 23: Ασκήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Άσκηση 23.1 Ηλεκτρόνιο βρίσκεται περιορισμένο σε πηγάδι δυναμικού της μορφής 0, 0 x a V x = V 0, a x b +, x
Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα
Κβαντική Φυσική Ι. Ενότητα 21: Δέλτα πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 21: Δέλτα πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει το δέλτα πηγάδι δυναμικού, το οποίο αποτελεί
Άσκηση 1. Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli
Άσκηση 1 Δείξτε τις σχέσεις μετάθεσης των πινάκων Pauli Άσκηση 2 Βρείτε την δράση των τελεστών του spin S x, S y, S z, στις ιδιοκαταστάσεις του S z +1/2>, =1/2> Η αναπαράσταση των S x, S y, S z, στις ιδιοκαταστάσεις
Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης
Το θεώρημα virial1 στην κβαντική μηχανική
Το θεώρημα val στην κβαντική μηχανική Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. sposkonsanoganns@gal.co 7 Φεβρουαρίου 08 Η λέξη val προέρχεται από το λατινικό vs, που σημαίνει «δύναμη», «ενέργεια», «ισχύς»
ˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε.
Άσκηση. Η Hamiltoia ενός συστήματος έχει τη γενική μορφή ˆ pˆ H V ( xˆ ) m Δείξτε ότι d V ( xˆ ) pˆ F( xˆ) t dt x def. t Υπόδειξη: Ξεκινείστε από τον ορισμό της αναμενόμενης τιμής pˆ dx ( x, t) pˆ( x,
Δομή Διάλεξης. Ορισμός-Παραδείγματα Τελεστών. Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών. Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών
Τελεστές Δομή Διάλεξης Ορισμός-Παραδείγματα Τελεστών Αναμενόμενες τιμές φυσικών μεγεθών με χρήση τελεστών Ιδιοκαταστάσεις και Ιδιοτιμές τελεστών Ερμητειανοί τελεστές Στοιχεία πίνακα τελεστών Μεταθέτες
Κβαντομηχανική Ι 2o Σετ Ασκήσεων. Άσκηση 1
Κβαντομηχανική Ι 2o Σετ Ασκήσεων Άσκηση 1 Ξεκινάμε με την περίπτωση Ε
ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.
ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.
( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου
Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της
16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια
( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού
Half Oscillator Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού ì, x ï V x í ïî mw x, x > Το σύστημα αυτό αναφέρεται ως «Half Oscillator». Στα Ελληνικά, θα χρησιμοποιήσουμε τον όρο «μισός αρμονικός ταλαντωτής»,
Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο».
Το κυματοπακέτο (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Ένα ελεύθερο σωμάτιο δεν έχει κατ ανάγκη απολύτως καθορισμένη ορμή. Αν, για παράδειγμα,
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z
Αρμονικός ταλαντωτής Ασκήσεις
Αρμονικός ταλαντωτής Ασκήσεις 4. Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ˆ i e, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ο τελεστής της ορμής, και η κλίμακα μήκους του
Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Χρονοεξαρτώμενη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4
ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό
, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή
Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη
Είναι (1) Έστω (2) Τότε η (1) γράφεται (3) Από την (3) βλέπουμε ότι η y ( x; a ) περιγράφει μια συνοχική κατάσταση μάλιστα
Είναι i ö ö y ( ; ) ç ep ç - ˆ ep ç ( p ø ø ) ö ø () Έστω () Τότε η () γράφεται i ö ö y ( ; ) ç ep ç ep ç - ( - ˆ p ø ø ) ö ø (3) Από την (3) βλέπουμε ότι η y ( ; ) περιγράφει μια συνοχική κατάσταση μάλιστα
Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005
ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού
Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να σκιαγραφηθεί
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών 7/4/014 Κβαντική μηχανική Κβαντική μηχανική Η θεωρία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Κεντρικά Δυναμικά Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons.
Κβαντικές Καταστάσεις
Κβαντικές Καταστάσεις Δομή Διάλεξης Σύντομη ιστορική ανασκόπηση Ανασκόπηση Πιθανότητας Το Πλάτος Πιθανότητας Πείραμα διπλής οπής Κβαντικές καταστάσεις (ket) Ο δυίκός χώρος (bra) Σύνοψη Κβαντική Φυσική
Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία
Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
Σπιν 1 2. Γενικά. Ŝ και S ˆz γράφονται. ιδιοκαταστάσεις αποτελούν ορθοκανονική βάση στον χώρο των καταστάσεων του σπιν 1 2.
Σπιν Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική στροφορμή ˆ J με συνιστώσες Jˆ, Jˆ, J ˆ,
Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών
Λύση Εξίσωσης Laplace: Χωρισμός Μεταβλητών Δομή Διάλεξης Μέθοδος χωριζόμενων μεταβλητών σε καρτεσιανές συν/νες (οριακές συνθήκες σε επίπεδο). Μέθοδος χωριζόμενων μεταβλητών σε σφαιρικές συν/νες (οριακές
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 5 Μεταφορική και Ταλαντωτική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 5 Μεταφορική και Ταλαντωτική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins,
Δομή Διάλεξης. Ορισμός Ολικής Στροφορμής. Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 )
Πρόσθεση Στροφορμών Δομή Διάλεξης Ορισμός Ολικής Στροφορμής Σχέση βάσης ολικής στροφορμής (j,m j ) με βάση επιμέρους στροφορμών (m 1,m 2 ) Συντελεστές μετάβασης (Glebsch-Gordon) για σύνθεση από l=1, s=1/2
Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών
Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό είναι τα εξής (Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013 Fitzpatrick,
κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει
Πρόβλημα 22. Θεωρούμε το ακόλουθο πρόβλημα συνοριακών τιμών για τη εξίσωση του Laplace u + u = 0, 1 < < 1, 1 < < 1, u(, 1) = f(), u(, 1) = 0, u( 1, ) = 0, u(1, ) = 0. α) Σωστό ή λάθος; Αν f( ) = f() είναι
Εξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα
ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις