ιωνυµική Κατανοµή(Binomial)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ιωνυµική Κατανοµή(Binomial)"

Transcript

1 ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0<p<1 όταν n x n x f ( x) = p (1 p) x= 0,1,2,..., n x Η τ.µ. Χ παριστάνει τον αριθµό των επιτυχιών σε n ανεξάρτητες δοκιµές Bernoulli, όταν η πιθανότητα επιτυχίας σε κάθε δοκιµή είναι p. Μέση τιµή: Ροπογεννήτρια: E( ) ιασπορά: = np Var( ) () ( e t n M t = p + q) όπου q = 1 p = npq Πολυάριθµες εφαρµογές. π.χ: Ποιοτικός Έλεγχος Χρήσιµες Κατανοµές 1

2 Υπεργεωµετρική Κατανοµή (Hypergeometric) ~HG (N, n, p) N>n, N,n N +, 0<p<1 και Np N +, όταν : αριθµός των επιτυχιών σε δειγµατοληψία µεγέθους n, χωρίς επανατοποθέτηση από πεπερασµένο πληθυσµό N ατόµων όταν αρχικά η πιθανότητα επιτυχίας είναι p. (εξαρτηµένα Bernoulli πειράµατα) Μέση τιµή: Np N Np x n x f ( x) = x= 0,1,2,...,min( n, Np) N n E( ) = np (ίδια µε διωνυµική) N n ιασπορά: Var( ) = npq ( N n διορθωτικός παράγοντας) N 1 N 1 Όταν το N είναι πολύ µεγάλο και το n αρκετά µικρό η υπεργεωµετρική προσεγγίζεται από την διωνυµική. Χρήσιµες Κατανοµές 2

3 Γεωµετρική Κατανοµή (Geometric) ~G (p) 0<p<1 όταν x 1 pq x = 1,2,... f( x) = όπου q= 1 p 0 αλλού : αριθµός των επαναλήψεων (ανεξάρτητων δοκιµών Bernoulli) που απαιτούνται µέχρι την εµφάνιση της πρώτης επιτυχίας, όταν η πιθανότητα επιτυχίας είναι p. Μέση τιµή: E( ) Ροπογεννήτρια: 1 p ιασπορά: Var( ) = = 2 t p e M () t =, t < lnq t 1 q e q p Η µέση τιµή ονοµάζεται µέσος χρόνος επιστροφής ή περίοδος επιστροφής Χρήσιµες Κατανοµές 3

4 Αρνητική ιωνυµική (Negative Binomial) ~NB(r,p) r N και 0<p<1 όταν x 1 r x r f( x) = p (1 p) x= r, r+ 1,... r 1 Χ : αριθµός των επαναλήψεων (ανεξάρτητων δοκιµών Bernoulli) που απαιτούνται µέχρι την εµφάνιση της r επιτυχίας, όταν η πιθανότητα επιτυχίας είναι p. Μέση τιµή: E( ) r p ιασπορά: Var( ) = rq p = 2 Ροπογεννήτρια: r tr p e M () t = t < lnq t r (1 q e ) H Χ µπορεί να γραφεί σαν άθροισµα r ανεξάρτητων και ισόνοµων τ.µ. µε γεωµετρική κατανοµή. Χρήσιµες Κατανοµές 4

5 Κατανοµή Poisson ~P(λ), λ>0 όταν e λ x λ f( x) = P( = x) = x= 0,1,2,3,... όπου λ > 0 x! Η τ.µ. παριστάνει τον αριθµό εµφάνισης τυχαίων περιστατικών σε καθορισµένο χρονικό διάστηµα. Μέση τιµή: Ροπογεννήτρια: E( ) ιασπορά: = λ Var( ) ( t ) M () t = exp λ e 1 t = λ Πολυάριθµες εφαρµογές. π.χ: Θεωρία τηλεφωνικής κίνησης (Teletraffic theory) Χρήσιµες Κατανοµές 5

6 Κατανοµή Poisson (συνέχεια) Χρήσιµες Κατανοµές 6

7 Κατανοµή Poisson (ιδιότητες) (1) Έστω τ.µ. ~B(n,p). Τότε lim n p 0 np = λ λ x n x n x e p (1 p λ ) x 0,1,2,... x = = x! ηλ. µια διωνυµική κατανοµή όταν το n είναι αρκετά µεγάλο και το p είναι αρκετά µικρό, προσεγγίζεται από την κατανοµή Poisson. (πρακτικά προσεγγίζουµε όταν n > 30 και np < 5) Χρήσιµες Κατανοµές 7

8 ιαδικασία Poisson Έστω η τ.µ. Ν(t) που δίνει τον αριθµό των τυχαίων συµβάντων στο χρονικό διάστηµα (0, t]. Το σύνολο των τ.µ. {Ν(t), t >0} ονοµάζεται στοχαστική διαδικασία και επειδή η Ν(t) παίρνει ακέραιες τιµές στοχαστική διαδικασία ακεραίων τιµών. Η διαδικασία {Ν(t), t >0} είναι διαδικασία Poisson µε µέσο ρυθµό ν εάν πληρούνται οι συνθήκες: (i) Ν(0) = 0 (ii) Ο αριθµός των συµβάντων σε ξένα µεταξύ τους χρονικά διαστήµατα είναι ανεξάρτητες τ.µ. (ii) Για οποιοδήποτε χρονικό διάστηµα (s, s+t) µε s 0 και t > 0, οαριθµός των συµβάντων έχει κατανοµή Poisson e ( ) ( ( ) ( ) ) ν t x νt P N s+ t N s = x = x= 0,1,2,3,... x! Χρήσιµες Κατανοµές 8

9 Οµοιόµορφη Κατανοµή (Uniform) ~U(α,β) α<β Α.σ.κ. της Χ: Μέση τιµή: όταν Ροπογεννήτρια: 0 x < α x a F ( x) = α < x< β β α 1 x > β E( ) = ( b+ a) 2 M () t = 1 f ( x) = α x β β α < < d 1 d c P( c< < d) = b a dx= όταν a< c< d < b c b a ιασπορά: tb ta e e tb ( a) Var( ) = ( b a) 12 Σηµαντικότερη χρήση: γεννήτριες τυχαίων αριθµών Χρήσιµες Κατανοµές 9 2

10 Εκθετική Κατανοµή (Exponential) Χ ~ E(λ) όταν: Μέση τιµή: Ροπογενήτρια: x λe λ x> 0 f ( x) = 0 αλλού E( ) 1 λ 1 t M () t = 1 t < λ λ ιασπορά: Αθροιστική Συνάρτηση κατανοµής της Χ: όπου λ θετική σταθερά Var( ) = = 2 λx 1 e x> 0 ( x) = 0 αλλού Χρησιµοποιείται για να εκφράσει: το χρόνο µεταξύ αφίξεων διαφορετικών πελατών σε κατάστηµα το χρόνο συνοµιλίας σε µια τηλεφωνική επικοινωνία το χρόνος ζωής ηλεκτρονικών κοµµατιών σε µία συσκευή F 1 λ Χρήσιµες Κατανοµές 10

11 Εκθετική Κατανοµή (Ιδιότητες) (1) Ιδιότητα αµνησίας ή απώλεια µνήµης: P ( > t+ s > t) = P ( > s) ηλαδή, η εκθετικά κατανεµηµένη τυχαία µεταβλητή δεν γερνάει Απόδειξη: Ισχύει ότι λ ( t+ s) P ( > t+ s, > t) P ( > t+ s) e P ( > t+ s > t) = = = = e λt P ( > t) P ( > t) e λs Όµως λ P ( > s) = e s και αποδεικνύεται το ζητούµενο. Σηµ. Η εκθετική είναι η µόνη συνεχής κατανοµή µε την ιδιότητα της αµνησίας. Χρήσιµες Κατανοµές 11

12 Εκθετική Κατανοµή (Ιδιότητες) (2) Οι χρόνοι αναµονής µεταξύ διαδοχικών συµβάντων σε µια διαδικασία Poisson είναι εκθετικά κατανεµηµένοι. Έστω: {Ν(t), t 0} διαδικασία Poisson µε µέσο ρυθµό ν, Τ 1 χρόνος αναµονής µέχρι το πρώτο συµβάν και Τ n χρόνος αναµονής από το n-1 µέχρι το n-οστό συµβάν όταν (n = 2,3, ). Τότε οι τυχαίες µεταβλητές Τ 1, Τ 2,..., είναι ανεξάρτητες και ισόνοµες µε κοινή (εκθετική) κατανοµή E(ν). Χρήσιµες Κατανοµές 12

13 Κατανοµή Γάµµα (Gamma) G(a,β) a>0, β>0 όταν: f 1 x a 1 β x e x> 0 α ( x) = β Γ( a) 1 όπου 0 αλλού ( ) y a Γ a = e y dy a> 0 0 a: παράµετρος µορφής, β : παράµετρος κλίµακας Όταν a =1, τότε Γ(1) =1 και η κατανοµή γίνεται εκθετική µε λ = 1/β. Όταν a >1, τότε κατανοµή µονοκόρυφη µε κορυφή στο x = β(α-1). Όταν a ακέραιος, τότε Γ(α) = (α-1)! και η κατανοµή είναι γνωστή ως κατανοµή Erlang. Μέση τιµή: Ροπογεννήτρια: Ε ( ) = aβ M () t = 1 β t ( ) ιασπορά: a Var( ) = aβ 2 Χρήσιµες Κατανοµές 13

14 Κατανοµή Γάµµα (Ιδιότητες) Έστω {N (t), t 0} διαδικασία Poisson ρυθµού v W n : χρόνος αναµονής µέχρι την εµφάνιση του n-οστού συµβάντος. Τότε η W n έχει κατανοµή γάµµα µε α = n και β =1/v (κατανοµή Erlang). Απόδειξη: θ.δ.ο. f Wn n v n 1 tv t e t > 0 () t = ( n 1)! 0 αλλού Το θεώρηµα αποδεικνύει επίσης ότι το άθροισµα n τ.µ. µε εκθετική κατανοµή E(ν) έχει κατανοµή γάµµα G(n, 1/v). Χρήσιµες Κατανοµές 14

15 Κανονική κατανοµή (Gauss) N(µ,σ 2 ) όταν: 1 ( ) = 1 ( ) < < 2πσ 2 x µ 2 2σ f x e x Μέση τιµή: 2 Ε ( ) = µ ιασπορά: Var( ) = σ Ροπογεννήτρια: σ t M () t = exp µ t Η f (x) είναι συµµετρική γύρω από το µ. Ολες οι κεντρικές ροπές περιττής τάξεως είναι µηδέν. εν υπάρχει η α.σ.κ. F (x) σε κλειστή µορφή. Υπάρχουν πίνακες µε τιµές για την α.σ.κ. της N(0,1) τυπική κανονική κατανοµή Χρήσιµες Κατανοµές 15

16 Κανονική κατανοµή (συνέχεια) Χρήσιµες Κατανοµές 16

17 Κανονική κατανοµή (τυποποίηση) Έστω N(µ,σ 2 ). Η τ.µ. Z = έχει κανονική κατανοµή µε µέση τιµή 0 και τυπική απόκλιση 1. ιότι: 1. Με χρήση ροπογεννητριών αποδεικνύεται ότι η κατανοµή της είναι κανονική. µ Ε = Ε( µ ) = [ Ε( ) µ ] = 0 σ σ σ 3. µ σ 1 1 σ Var( ) = Var( µ ) = Var( ) = = σ σ σ Χρήσιµες Κατανοµές 17 2

18 Κανονική κατανοµή (ιδιότητες) (1) Έστω 1, 2,, n N(µ i,σ i2 ) µε i = 1,2,,n. Τότε οποιοσδήποτε γραµµικός συνδυασµός τους n έχει κανονική κατανοµή µέσης τιµής E( ) = cµ n i i 2 2 i= 1 διασποράς Var = c σ. ( ) i i i= 1 και n = c i i= 1 i (2) (Κεντρικό Οριακό Θεώρηµα) Έστω 1, 2,, n ανεξάρτητες και ισόνοµες τ.µ. µε κοινή µέση τιµή µ και κοινή διασπορά σ 2. Τότε για µεγάλο n η τ.µ. Χ= n έχει προσεγγιστικά κανονική κατανοµή µέσης τιµής nµ και διασποράς nσ 2. Χρήσιµες Κατανοµές 18

19 Λογαριθµοκανονική Κατανοµή (LogNormal) LN(ζ, τ) όταν η τ.µ. Υ=ln N(ζ, τ), όπου - <ζ< και τ >0. Προφανώς: = exp(y) και έχει σ.π.π. Ισχύει ότι: exp (ln x ζ ) x> 0 2 f ( x) = 2 2 πτ x τ 0 αλλού ζ + 1τ 2 2 2ζ τ τ Και για τον υπολογισµό της πιθανότητας: Y Ε ( ) = E( e ) = e Var( ) = e e P( a< < b) = P(lna< ln < ln b) = ln a ζ ln b ζ ln b ζ ln a ζ = P < Z < =Φ Φ τ τ τ τ Χρήσιµες Κατανοµές 19

20 Κατανοµή Weibull WEI(a, β) a>0, β>0 όταν: α.σ.κ. F a x ( β ) e x> ( x) = αλλού f ( x) a x a 1 e a x ( β ) x > 0 = β 0 αλλού Ισχύει ότι: Ε ( ) = βγ (1 + ) Var( ) = β (1 ) (1 1) α Γ + Γ + α α Όταν a =1, τότε η κατανοµή είναι εκθετική µε λ = 1/β. [WEI(1, β)= E(1/β)] Όταν WEI(a, β), τότε Υ=(Χ/β) α E(1) Χρήσιµες Κατανοµές 20

21 Αξιοπιστία Συστηµάτων Για την µελέτη της αξιοπιστίας συστηµάτων έστω Χ : χρόνος λειτουργίας (διάρκεια ζωής) του συστήµατος Για την τ.µ. Χ µας ενδιαφέρουν: Η σ.π.π. f (x) και η α.σ.κ. F (x) Συνάρτηση αξιοπιστίας: R() t = P( > t) = 1 F() t Ρυθµός αποτυχίας: ht () = lim t 0 P( t < < t+ t > t) t Χρήσιµες Κατανοµές 21

22 Αξιοπιστία Συστηµάτων (συνέχεια) Οι συναρτήσεις f (.), F (.), R(.) και h(.) χαρακτηρίζουν ισοδύναµα την κατανοµή της Χ και συνδέονται µεταξύ τους. P( t< < t+ t, > t) P ( < t+ t) P ( < t) ht () = lim = lim = t 0 P ( > t) t t 0 [1 P ( < t)] t ή Ft ( + t) Ft ( ) 1 F ( t) = lim = t 0 t [1 F()] t 1 F() t ht () = f() t Rt () t = = = Rt () = exp hsds () 0 Rt () Rt () dt [ 1 Rt ( )] R () t d ή ht () [ ln Rt ()] δηλ. Χρήσιµες Κατανοµές 22

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής. Μέση Τιµή Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: E( ) µ xf ( x) E( ) µ xf ( x) dx Παραδείγµατα: = = x = = αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Τµ. Επιστήµης των Υλικών ειγµατοληψία Με ιάταξη ειγµατοληψία Χωρίς ιάταξη Χωρίς Επανατοποθέτηση (n)k Με Επανατοποθέτηση n k Χωρίς Επανατοποθέτηση ( n k) Με Επανατοποθέτηση ( n+k 1 ) k ειγµατοληψία Με ιάταξη

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b Πιθανότητες και Αρχές Στατιστικής (8η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 41 Περιεχόμενα

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ Τµ. Επιστήµης των Υλικών Συνάρτηση Κατανοµής Ορισµός F(x) = P(X x) = f(t) x t x f(t)dt, X διακριτή τ.µ., X συνεχής τ.µ. Ιδιότητες 0 F(x). 2 F είναι αύξουσα συνάρτηση. 3 F είναι συνεχής εκ δεξιών. 4 lim

Διαβάστε περισσότερα

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές) 07/11/2016 Στατιστική Ι 6 η Διάλεξη (Βασικές διακριτές κατανομές) 1 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές Στατιστική Επιχειρήσεων Ι Βασικές διακριτές κατανομές 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα Το ένα ονομάζεται

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις.

Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις. Συνεχείς Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Συνεχείς Κατανομές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglos.gr / 0 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας

Διαβάστε περισσότερα

II. Τυχαίες Μεταβλητές

II. Τυχαίες Μεταβλητές II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 013 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών 3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 25 Νοεµβρίου 2009 Ορισµός Εστω X µια διακριτή τυχαία µεταβλητή µε συνάρτηση πιθανότητας f(x) = e λ λx, x = 0, 1,..., (1) x! όπου 0 < λ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ Τέλεια δέσµη: όλες οι γραµµές της είναι προσπελάσιµες από οποιαδήποτε είσοδο. Ατελής δέσµη: όλες οι γραµµές της δεν είναι προσπελάσιµες από οποιαδήποτε είσοδο

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ. ( είναι μια υνάρτηη που ε κάθε απλό ενδεχόμενο (ω ενός δειγματικού χώρου (Ω αντιτοιχεί έναν αριθμό. Ω ω (ω R ιακριτή τ.μ. : παίρνει πεπεραμένο

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 017-018 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegean.gr Τηλ: 71035468 ΒΙΒΛΙΟΓΡΑΦΙΑ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ

ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ 1 1. Εστω Y, W, Z ανεξάρτητες παρατηρήσεις από κατανοµές Poisson P(θ), P(3θ), P(4θ), αντίστοιχα, (α) (10 µονάδες) Να δειχθεί ότι η οικογένεια κατανοµών του (Y,W,Z) είναι µία ΜΕΟΚ και να (ϐ) (10 µονάδες)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

Συνεχείς Τυχαίες Μεταβλητές

Συνεχείς Τυχαίες Μεταβλητές Συνεχείς Τυχαίες Μεταβλητές Η σ.κ.π. F() είναι παντού συνεχής F PX t dt H σ.π.π. df d Ισχύει ότι d F Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 () Πιθανότητες & Στατιστική

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων Κατανομή Poisson & Εκθετική Κατανομή Διαδικασία Markov Γεννήσεων Θανάτων (Birth Death Markov Processes) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuig Systems Επισκόπηση Γνώσεων Πιθανοτήτων Βασίλης Μάγκλαρης maglaris@etmode.tua.gr 7/3/2018 1 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ POISSON Η τυχαία εμφάνιση παλμών περιγράφεται σαν

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εκθετική Κατανομή, Στοχαστικές Ανελίξεις Διαδικασίες Απαρίθμησης, Κατανομή Poisson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 9/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Τυχαία Διανύσματα και Ανεξαρτησία

Τυχαία Διανύσματα και Ανεξαρτησία Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος Ιστορική εξέλιξη της πιθανοκρατικής αντίληψης... 13

Περιεχόµενα. Πρόλογος Ιστορική εξέλιξη της πιθανοκρατικής αντίληψης... 13 Περιεχόµενα Πρόλογος... 11 Ιστορική εξέλιξη της πιθανοκρατικής αντίληψης... 13 1.1 Εισαγωγή...13 1.2 ειγµατοχώρος και γεγονότα...18 1.3 Τεχνικές απαρίθµησης...20 1.4 Μεταθέσεις στοιχείων διαφορετικών ειδών

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2015-16 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1. Βρίσκεστε

Διαβάστε περισσότερα

p B p I = = = 5

p B p I = = = 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 17/3/2011

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής

Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβητής (Α) Mέση τιµή Ορισµός Η µέση τιµή ή µαθηµατική επίδα µιας τ.µ. Χ µε πυκνότητα πιθανότητας f (x) είναι ο αριθµός: µ E() + xf (x) xf (x)dx διακριτή συνεχής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Χαράλαµπος Α. Χαραλαµπίδης 3 Νοεµβρίου 29 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Ας ϑεωρήσουµε µια συνεχή τυχαία µεταβλητή X ορισµένη στον Ω µε πεδίο τιµών το διάστηµα [α, ϐ], όπου α < ϐ πραγµατικοί αριθµοί. Η οµοιόµορφη

Διαβάστε περισσότερα

Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ.

Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ. Κατανομές Πιθανοτήτων Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2018-2019 1 Περιεχόμενα Ενότητας Βασικές έννοιες από τη θεωρία Πιθανοτήτων

Διαβάστε περισσότερα

E [X ν ] = E [X (X 1) (X ν + 1)]

E [X ν ] = E [X (X 1) (X ν + 1)] Πιθανότητες και Αρχές Στατιστικής (6η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 30 Περιεχόμενα

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή Συλλογή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 ιακριτές Τυχαίες Μεταβλητές ( Ι ) Επιµέλεια : Στιβακτάκης Ραδάµανθυς Ασκηση.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί

Διαβάστε περισσότερα

Διαδικασίες Markov Υπενθύμιση

Διαδικασίες Markov Υπενθύμιση Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Διαδικασίες Markov Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες -Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις : Τέταρτη Σειρά Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες -Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις : Τέταρτη Σειρά Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες -Χειµερινό Εξάµηνο 212 ιδάσκων : Π. Τσακαλίδης Λύσεις : Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 5/11/212 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 2016-2017 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegean.gr Τηλ: 2271035468

Διαβάστε περισσότερα

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης Γ. Κορίλη, Μοντέλα Εξυπηρέτησης 2-1 hp://www.seas.upenn.edu/~com501/lecures/lecure3.pdf Καθυστερήσεις στα ίκτυα Πακέτων Εισαγωγή στη Θεωρία Ουρών Ανασκόπηση Θεωρίας Πιθανοτήτων ιαδικασία Poisson Θεώρηµα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 Διδάσκουσα: Β. Πιπερίγκου Σε μια ενδονοσοκομειακή έρευνα, καταγράφηκε ο χρόνος ύπνου, μετά τη χορήγηση ενός συγκεκριμένου αναισθητικού, σε 33 ασθενείς και πήραμε

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

N Sm+t = max{k N : S k S m + t} = max{k N : E j t} E j+m t} = m + max{r N : Poisson.

N Sm+t = max{k N : S k S m + t} = max{k N : E j t} E j+m t} = m + max{r N : Poisson. Κεφάλαιο 8 Διαδικασίες Poisson 8.1 Εισαγωγή Σ αυτό το κεφάλαιο θα ορίσουμε τις διαδικασίες Poisson και θα μελετήσουμε τις βασικές τους ιδιότητες. Οι διαδικασίες αυτές είναι ίσως οι απλούστερες μη τετριμμένες

Διαβάστε περισσότερα

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου 200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΥΝΔΥΑΣΤΙΚΗ 1.1 ΒΑΣΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 13 1.2 ΠΡΟΣΘΕΤΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 15 1.3 ΔΙΑΤΑΞΕΙΣ..... 16 1.4 ΜΕΤΑΘΕΣΕΙΣ... 18 1.5 ΣΥΝΔΥΑΣΜΟΙ... 20 1.6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΤΑΘΕΣΕΙΣ......

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Η τυχαία µεταβλητή X έχει αθροιστική

Διαβάστε περισσότερα

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις. Διακριτές Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διακριτές Κατανομές τεχνικές 4 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 1 0 / 0 1 6 εκδόσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 08-09 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Ασκηση Το πείραµά µας συνίσταται στη ϱίψη 3 τίµιων κερµάτων. Συµβολίζουµε

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα