1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ
|
|
- Αελλαι Αλεξάκης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι δηλαδή οι αριθµοί 0, 1α, 2α, 3α, 4α, Ιδιότητες : Κάθε φυσικός διαιρεί τα πολλαπλάσια του Κάθε φυσικός που διαιρείται από έναν άλλο είναι πολλαπλάσιό του Αν ένας φυσικός διαιρεί έναν άλλο θα διαιρεί και τα πολλαπλάσια αυτού 3. Ελάχιστο κοινό πολλαπλάσιο (ΕΚΠ) : Το µικρότερο, όχι µηδέν, από τα κοινά πολλαπλάσια δύο ή περισσότερων φυσικών αριθµών 4. ιαιρέτες του α : Είναι όλοι οι αριθµοί που διαιρούν τον α 5. ύο µόνιµοι διαιρέτες : Κάθε αριθµός α 0 έχει διαιρέτες των εαυτό του και το 1 6. Πρώτοι σύνθετοι αριθµοί : Ένας αριθµός λέγεται πρώτος όταν έχει µοναδικούς διαιρέτες τον εαυτό του και την µονάδα Αλλιώς λέγεται σύνθετος 7. Μέγιστος κοινός διαιρέτης (ΜΚ ) : Ο µεγαλύτερος από τους κοινούς διαιρέτες δύο ή περισσότερων αριθµών
2 2 8. Αριθµοί πρώτοι µεταξύ τους : Οι αριθµοί α και β ονοµάζονται πρώτοι µεταξύ τους όταν έχουν ΜΚ τη µονάδα 9. Κριτήρια διαιρετότητας : Ένας φυσικός διαιρείται µε το 10, 100, 1000 αν λήγει σε 0, 00, 000,.. Ένας φυσικός διαιρείται µε το 2 αν το τελευταίο ψηφίο του είναι 0, 2, 4, 6, 8 Ένας φυσικός διαιρείται µε το 5 αν το τελευταίο ψηφίο του είναι 0 ή 5 Ένας φυσικός διαιρείται µε το 3 ή το 9 αν το άθροισµα των ψηφίων του σχηµατίζουν αριθµό που διαιρείται µε το 3 ή το 9 Ένας φυσικός διαιρείται µε το 4 ή το 25 αν τα δύο τελευταία του ψηφία σχηµατίζουν αριθµό που διαιρείται µε το 4 ή το 25 ΣΧΟΛΙΑ 1. Κοινά πολλαπλάσια δύο ή : Βρίσκω τα πολλαπλάσια καθενός και επιλέγω τα περισσότερων αριθµών κοινά τους 2. Κοινοί διαιρέτες δύο ή : περισσότερων αριθµών Βρίσκω τους διαιρέτες καθενός και επιλέγω τους κοινούς τους 3. Ανάλυση αριθµού σε γινόµενο : Σηµαίνει να γράψω τον αριθµό σαν πρώτων παραγόντων γινόµενο αριθµών που είναι πρώτοι µεταξύ τους 4. Μέθοδος : Για να βρω το ΕΚΠ δύο ή περισσότερων αριθµών, τους αναλύω σε γινόµενο πρώτων παραγόντων και σχηµατίζω το γινόµενο των κοινών και µη καινών παραγόντων καθέναν µε τον µεγαλύτερο εκθέτη
3 3 5. Μέθοδος : Για να βρω τον ΜΚ δύο ή περισσότερων αριθµών, τους αναλύω σε γινόµενο πρώτων παραγόντων και σχηµατίζω το γινόµενο µόνο των κοινών παραγόντων καθέναν µε τον µικρότερο εκθέτη ΑΣΚΗΣΕΙΣ 1. Να βρείτε ποιοι από τους παρακάτω αριθµούς είναι πρώτοι και ποιοι σύνθετοι 11, 12, 13, 14, 15 Θεωρία 6 Ο 11 είναι πρώτος αφού µοναδικοί διαιρέτες του είναι το 1 και το 11 Ο 12 είναι σύνθετος διότι ένας διαιρέτης του είναι και το 2 Ο 13 είναι πρώτος αφού µοναδικοί διαιρέτες του είναι το 1 και το 13 Ο 14 είναι σύνθετος διότι ένας διαιρέτης του είναι και το 2 Ο 15 είναι σύνθετος διότι ένας διαιρέτης του είναι και το 5 2. Να αναλύσετε τους αριθµούς 160, 200, 256 σε γινόµενο πρώτων παραγόντων Να βρείτε τον ΜΚ και το ΕΚΠ των παραπάνω αριθµών = = = 2 8 ΜΚ (160, 200, 256) = 2 3 = 8 ΕΚΠ(160, 200, 256) = = = 6400 Μέθοδοι Το γινόµενο δύο πρώτων αριθµών διαφορετικών του 1 είναι πρώτος ή σύνθετος ; Να δικαιολογήσεις την απάντηση σου. Θεωρία 6 Είναι σύνθετος διότι αν α πρώτος και β πρώτος τότε το γινόµενο αυτών είναι ο αριθµός αβ ο οποίος προφανώς διαιρείται και µε το α και µε το β
4 4 4. Συµπλήρωσε τα παρακάτω κενά Επειδή 20 = 4 5, ο αριθµός 20 είναι ένα..... του 5 και ο αριθµός 4 είναι ένας του 20 Απάντηση Θεωρία 1-4 Επειδή 20 = 4 5 ο αριθµός 20 είναι ένα πολλαπλάσιο του 5 και ο αριθµός 4 είναι ένας διαιρέτης του Να βρείτε τον ΜΚ και το ΕΚΠ των αριθµών 20 και 250 Αναλύοντας τους αριθµούς σε γινόµενο πρώτων παραγόντων όπως στην άσκηση 2 βρίσκουµε ότι 20 = και 250 = Σχόλια 4-5 Άρα ΜΚ (20, 250) = 2 5 = 10 και ΕΚΠ(20, 250) = = = Να συµπληρώσετε τα ψηφία που λείπουν στον παρακάτω αριθµό 32 1 ώστε αυτός να διαιρείται µε το 3 και το 5, µε το 2 και το 9 Για να διαιρείται ο αριθµός µε το 5, θα πρέπει να λήγει σε 0 ή 5. Άρα ο ζητούµενος θα έχει την µορφή ή Για να διαιρείται και µε το 3, θα πρέπει το άθροισµα των ψηφίων του να διαιρείται µε το 3. Οπότε στην πρώτη περίπτωση το ψηφίο που λείπει µπορεί να είναι 0 ή 3 ή 6 ή 9 ενώ στη δεύτερη περίπτωση µπορεί να είναι 1 ή 4 ή 7. Άρα ο ζητούµενος αριθµός µπορεί να είναι κάποιος από τους : 32010, 32310, 32610, 32910, 32115, 32415, Για να διαιρείται ο αριθµός µε το 2, θα πρέπει να λήγει σε 0, 2, 4, 6, 8. Άρα ο ζητούµενος θα έχει την µορφή : ή ή ή ή Για να διαιρείται και µε το 9, θα πρέπει το άθροισµα των ψηφίων του να διαιρείται µε το 9. Οπότε στην πρώτη περίπτωση το ψηφίο που λείπει µπορεί να είναι το 3 στη δεύτερη περίπτωση µπορεί να είναι το 1 στην τρίτη περίπτωση µπορεί να είναι το 8 Θεωρία 9 στην τέταρτη περίπτωση µπορεί να είναι το 6 στην πέµπτη περίπτωση µπορεί να είναι το 4 Άρα ο ζητούµενος αριθµός µπορεί να είναι κάποιος από τους : 32310, 32112, 32814, 32616, 32418
5 5 7. Μπορείτε να βρείτε κριτήριο διαιρετότητας αριθµού µε το 6 ; Να γράψετε δύο αριθµούς µεγαλύτερους του 200 που να διαιρούνται µε το 6. Ένας αριθµός διαιρείται µε το 6 αν διαιρείται και µε το 2 και µε το 3. ιότι αν π.χ ο αριθµός α διαιρείται µε το 2, τότε αυτός θα είναι πολλαπλάσιο του 2. Άρα θα είναι της µορφής α = 2κ (1) Επειδή ο α διαιρείται και µε το 3, θα πρέπει να είναι πολλαπλάσιο και του 3. Ο α έχει την µορφή α = 2κ και το 2 δεν είναι πολλαπλάσιο του 3. Άρα θα πρέπει να είναι πολλαπλάσιο του 3 ο κ, δηλαδή κ = 3λ. Θεωρία 2-4 Τότε η (1) γίνεται α = 2 3λ = 6λ. Συνεπώς ο α διαιρείται µε το 6 Οι αριθµοί θα πρέπει να λήγουν σε 0 ή 2 ή 4 ή 6 ή 8 και το άθροισµα των ψηφίων τους να διαιρείται µε το 3. ύο τέτοιοι αριθµοί είναι ο 648 και ο Να συµπληρώσετε τα ψηφία που λείπουν, ώστε οι αριθµοί 5 και να διαιρούνται ταυτόχρονα µε 2, 3 και 5. Θεωρία 9 Για να διαιρείται ο αριθµός 5 µε το 2 και µε το 5, θα πρέπει να είναι της µορφής 5 0 Και για να διαιρείται µε το 3, το ψηφίο που λείπει πρέπει να είναι 1 ή 4 ή 7. Εποµένως ο αριθµός µπορεί να είναι ένας από τους : 510 ή 540 ή 570 Με το ίδιο σκεπτικό, ο άλλος αριθµός µπορεί να είναι ένας από τους ή ή ή
6 6 9. Ένα ανθοπωλείο διαθέτει 32 τριαντάφυλλα, 48 γαρύφαλλα και 72 κρίνους και θέλει να φτιάξει όµοιες ανθοδέσµες χωρίς να του περισσέψει κανένα λουλούδι. Πόσες το πολύ ανθοδέσµες µπορεί να φτιάξει ; Πόσα λουλούδια από το κάθε είδος θα περιέχει κάθε ανθοδέσµη ; Σχόλιο 5 Ο ζητούµενος αριθµός πρέπει να είναι κοινός διαιρέτης των 32, 48, 72 Επειδή όµως ζητάµε τον µέγιστο αριθµό των ανθοδεσµών, αυτός πρέπει να είναι ο ΜΚ ( 32, 48, 72) Είναι : 32 = 2 5, 48 = 3 2 4, 72 = Άρα ΜΚ ( 32, 48, 72) = 2 3 = 8 Εποµένως µπορεί να φτιαχτούν 8 το πολύ ανθοδέσµες Σε κάθε ανθοδέσµη θα υπάρχουν 32 : 8 = 4 τριαντάφυλλα 48 : 8 = 6 γαρύφαλλα 72 : 8 = 9 κρινάκια 10. Αν ΕΚΠ(α, β, γ) = 27 και α, β, γ, > 1, να βρείτε τους αριθµούς α, β και γ Σχόλιο 6 Επειδή 27 = 3 3, οι ζητούµενοι αριθµοί πρέπει να έχουν παράγοντα µία δύναµη του 3 µικρότερη ή ίση του 27. Οι ζητούµενες δυνάµεις είναι 3 1, 3 2, 3 3, εποµένως οι ζητούµενοι αριθµοί είναι οι 3, 9, Τρεις συµµαθητές τρώνε πίτσα στην πιτσαρία της γειτονιάς τους, ο πρώτος κάθε 8 ηµέρες, ο δεύτερος κάθε 10 ηµέρες και ο τρίτος κάθε 15 ηµέρες. Αν σήµερα συναντήθηκαν στην πιτσαρία να βρείτε µετά από πόσες ηµέρες το συντοµότερο θα ξανασυναντηθούν και στο ενδιάµεσο διάστηµα πόσες φορές θα έχει πάει ο καθένας µόνος του; Σχόλιο 6 Ο ζητούµενος αριθµός ηµερών πρέπει να είναι πολλαπλάσιο των 8, 10, 15 Επειδή ζητάµε την ταυτόχρονη παρουσία στην πιτσαρία, ο αριθµός πρέπει να είναι κοινό πολλαπλάσιο των 8, 10, 15 και µάλιστα το ΕΚΠ, διότι µας ενδιαφέρει το συντοµότερο δυνατόν η ταυτόχρονη παρουσία. Εύκολα βρίσκουµε ότι ΕΚΠ( 8, 10, 15) = 120 Συνεπώς σε 120 ηµέρες θα ξανά φάνε µαζί πίτσα. Στο διάστηµα αυτό ο πρώτος θα έχει πάει 120 : 8 = 15 φορές, οπότε µόνος 14 ο δεύτερος θα έχει πάει 120 : 10 = 12 φορές, οπότε µόνος 11 ο τρίτος θα έχει πάει 120 : 15 = 8 φορές, οπότε µόνος 7
7 7 12. Να βρείτε 5 τουλάχιστον κοινά όχι 0 πολλαπλάσια των αριθµών 8 και 12. Να βρείτε το ΕΚΠ(8, 12). Συσχετίζοντας το συµπέρασµα του ( µε την απάντηση στο ( τι παρατηρείτε; Σχόλιο 1 Θεωρία 3 Πολλαπλάσια του 8 : 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120 Πολλαπλάσια του 12 : 0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 Κοινά πολλαπλάσια : 0, 24, 48, 72, 96, κοινά µη µηδενικά πολλαπλάσια είναι τα 24, 48, 72, 96, 120 Από τα παραπάνω βλέπουµε ότι ΕΚΠ(8, 12) = 24 Παρατηρούµε ότι τα κοινά πολλαπλάσια είναι πολλαπλάσια του ΕΚΠ. 13. Στον αριθµό 4 8 να βρείτε τα ψηφία που λείπουν ώστε αυτός να διαιρείται ταυτόχρονα µε το 2, το 3 και το 25. Θεωρία 9 Για να διαιρείται ο αριθµός 4 8 µε το 2 και το 25, τα δύο τελευταία ψηφία πρέπει να είναι το 50. Συνεπώς ο αριθµός είναι της µορφής Για να διαιρείται µε το 3, το ψηφίο που λείπει πρέπει να είναι 1 ή 4 ή 7. Οπότε ο ζητούµενος αριθµός είναι κάποιος από τους 41850, 44850, Συµπλήρωσε στις παρακάτω προτάσεις τα κενά Κάθε φυσικός διαιρεί τα του Αν ένας φυσικός.έναν άλλο θα. και τα πολλαπλάσια του γ) Ένας αριθµός που διαιρείται µόνο. λέγεται πρώτος δ) ΜΚ των α και β ονοµάζεται ο. των α και β ε) ΕΚΠ των α και β ονοµάζεται το. των α και β στ) Οι αριθµοί α και β λέγονται πρώτοι µεταξύ τους αν.. Απάντηση Κάθε φυσικός διαιρεί τα πολλαπλάσια του Αν ένας φυσικός διαιρεί έναν άλλο θα διαιρεί και τα πολλαπλάσια του γ) Ένας αριθµός που διαιρείται µόνο από τον εαυτό του και την µονάδα λέγεται πρώτος δ) ΜΚ των α και β ονοµάζεται ο µεγαλύτερος των κοινών διαιρετών των α και β ε) ΕΚΠ των α και β ονοµάζεται το µικρότερο από τα κοινά πολλαπλάσια των α και β στ) Οι αριθµοί α και β λέγονται πρώτοι µεταξύ τους αν ΜΚ (α, = 1
8 8 15. Να χαρακτηρίσετε τις παρακάτω προτάσεις µε (Σ) αν είναι σωστές και µε (Λ) αν είναι λανθασµένες Το ΕΚΠ των 2, 10, 20 είναι το 40 (Λ) Ο ΜΚ των 3, 6, 18 είναι το 3 (Σ) γ) Ο 15 είναι πρώτος (Λ) δ) Ο 7 είναι πρώτος (Σ) ε) Η γραφή είναι ανάλυση του αριθµού 300 σε γινόµενο πρώτων παραγόντων (Λ) Απάντηση ΕΚΠ(2, 10, 20) = 20 πρόταση (Λ) ΜΚ (3, 6, 18) = 3 πρόταση (Σ) γ) Όχι αφού διαιρείται και µε το 5 πρόταση (Λ) δ) Ναι διότι µοναδικοί διαιρέτες του είναι το 1 και το 7 πρόταση (Σ) ε) 300 = οπότε πρόταση (Λ)
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν
Τι είναι τα πολλαπλάσια ;
Μαθηματικά Κεφάλαιο 10 Πολλαπλάσια και διαιρέτες Όνομα: Ημερομηνία: / / Θεωρία Πώς τα βρίσκουμε; Τι είναι τα πολλαπλάσια ; Πολλαπλάσια ενός φυσικού αριθμού ονομάζονται οι αριθμοί που προκύπτουν όταν τον
Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων
Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός
ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...
Κριτήρια διαιρετότητας. Κριτήριο για το 2. Κριτήριο για το 5. Κριτήριο για το 10,100, Θεωρία. Όνομα: Μαθηματικά Κεφάλαιο 11.
Μαθηματικά Κεφάλαιο 11 Κριτήρια διαιρετότητας Όνομα: Ημερομηνία: / / Θεωρία Κριτήρια διαιρετότητας Κριτήρια διαιρετότητας λέγονται οι κανόνες με τους οποίους μπορώ να συμπεράνω χωρίς να κάνω τη διαίρεση
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο
Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών
Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποιες είναι οι ιδιότητες της πρόσθεσης; Ποιες είναι οι ιδιότητες του πολλαπλασιασμού; Τι ονομάζουμε νιοστή δύναμη του άλφα; Ποια είναι η βάση και ποιος ο εκθέτης; Ποια είναι η προτεραιότητα των πράξεων
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο : ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Η ιδιότητα α+ β = β+ α λέγεται.. 2. Η ιδιότητα α ( β γ) ( ) + + = α+ β + γ λέγεται. 3. Ο αριθμός 0 είναι το..της πρόσθεσης φυσικών αριθμών αφού ισχύει:
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 20 ΔΕΚΕΜΒΡΙΟΣ 20 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ Οι ασκήσεις να λυθούν σε χαρτί Α4 η ΑΣΚΗΣΗ Τρεις φίλοι, ο Γιώργος, ο Κώστας και ο Δημήτρης συνεννοήθηκαν να πηγαίνουν στο Δημοτικό
ΜΑΘΗΜΑΤΙΚΑ A ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2016 14 ΙΑΝΟΥΑΡΙΟΥ 2017 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ 1 η ΑΣΚΗΣΗ Τρεις φίλοι, ο Γιώργος, ο Κώστας και ο Δημήτρης συνεννοήθηκαν να πηγαίνουν στο Δημοτικό στάδιο, για τρέξιμο. Λόγω
ΚΕΦΑΛΑΙΟ 13 ο. Μάντεψε το µυστικό κανόνα µου. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 13 ο Κριτήρια διαιρετότητας Μάντεψε το µυστικό κανόνα µου Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: 1. Να µάθεις να ξεχωρίζεις ποιοι αριθµοί διαιρούνται µε το 2, το
Οι φυσικοί αριθμοί. Παράδειγμα
Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ
Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου,
Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου, ISBN: 978-9963-0-4611-9) Και Βανδουλάκης Ι., Καλλιγάς
ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις
ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ 2016-17 Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις Άσκηση 1. Να εξετάσετε ποιες από τις παρακάτω ισότητες παριστάνουν Ευκλείδειες διαιρέσεις α) 80 = 9 8 +8 β)
1.2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ
1 1.2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση : Είναι µία πράξη, µε την οποία όταν µας δώσουν δύο φυσικούς αριθµούς α και β βρίσκουµε έναν τρίτο αριθµό γ που τον συµβολίζουµε
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Ασκήσεις. Ασκήσεις και προβλήματα στα κεφάλαια
Ασκήσεις και προβλήματα στα κεφάλαια - Διαιρέτες, ΜΚΔ - Κριτήρια διαιρετότητας - Πρώτοι και σύνθετοι - Παραγοντοποίηση αριθμών - Πολλαπλάσια ΕΚΠ - Δυνάμεις - Δυνάμεις του 10 Οι ασκήσεις είναι προσφορά
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 η ΕΚΑ Α
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α. Πότε δύο γωνίες λέγονται εφεξής; Ποιο σχήµα ονοµάζουµε κύκλο µε κέντρο Ο και ακτίνα ρ ; Στον παρακάτω πίνακα να αντιστοιχίσετε κάθε αριθµό της πρώτης στήλης µε ένα γράµµα της
2. Ένας μαθητής έγραψε = 9 3 = 27. Συμφωνείτε μαζί του ; Αν όχι γιατί ;
Άλγεβρα κεφάλαιο Α.1 Α.1.2. Οι Φυσικοί Αριθμοί 1. Να γίνουν οι πράξεις : α) 37 (12 5 ) β) 37-12 +5 γ) (37 12) +5. Τι παρατηρείτε; 2. Ένας μαθητής έγραψε 7 +2 3 = 9 3 = 27. Συμφωνείτε μαζί του ; Αν όχι
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,
7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.
ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης
1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)
Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Η Έννοια του Κλάσµατος
Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945
ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :
ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια
qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Α Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 3 η έκδοση 29/04/15
2 ος. Γυμνασίου. ΘΕΜΑ 1 ο Με τα. αριθμός που μπορούμε να σχηματίσουμε ώστε. Απάντηση = β) Γνωρίζουμε ότι διψήφιο τμήμα
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑ ΑΣ 2 ος Ημαθιώτικος Μαθητικός Διαγωνισμός στα Μαθηματικά. «Κ. ΚΑΡΑΘΕΟΔΩΡΗ» Σάββατο 23 Ιανουαρίου 2010 Α Γυμνασίου ΘΕΜΑ 1 ο Με τα ψηφία 0, 1, 2, 3, 4, 5 σχηματίζουμ
7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ
1 7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ ΘΕΩΡΙΑ 1. Απόλυτη τιµή ρητού: Έστω ένας ρητός αριθµός α. Η απόλυτη τιµή του αριθµού α συµβολίζεται µε α και εκφράζει την απόσταση του σηµείου µε τετµηµένη α από την αρχή Ο του
Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό
1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ
. A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
Ερωτήσεις πολλαπλής επιλογής
Ερωτήσεις πολλαπλής επιλογής 1. * Η µέθοδος της µαθηµατικής επαγωγής χρησιµοποιείται για την απόδειξη προτάσεων Ρ (ν), όταν Α. ν R Β. ν Q Γ. ν R*. ν N Ε. κανένα από τα προηγούµενα 2. * Για τους ακεραίους
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος
1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.
Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας
ΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Η κλασματική γραμμή είναι η πράξη της διαίρεσης.
όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Τα κόκκινα κομμάτια αποτελούν
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Α. ΕΚΠ ΑΚΕΡΑΙΩΝ ΑΛΓΕΒΡΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΜΑΘΗΜΑ 8 Κεφάλαιο 1o : Αλγεβρικές Παραστάσεις Υποενότητα 1.8: ΕΚΠ και ΜΚ ακεραίων αλγεβρικών παραστάσεων Θεµατικές Ενότητες: 1. ΕΚΠ ακεραίων αλγεβρικών παραστάσεων.. ΜΚ ακεραίων αλγεβρικών παραστάσεων.
4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ
1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας
2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
9 Πολυώνυμα Διαίρεση πολυωνύμων
4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε
2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.
1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες
1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 234 Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Απαντήσεις στις ερωτήσεις «Σωστό - Λάθος» 1. Λ 17. Σ 32. Σ 47. Σ 62. Σ 2. Σ 18. Σ 33. Λ 48. Λ 63. Σ 3. Λ 19. Λ 34. Σ 49. Σ 64. Λ 4.
Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
4.4 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ
158 44 ΜΕΓΙΣΤΟΣ ΚΟΙΝΟΣ ΔΙΑΙΡΕΤΗΣ - ΕΛΑΧΙΣΤΟ ΚΟΙΝΟ ΠΟΛΛΑΠΛΑΣΙΟ Μέγιστος Κοινός Διαιρέτης Έστω α, β δύο ακέραιοι Ένας ακέραιος δ λέγεται κοινός διαιρέτης των α και β, όταν είναι διαιρέτης και του α και του
ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί
ΟΜΙΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ 2013-14 Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country. David Hilbert ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ Διαιρετότητα
Κεφάλαιο 10: Πολλαπλάσια και διαιρέτες
Ονοματεπώνυμο: «Όνομα» «Επώνυμο» Ημ/νία: Δευτέρα, 19 Νοεμβρίου 018 Κεφάλαιο 10: Πολλαπλάσια και διαιρέτες Διαιρέτες (Δ) ενός ακέραιου αριθμού λέγονται οι ακέραιοι αριθμοί που διαιρούν ακριβώς αυτό τον
3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ
. Η ΕΝΝΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ. Εξίσωση πρώτου βαθµού µε αγνώστους και νοµάζεται κάθε εξίσωση της µορφής α + β = γ. Άγνωστοι είναι το και το. Τα α, β και γ λέγοντα συντελεστές. Ειδικότερα το γ
Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.
Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση
Αλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.2 Μονώνυμα-Πράξεις με Μονώνυμα 1 1.2 Μονώνυμα-Πράξεις με Μονώνυμα Α Άλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές για να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν
ÊåöÜëáéï 1 ï. -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí. -Ç Ýííïéá ôçò åîßóùóçò
ÊåöÜëáéï 1 ï Öõóéêïß êáé Äåêáäéêïß áñéèìïß âéâëéïììüèçìá 1: -Öõóéêïß áñéèìïß -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí âéâëéïììüèçìá : -Ç Ýííïéá ôçò ìåôáâëçôþò -Ç Ýííïéá
Αριθμητής = Παρονομαστής
Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα
N(F I G) = = N N(F ) N(I ) N(G)+N(FI ) + N(FG)+N(IG) N(FIG) = = = 200
Διακριτά Μαθηματικά Ι Φροντιστήριο Αρχή Εγκλεισμού-Αποκλεισμού 1 / 9 Σε ένα σχολείο υπάρχουν 1000 μαθητές. Απ αυτούς οι 400 μιλάνε Γαλλικά, οι 300 Ιταλικά και 200 μιλάνε Γερμανικά. Εάν υπάρχουν 200 μαθητές,που
Ç Ýííïéá ôçò ìåôáâëçôþò Ç Ýííïéá ôçò åîßóùóçò
ÂéâëéïìÜèçìá Ç Ýííïéá ôçò ìåôáâëçôþò Ç Ýííïéá ôçò åîßóùóçò Τι ονοµάζεται µεταβλητή; Γράψτε µε τη βοήθεια µιας µεταβλητής τις εκφράσεις: α. το πενταπλάσιο ενός αριθµού β. το διπλάσιο ενός αριθµού αυξηµένο
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.
Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια
Η εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη.
ΜΕΡΟΣ Α 2.1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 16 2. 1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 Η εξίσωση αx+β=0 Κάθε εξίσωση της μορφής αx+β=0 όπως για παράδειγμα οι εξισώσεις x- 2=0, 4x=-,2x-2=x+6 ονομάζεται εξίσωση 1ου βαθμού με έναν άγνωστο
4 η δεκάδα θεµάτων επανάληψης
4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Έχουµε Α Βδεν είναι το κενό. Ρ( Α Β)
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ
Φίλη μαθήτρια, φίλε μαθητή
Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης
ΕΠ.27 Να αναπτυχθεί αλγόριθμος που θα εμφανίζει όλους τους τέλειους αριθμούς στο διάστημα [2,100]. Τέλειος είναι ο ακέραιος που ισούται με το άθροισμα των γνήσιων διαιρετών του. Oι τέλειοι Ο Πυθαγόρας
Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ
Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,
v Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο
x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.
Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε
Μαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη:ΣΤ Ονοματεπώνυμο:. Σχολείο:.. Η εκτύπωση Η Άννα εκτύπωσε 135 σελίδες στον εκτυπωτή της. Πόσα ψηφία τύπωσε ο εκτυπωτής για την αρίθμηση των σελίδων από το 1 ως το
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
1+ 1. Α Γυμνασίου. Πρόβλημα 1 ο α) Να υπολογίσετε τις παραστάσεις Α = Β = Α= 9 1 : : 5 = 9 1 : 9 5 = (2 μονάδες)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΡΚΥΡΑΣ 2 ος όροφος Δημοτικού Θεάτρου 400 Κέρκυρα e-mail emekerkyra@dide.ker.sch.gr Greek Mathematical Society Branch of Corfu 2 nd floor Public Theater of Corfu
Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή.
Ερωτήσεις ανάπτυξης 1. * Παρατηρούµε ότι: 1 11 ( + = 1 ) 1+ = ( + 1) 1 3 33 ( + + + = 1 ) Ποιο νοµίζετε ότι θα είναι το άθροισµα 1 + + 3 +... + ν; Αποδείξτε την ισότητα που συµπεράνατε µε επαγωγή.. * Μετράµε
Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους
Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου
ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ
ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 4. ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤH Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εάν ζητείται να δειχθεί ισότητα ή ανίσωση
3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ
1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου
Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...
ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2
4 η δεκάδα θεµάτων επανάληψης
1 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Α Β δεν είναι το κενό. Έχουµε Ρ( Α
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί
2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να διαιρέσουμε δύο πολυώνυμα Δίνονται τα πολυώνυμα: P x x x x 8x 4 = + +4 και δ ( x) = x x α) Να βρεθεί το πηλίκο και το υπόλοιπο της διαίρεσης
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων
ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ
50 ΚΕΦΑΛΑΙΟ Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ Εισαγωγή. Η αρχή του εγκλεισμού αποκλεισμού είναι ένα ισχυρό μέσο απαρίθμησης με το οποίο υπολογίζεται ο αριθμός των στοιχείων της ένωσης και της τομής των συμπληρωμάτων