Στοιχεία Θεωρίας Αναµονής (queueing theory) ίκτυα Επικοινωνιών: Στοιχεία Θεωρίας Αναµονής -- N. Μήτρου
|
|
- Ἡρωδιάς Βικελίδης
- 10 χρόνια πριν
- Προβολές:
Transcript
1 Στοιχεία Θεωίας Αναµονής (queueig theory) ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
2 Θεωία Αναµονής Βασικό µαθηµατικό εγαείο για την ανάυση της επίδοσης και το σχεδιασµό δικτύων, αφού η ζήτηση (κοινόχηστων) δικτυακών υπηεσιών και πόων είναι διαδικασία στοχαστική και δηµιουγεί ουές αναµονής Ηθεµείωση και ανάπτυξη της θεωίας αναµονής οφείεται εν ποοίς στις ανάγκες ανάυσης και σχεδιασµού τηεπικοινωνιακών δικτύων ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
3 Αναµονητικά συστήµατα εξυπηετητής Αφίξεις πεατών Αναχωήσεις πεατών Χώος αναµονής Πααδείγµατα. Γκισέ ταχυδοµείου 2. Κόµβος µεταγωγής τηεφωνικών κήσεων 3. Κόµβος µεταγωγής πακέτων στο ιαδίκτυο ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
4 Ένα από αναµονητικό σύστηµα: γαµµή αποστοής πακέτων Αφίξεις πακέτων Αναχωήσεις πακέτων υθµός αφίξεων, υθµός εξυπηέτησης, µ (arrival rate, acets/sec) (service rate, acets/sec) arrival rocess : t service-tie distributio ea iterarrival distace : ea service tie µ [ π.χ. πακέτα των 2 bits σε γαµµή 24 bs... > µ.2 acets/sec ] Χησιµοποίηση γαµµής: µ (li utilizatio or traffic itesity) Για ευσταθές σύστηµα πέπει: <, ή πεπεασµένος χώος αναµονής & φαγή ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
5 Παάµετοι απού αναµονητικού συστήµατος Παάµετοι διαδικασίας αφίξεων πεατών Κατανοµή ενδοδιαστηµάτων αφίξεων Συσχέτιση» Παάµετοι χόνου εξυπηέτησης πεατών Τόπος εξυπηέτησης (service discilie) FIFO (First I First Out) LIFO (Last I First Out) Ποτεαιότητες... ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
6 Συµβοισµοί τ χόνος άφιξης οστού πεάτη (C : πακέτο, κήση κπ) t τ τ ενδοδιάστηµα µεταξύ αφίξεων πεατών C και C - x χόνος εξυπηέτησης πεάτη C x ~ ενδοδιάστηµα µεταξύ αφίξεων (τ. µεταβητή) t t x~ χόνος εξυπηέτησης (τ. µεταβητή) ~ A( t) Pr{ t t} αθοιστική συνάτηση κατανοµής πιθ. ενδοδιαστηµάτων αφ. B( x) Pr{ ~ x x} αθοιστική συνάτηση κατανοµής πιθ. χόνου εξυπηέτησης a ( t) da( t) / dt συνάτηση πυκνότητας πιθανότητας ενδοδιαστηµάτων αφ. b ( x) db( x) / dx συνάτηση πυκνότητας πιθανότητας χόνου εξυπηέτησης E { ~ t } t / E{ ~ x } x / µ τ τ τ +... N(t) αιθµός πεατών στο σύστηµα τη χονική στιγµή t w χόνος αναµονής (στην ουά) του C s χόνος στο σύστηµα (αναµονής + εξυπηέτησης) ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
7 Συµβοισµοί (II) Kedal s otatio: A / B / κατανοµήενδοδιαστηµάτων αιθµός εξυπηετητών κατανοµήχόνουεξυπη. όπου A,B ένα από: M exoetial (i.e. Marovia) E r r-stage Erlagia H r r-stage Hyerexoetial D Deteriistic G Geeral π.χ. M/M/: αφίξεις Poisso, εκθετικοί χόνοι εξυπ., εξυπηετητής ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
8 ιαδικασία αφίξεων Poisso Pr{oe arrival t} t + ( t) Pr{o arrivals t} t + ( t) Arrivals are eoryless t t t + t T ( T ) e Pr{ arrivals T}! 2 2 E{ } P T σ E{ E{ }} T a( t) E{ ~ t } t e ta( t) dt 2 2 σ ~ t E{ t E{ t }} ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου ~ (Poisso distributio) (exoetial iterarrival tie df ) ~ 2
9 ιαδικασία αφίξεων Poisso (II) ΗυπέθεσηοώνPoisso είναι επίσης Poisso µε υθµό ίσο µετοάθοισµατωνυθµών των επιµέους οών 2... i i ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
10 Γενικές σχέσεις (G/G/) x / µ χησιµοποίηση (utilizatio) < T x + N T W για ευσταθές σύστηµα µέσος χόνος πααµονής στο σύστηµα (average tie i the syste) µέσος αιθµός πεατών στο σύστηµα (average uber of custoers i the syste) (Little s forula) ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
11 M/M/ queue Αφίξεις Poisso, εκθετική εξυπηέτηση, µ state diagra µ µ µ µ µ µ ( t + t) ( t)[( t)( µ t) + tµ t ( t)[ t( µ t) + ( t)] ( t)[ µ t( t) + ( t)] + ( t)] (equilibriu)* balace equatio ( + µ ) + µ +, (*) κατάσταση ισοοπίας: ( t t) ( t)]/ t [ + t ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
12 ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου M/M/ queue (II) Λύση (γεωµετική κατανοµή) /, o µ /, ) ( < µ µ µ µ + / / / W T W N
13 Παάδειγµα M/M/ ταχύτητα γαµµής 24 bs µέσο µήκος πακέτων bits µ 2.4 acets/sec a) acet/sec / , N /( ).72, T N /.72 sec b) 2 acets/sec 2 / , N /( ) 5, T N / 2.5 sec c) 2. 3 acets/sec 2.3/ , N /( ) 22.98, T N / sec ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
14 M/M//N queue (Μ/Μ/ queue with a fiite buffer sace N laces), / µ o N Πιθανότητα φαγής (blocig robability): ιέευση (throughut): P ( ), / µ < N + ( ) N B N ( N N + << γ ( P B ) µ ( ) ) N γ P ) γ µ ) ( B ( γ µ ( ) N ( o ) N + ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
15 State-deedet queues Birth-Death rocesses o 2 - State diagra µ µ 2 µ 3 µ µ + Balace equatio ( + µ ) + µ + +, µ + + Queue size N / i / µ i, i i N ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
16 ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου The M/M/ queueig syste Αφίξεις Poisso, εκθετικοί εξυπη., µ. buffer size ifiite (Erlag-C forula) )!( ) (! ) (,!,! ) ( + with < µ όπου:
17 ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου The M/M// queueig syste. αφίξεις Poisso, εκθετικοί εξυπη., µ (o buffer) i i i,! / ) / (! / ) / ( µ µ (Erlag-B or Erlag-loss forula) i i B i P! / ) / (! / ) / ( µ µ πιθανότητα φαγής:
18 Πααδείγµατα Παάδειγµα : πιθανότητα φαγής κήσης Τηεφωνικό κέντο διαθέτει 8 γαµµές εξόδου πος ένα συγκεκιµένο ποοισµό. Να βεθεί η πιθανότητα φαγής κήσης για υθµό αφίξεων κήση/επτό πος το συγκεκιµένο ποοισµό καιµέση διάκεια κήσης 3 επτά. ( / µ ) /! PB, / µ i ( / µ ) / i! i 3, 8 P B.8 ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
19 Πααδείγµατα (συνέχεια) Παάδειγµα 2: διαστασιοδότηση Σε τηεφωνικό κέντο να βεθεί ο αιθµός των γαµµών εξόδου έτσι ώστε η πιθανότητα φαγής κήσης να είναι µικότεη του -3 για υθµό αφίξεωνκήσεων2 κήσεις/επτό και µέση διάκεια κήσης 3 επτά. ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
20 Πααδείγµατα (συνέχεια) fuctio erlag_loss_lot(lada,u,) % is ow a vector of uber of servers % i the M/M// syste []; []; for i:5 [ i]; [ erlag_loss(2,/3,i)]; ed seilogy(,); title(['erlag-loss-robability curve -- lada',u2str(lada), ', u',u2str(u)]); xlabel('uber of servers, '); ylabel('p-loss'); ed P-loss Erlag-loss-robability curve -- lada2, u uber of servers, erlag_loss_lot(2,/3,[:5]) ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
21 Το αναµονητικό σύστηµα M/G/ Pollacze-Khichie forulas: E{ } [ ( 2 µ 2 σ 2 )] µέσος αιθµός πεατών στο σύστηµα E { T} E{ } / µ [ ( 2 µ 2 σ 2 )] µέσος χόνος διέευσης : (µέσος) υθµός αφίξεων, µ: (µέσος) υθµός εξυπηέτησης /µ, σ : τυπική απόκιση χόνου εξυπηέτησης ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
22 Το αναµονητικό σύστηµα M/G/ (συν.) V ( s) E{ e * sv v ~ xc µ ήκος πακέτου W c ( x) Pr{ µ ήκος _ ουάς > x} : η CPDF του µήκους ουάς } Τότε γe q o q x o o Wc ( x) e su{ q : q ( V ( q))} C q x ίκτυα Επικοινωνιών: Στοιχεία Θεωίας Αναµονής -- N. Μήτου
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 1/3/2017 ΠΕΡΙΕΧΟΜΕΝΑ (1/3) http://www.netmode.ntua.gr/main/index.php?option=com_content&task=view& id=130&itemid=48
Μάθηµα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις
Μάθηα: ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ 7 ου εξαήνου ΣΕΜΦΕ ΘΕΩΡΙΑ ΑΝΑΜΟΝΗΣ - ΑΝΑΛΥΣΗ ΕΠΙ ΟΣΗΣ ΙΚΤΥΩΝ Ασκήσεις Αποστέλλονται πακέτα σταθεού ήκους ytes από τον κόβο # στον κόβο #4 έσω των κόβων # και #3 σε σειά, όπως
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοµέας Επικοινωνιών, Ηεκτρονικής & Συστηµάτων Πηροφορικής Εργαστήριο ιαχείρισης & Βετίστου Σχεδιασµού ικτύων - NETMODE Πουτεχνειούποη
Queueing Theory I. Summary. Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems. M/M/1 M/M/m M/M/1/K
Queueing Theory I Suary Little s Law Queueing Syste Notation Stationary Analysis of Eleentary Queueing Systes M/M/ M/M/ M/M// Little s Law a(t): the process that counts the nuber of arrivals up to t. d(t):
Κεφάλαιο 3: Μοντέλα Θεωρίας Αναμονής
Κεφάλαιο 3: Μοντέλα Θεωίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαοφαλάκης Αν. Καθηγητής Οισμός συστημάτων αναμονής Συστήματα αναμονής (Queueing Syses): Συστήματα στα οποία οι αφίξεις
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 2/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr Χρύσα Παπαγιάννη chrisap@noc.ntua.gr 24/2/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
H επίδραση των ουρών στην κίνηση ενός δικτύου
H επίδραση των ουρών στην κίνηση ενός δικτύου Ηεπίδραση των ριπών δεδοµένων Όταν οι αφίξεις γίνονται κανονικά ή γίνονται σε απόσταση η µία από την άλλη, τότε δεν υπάρχει καθυστέρηση Arrival s 1 2 3 4 1
Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις. μ 1.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηεκτρονικής & Συστημάτων Πηροφορικής Εργαστήριο Διαχείρισης και Βέτιστου Σχεδιασμού Δικτύων - NETMODE
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΩΡΙΑ ΑΝΑΜΟΝΗΣ ΜΕΡΟΣ Ι Ν. ΔΕΡΒΑΚΟΥ Σημειώσεις Πααδόσεων Αθήνα 23 ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΩΡΙΑ ΑΝΑΜΟΝΗΣ Ι. ΕΙΣΑΓΩΓΗ Βασική Δομή Ποβλημάτων Αναμονής Σύστημα Αναμονής Πηγή ποσέλευσης
Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου
200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuig Systems Επισκόπηση Γνώσεων Πιθανοτήτων Βασίλης Μάγκλαρης maglaris@etmode.tua.gr 7/3/2018 1 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ POISSON Η τυχαία εμφάνιση παλμών περιγράφεται σαν
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Γεννήσεων - Θανάτων Εξισώσεις Ισορροπίας - Ουρές Μ/Μ/1, M/M/1/N Προσομοίωση Ουράς Μ/Μ/1/Ν Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 23/3/2016 Άδεια Χρήσης
Tired Waiting in Queues? Then get in line now to learn more about Queuing!
Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Κλειστών Δικτύων Ουρών Markov: 1. Ανάλυση Window Flow Control σε Δίκτυα Υπολογιστών 2. Αξιολόγηση Συστημάτων Πολύ-προγραμματισμού (Multitasking) Γενίκευση Μοντέλων
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Θεωρήματος Jackson: (i) Δίκτυα Μεταγωγής Πακέτου (ii) Υπολογιστικά Μοντέλα Πολυεπεξεργασίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 3/5/2017 ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ
Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών. Ανάλυση Ουρών. Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών
Μοντέλα Αναμονής σε Δίκτυα Επικοινωνιών Ανάλυση Ουρών Λάζαρος Μεράκος Τμήμα Πληροφορικής &Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μενού 1. Εισαγωγή 2. Θεώρημα του Little 3. Σύστημα M/M/1 System 4. Συστήματα
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Γεννήσεων Θανάτων (I) 1. Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας 2. Ουρές Markov M/M/1, M/M/1/N Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 21/3/2018 ΔΙΑΔΙΚΑΣΙΑ
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Β. Μάγκλαρης, Σ. Παπαβασιλείου 8-5-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Ουρών Αναμονής Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 13/3/2019 ΠΑΡΑΜΕΤΡΟΙ (1/3) Ένταση φορτίου (traffic intensity) Σε περίπτωση 1 ουράς, 1 εξυπηρετητή:
Γραπτή Εξέταση στο Μάθημα "ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ" 6ο Εξάμηνο Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Θέματα και Λύσεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοέας Επικοινωνιών, Ηεκτρονικής & Συστηάτων Πηροφορικής Εραστήριο Διαχείρισης και Βέτιστου Σχεδιασού Δικτύων - NETMODE Ηρώων
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson (1) Παράδειγμα Επίδοσης Δικτύου Μεταγωγής Πακέτου (2) Παράδειγμα Ανάλυσης Υπολογιστικού Συστήματος Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών
Δίκτυα Επικοινωνιών ΙΙ Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Μοντέλα Συστημάτων Αναμονής σε Δίκτυα Επικοινωνιών Διδάσκων: Λάζαρος Μεράκος Δίκτυα Επικοινωνιών
Δίκτυα Επικοινωνιών ΙΙ. Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών
Δίκτυα Επικοινωνιών ΙΙ Ενότητα 2: Μοντέλα Συστηµάτων Αναµονής σε Δίκτυα Επικοινωνιών Διδάσκων: Λάζαρος Μεράκος Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήµιο Αθηνών Δίκτυα Επικοινωνιών
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Μεταγωγής Πακέτου - Μοντέλο M/M/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018 ΟΥΡΑ Μ/Μ/2 (επανάληψη) Αφίξεις Poisson με ομοιόμορφο μέσο ρυθμό λ k = λ
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov:
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων, Εξισώσεις Ισορροπίας 2. Προσομοιώσεις, Άσκηση Προσομοίωσης Ουράς M/M/1/10 Βασίλης
I/O: Λίγη θεωρία ουρών, RAID
I/O: Λίγη θεωρία ουρών, RAID Ορολογία Δίσκων Καθυστέρηση δίσκου = Queuing Time + Seek Time + Rotation Time + Xfer Time Τάξη μεγέθους (χρόνοι) για μεταφορές 4K byte: Seek: 12 ms Rotate: 4.2 ms @ 7200 rpm
Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 6: Θεωρία Ουρών Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
P (M = n T = t)µe µt dt. λ+µ
Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή βασικών μοντέλων τηλεπικοινωνιακής
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων 2. Εξισώσεις Ισορροπίας 3. Προσομοιώσεις Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov - Αλγόριθμος Buzen Μοντέλο Παράλληλης Επεξεργασίας Έλεγχος Ροής Άκρου σε Άκρο (e2e) στο Internet Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών
Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών 4. Σχεδιασµός υναµικότητας Το πρόβληµα της δυναµικότητας ιαδικασία Σχεδιασµού Συστήµατα αναµονής Εισηγητής: Θοδωρής Βουτσινάς ρ Μηχ/γος
p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).
ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βελτιστοποίηση Μέσου Μήκους
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Γεννήσεων Θανάτων: 1. Σφαιρικές & Λεπτομερείς Εξισώσεις Ισορροπίας 2. Ουρές Markov M/M/1, M/M/1/N Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 27/3/2019 ΔΙΑΔΙΚΑΣΙΑ
ΤΕΙ Κρήτης, Παράρτηµα Χανίων
ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ ( ηµιουργία συστήµατος µε ροint-tο-ροint σύνδεση) ρ Θεοδώρου Παύλος Χανιά 2003 Περιεχόµενα 1 ΕΙΣΑΓΩΓΗ...2 2 ΤΟ ΚΑΝΑΛΙ PΟINT-TΟ-PΟINT...2
1. ΕΙΣΑΓΩΓΗ. 1.1 Ερευνητικό ενδιαφέρον. 1.2 Επισηµάνσεις από τη βιβλιογραφία. 1.3 Προσέγγιση λύσης προβληµάτων:
. Εευνητικό ενδιαφέον. ΕΙΣΑΓΩΓΗ. Επισηµάνσεις από τη βιβλιογαφία α) Ελλιπείς γνώσεις των πολύπλοκων φυσικών διεγασιών β) Ελάχιστα εφαµόζονται οι νόµοι της Μηχανικής των Ρευστών γ)ελάχιστα βιβλία διεθνώς
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Κλειστά Δίκτυα Ουρών Markov Θεώρημα Gordon Newell Αλγόριθμος Buzen Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 10/5/2017 ΚΛΕΙΣΤΟ ΔΙΚΤΥΟ ΔΥΟ ΕΚΘΕΤΙΚΩΝ ΟΥΡΩΝ Μ = 2 Ουρές,
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ
Θέμα 1 (20%) (α) Πότε είναι εργοδικό το παραπάνω σύστημα; Για πεπερασμένο c, το σύστημα είναι πάντα εργοδικό.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης & Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
Εκ μέσης καρδίας αφιερώνω το παρόν πόνημα στους γονείς μου Χρήστο και Γεωργία στην αδελφή μου Κατερίνα και στο καθηγητή μου για την αμέριστη
Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΔΙΚΤΥΑ ΟΥΡΩΝ ΜΕ ΠΟΛΛΑΠΛΟΥΣ ΕΞΥΠΗΡΕΤΗΤΕΣ ΓΙΑ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΚΤΥΩΝ Η/Υ» Νέα έργα σσ Δίσκος εκτυπωτής CPU δισκέτα Ολοκληρωμένη εργασία Της σπουδάστριας
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ A Α. α Α. β Α3. γ Α4. δ Α5. α. Λάθος ΘΕΜΑ Β ΦΥΣΙΚΗ Ηµεοµηνία: Μ. Τετάτη Απιλίου 07 β. Σωστό γ. Λάθος δ. Λάθος
Θεωρία Τηλεπικοινωνιακής Κίνησης
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 5 6 (Μαρκοβιανό σύστημα αναμονής M/M/s Επέκταση των Μαρκοβιανών μοντέλων) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ανάλυση Ουράς Αναμονής M/G/1 Αρχές Ανάλυσης Ουράς M/G/1 Ενσωματωμένη Αλυσίδα Markov (Embedded Markov Chain) Τύποι Pollaczeck - Khinchin (P-K) για Ουρές M/G/1 Μέσες Τιμές
Ηρώων Πολυτεχνείου 9, Ζωγράφου, Αθήνα, Τηλ: , Fax: URL
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
Στοιχεία Θεωρίας Πιθανοτήτων. ίκτυα Επικοινωνιών: Στοιχεία θεωρίας πιθανοτήτων -- N. Μήτρου
Στοιχεία Θεωρίας Πιθανοτήτων ίκτυα Επικοινωνιών: Στοιχεία θεωρίας πιθανοτήτων --. Μήτρου Θεωρία Πιθανοτήτων Αντικείµενο: η ποσοτικοποίηση της αβεβαιότητας Χρησιµότητα: η δυνατότητα πρόβεψης Ορoογία: Πείραµα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
Μοντέλα Αναµονής. Μία Ουρά Αναµονής FIFO
Μοντέλα Αναµονής Ορισµένα απλοποιηµένα µοντέλα δικτύων µπορούν να αναλυθούν µε µαθηµατικές µεθόδους. Τα συµπεράσµατα που εξάγονται από τα αναλυτικά αποτελέσµατα µπορεί είναι πολύτιµα, ακόµη και αν οι µέθοδοι
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής
Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας
Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής
Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβητής (Α) Mέση τιµή Ορισµός Η µέση τιµή ή µαθηµατική επίδα µιας τ.µ. Χ µε πυκνότητα πιθανότητας f (x) είναι ο αριθµός: µ E() + xf (x) xf (x)dx διακριτή συνεχής
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων Κατανομή Poisson & Εκθετική Κατανομή Διαδικασία Markov Γεννήσεων Θανάτων (Birth Death Markov Processes) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr
Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov
Γ. Κορίλη, Αλυσίδες Markov 3- http://www.seas.upe.edu/~tcom5/lectures/lecture3.pdf Αλυσίδες Markov Αλυσίδες Markov ιακριτού Χρόνου Υπολογισµός Στάσιµης Κατανοµής Εξισώσεις Ολικού Ισοζυγίου Εξισώσεις Λεπτοµερούς
Τεχνικές βασισμένες στα Δίκτυα Αναμονής
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Άδεια Χρήσης Το παρόν εκπαιδευτικό
t 0 με Ε[t] = 1/λ Εισαγωγικά Στοιχεία
http://uer.uom.gr/~acg Στοιχεία από τη Θεωία Γαών Αναονής (Queueig Theory) Πηγή Πεατών ιαδικασία Αφίξεων Ουά Αναονής Πειθαχία Μηχανισός Εξυπηέτησης Έξοδος Ιστοικά Στοιχεία Μαθηατικά οντέα για τη εέτη των
ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Λύσεις 1 ης Σειράς Ασκήσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΑ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Λύσεις 1 ης Σειράς Ασκήσεων α) Ο αριθµός Ν των πακέτων που θα προκύψουν από το µήνυµα είναι
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης, Σ. Παπαβασιλείου 5-6-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 10: Ουρά Μ/Μ/s Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΤΥΠΟΛΟΓΙΟ. Επιµέλεια. ΣΕΡΑΦΕΙΜ ΚΑΡΑΜΠΟΓΙΑΣ.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΤΥΠΟΛΟΓΙΟ Επιµέλεια. ΣΕΡΑΦΕΙΜ ΚΑΡΑΜΠΟΓΙΑΣ. ΑΘΗΝΑ 9 Τιγωνοµετικοί αιθµοί Γωνία π 6 π 4 π 3 π si ϕ 3 3 os ϕ ϕ 3 3 3. Τιγωνοµετικές ταυτότητες. os ± y os os y si si y. si ± y si os y
ΠΕΙΡΑΜΑ 10. Aεροδυναµική Στερεών Σωµάτων
ΠΕΙΡΑΜΑ 10 Aεοδυναµική Στεεών Σωµάτων Σκοπός του πειάµατος Σκοπός του πειάµατος αυτού είναι η µελέτη της αντίστασης που αναπτύσσεται κατά τη σχετική κίνηση ενός αντικειµένου µέσα σε ένα αέιο. Οι εξισώσεις
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 19/10/2017 Ανακεφαλαίωση:
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 4/11/2016 Ανακεφαλαίωση:
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2 Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα
0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων
. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές //1 εν Σειρά - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών arkov - Θεώρημα Jackson Εφαρμογή σε Δίκτυα Μεταγωγής Πακέτου Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 25/4/2018
που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.
(μονάδα παραγωγής ενέργειας) Έχουμε μια απομακρυσμένη μονάδα παραγωγής ενέργειας. Η ζήτηση σε ενέργεια καλύπτεται από διάφορες πηγές. Η ισχύς εξόδου της ανεμογεννήτριας εξαρτάται από την ταχύτητα ανέμου
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2017-2018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
Δίκτυα Κινητών και Προσωπικών Επικοινωνιών
Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Διαστασιοποίηση Ασύρματου Δικτύου Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Τηλεπικοινωνιακή κίνηση στα κυψελωτά συστήματα Βασικός στόχος
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Η Ουρά Μ/Μ/1/N Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 22/3/2017 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις Άσκηση σε Στοχαστική Ανέλιξη Poisso Ασκήσεις 5.9, 5.1, 5.19 Άσκηση σε Στοχαστική
DEPARTMENT OF STATISTICS
SCHOOL OF INFORMATION SCIENCES & TECHNOLOGY DEPARTMENT OF STATISTICS POSTGRADUATE PROGRAM Elements of Markovian Processes and Queueing Processes with Numerical Applications By Erold Ajdini A THESIS Submitted
Πρωτόκολλα επανεκποµπής
Πρωτόκολλα επανεκποµπής Πρωτόκολλα επανεκποµπής Πρωτόκολλα: Εναλλασσοµένου bit (Alternating Bit Protocol) Επιλεκτικής επανάληψης (Selective Reeat Protocol) Οπισθοχώρησης κατά Ν (Go Back N) Μηχανισµοί:
Απλα Συστήματα Αναμονής Υπενθύμιση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Απλα Συστήματα Αναμονής Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό
Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 7: Ουρά Μ/Μ/1 Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής
How do loss and delay occur?
How do loss and delay occur? packets queue in router buffers packet arrival rate to link (temporarily) exceeds output link capacity packets queue, wait for turn packet being transmitted (delay) A B packets
ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΩΝ ΑΝΕΛΙΞΕΩΝ ΜΕ ΕΜΦΑΣΗ ΣΤΗ ΘΕΩΡΙΑ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ ΛΙΝΟΥ ΔΕΣΠΟΙΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΩΝ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΩΝ ΑΝΕΛΙΞΕΩΝ ΜΕ ΕΜΦΑΣΗ ΣΤΗ ΘΕΩΡΙΑ ΟΥΡΩΝ ΑΝΑΜΟΝΗΣ ΛΙΝΟΥ ΔΕΣΠΟΙΝΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΑΜΟΣ
Καθ. Γιάννης Γαροφαλάκης. ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής
Α Α Π Σ Δ 10: Δ Γ -Θ Καθ Γιάννης Γαροφαάκης ΜΔΕ Επιστήης και Τεχνοογίας Υποογιστών Τήα Μηχανικών Η/Υ & Πηροφορικής Διαδικασίες Γεννήσεων-Θανάτων Defini on (Birth-Death-Process (BDP)) Μία στοχαστική διαδικασία
x D 350 C D Co x Cm m m
Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΘΗΓΗΤΗΣ : Ν ΚΩΤΣΟΒΙΝΟΣ ΛΕΚΤΟΡΑΣ : Π. ΑΓΓΕΛΙ ΗΣ ΛΥΣΕΙΣ B ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΚΟΡ ΟΠΟΥΛΟΣ ΗΜΗΤΡΙΟΣ ΑΜ 585 ΑΣΚΗΣΗ Θαλασσινό νεό από ένα εγοστάσιο, βεβαηµένο
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014
Διαδικασία Αφίξεων. Ουρά Αναμονής. Μηχανισμός Εξυπηρέτησης. Πηγή Πελατών. Έξοδος. Πειθαρχία
Θεωρία Γραμμών Αναμονής (ουρές αναμονής) Πηγή Πελατών Διαδικασία Αφίξεων Ουρά Αναμονής Πειθαρχία Μηχανισμός Εξυπηρέτησης Έξοδος Εισαγωγικά Στοιχεία Πληθυσμός (πηγή) πελατών Διαδικασία Αφίξεων Ουρά αναμονής
Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων
Συμβολισμός Kedel Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C Κατανομή αφίξεων Κατανομή εξυπηρετήσεων Αριθμός των εξυπηρετητών Όπου Α,Β μπορεί να είναι: M κατανομή Posso G κατανομή
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά ΕΠΛ231 Δομές Δεδομένων
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Ροή Δ - 6 ο εξάμηνο, κωδικός
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντεοποίηση, Ανάυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2018-2019 Διδάσκων: Βασίης ΚΟΥΤΡΑΣ Επικ. Καθηγητής
Εργαστήριο ίκτυα Η/Υ ΙΙΙ
Εργαστήριο ίκτυα Η/Υ ΙΙΙ ρ. Κ. Σ. Χειλάς Στόχος του εργαστηρίου Στόχος του εργαστηρίου είναι : (α) η εµβάθυνση σε θέµατα λειτουργίας δικτύων καθώς και (β) η εξοικείωση των σπουδαστών µε ένα από τα συχνότερα
HY335Α Δίκτυα Υπολογιστών Xειμερινό Εξάμηνο Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών. Routing Algorithms. Network Layer.
HY335Α Δίκτυα Υπολογιστών Xειμερινό Εξάμηνο 2016-2017 Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Routing Algorithms Network Layer Nena Basina Υποδίκτυα (subnets) 200.23.18.0/23 11001000 00010111
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Ουρές //1 εν σειρά, Θεώρημα Burke Ανοικτά Δίκτυα Ουρών arkov, Θεώρημα Jackson Εφαρμογή σε Δίκτυα Μεταγωγής Πακέτου Κλειστά Δίκτυα Ουρών arkov, Θεώρημα Gordon- Newell
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10 Θόρυβος (Noise) καθ. Βασίλης Μάγκλαρης maglaris@etmode.tua.gr www.etmode.tua.gr
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Δίκτυα Ουρών - Παραδείγματα Β. Μάγκλαρης, Σ. Παπαβασιλείου 17-7-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό