HY118- ιακριτά Μαθηµατικά
|
|
- Άμωσις Βλαστός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 HY118- ιακριτά Μαθηµατικά Τρίτη, 12/04/2016 Αντώνης Α. Αργυρός Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/13/2016 1
2 ιαδικαστικά θέµατα Πρόοδος το ερχόµενο Σάββατο, 16/04/2016, ώρα 11:00-14:00. Προαιρετική αλλά ισχυρά συνιστώµενη! Ύλη: ότι έχουµε κάνει µέχρι την διάλεξη #15 εν επιτρέπονται βιβλία & σηµειώσεις Να έχετε µαζί σας αστυνοµική ταυτότητα ή πάσο, κλπ. Ερχόµενη Πέµπτη: Φροντιστήριο σε συναρτήσεις / αρχή του περιστερώνα Ερχόµενη Παρασκευή:Επαναληπτική διάλεξη: Θα συζητήσουµε απορίες που ενδεχοµένως έχετε στην ύλη της προόδου 4/13/2016 2
3 Συναρτήσεις ένα-προς-ένα Μία συνάρτηση είναιένα-προς-ένα (1-1), αν και µόνο αν κάθε στοιχείο στο εύρος της σχετίζεται µε ένα µόνο στοιχείο του πεδίου ορισµού της. Τυπικά: δοσµένης f:a B, f, ένα-προς-ένα : ( x,y: x yf(x) f(y)). 4/13/2016 3
4 Συναρτήσεις «επί» Μία συνάρτηση f:a Bείναι «επί»εάν το εύρος της είναι το ίδιο µε το πεδίο τιµών της ( b B, a A: f(a)=b). 4/13/2016 4
5 Αγγλική ορολογία 1. injection = 1-προς-1 2. surjection = επί 3. bijection = αµφιµονοσήµαντη 3 = 1&2εποµένως, για να αποδείξουµε ότι µία συνάρτηση είναι αµφιµονοσήµαντη αρκεί να αποδείξουµε ότι είναι 1-1 και επί 4/13/2016 5
6 Αντίστροφη συνάρτηση Για µία αµφιµονοσήµαντησυνάρτηση f:a B, υπάρχει η αντίστροφητης f 1, f 1 : B A ιαισθητικά, αυτή είναι η συνάρτηση που ακυρώνει ότι κάνει η f Τυπικά, είναι η µοναδική εκείνη συνάρτηση για την οποία 1 f f = I A (θυµηθείτε ότι I A είναι η ταυτοτικήσυνάρτηση στο A) 4/13/2016 6
7 Μερικές χρήσιµες συναρτήσεις Συχνά χρησιµοποιούµε τις ακόλουθες συναρτήσεις στους πραγµατικούς αριθµούς: Την συνάρτηση floor :R Z, όπου x είναι ο µεγαλύτερος ακέραιος που είναι µικρότερος ή ίσος του x. ηλ., x : max({i Z i x}). Την συνάρτηση ceiling :R Z, όπου x είναι ο µικρότερος ακέραιος που είναι µεγαλύτερος ή ίσος του x. ηλ., x : min({i Z i x}) 4/13/2016 7
8 Η αρχή του περιστερώνα (!) 4/13/2016 8
9 Η αρχή του περιστερώνα Pigeonhole principle Dirichlet drawer principle Εάνπερισσότερα από kαντικείµενα τοποθετούνται σε kθέσεις, τότε τουλάχιστον σε µία θέση έχουν τοποθετηθείτουλάχιστον 2 αντικείµενα. Σε σχέση µε την αντίστοιχη συνάρτηση: Εάν f:a Bκαι A B +1, τότε η fδεν µπορεί να είναι 1-1 και εποµένως, περισσότερα από ένα στοιχεία του πεδίου ορισµού έχουν την ίδια εικόνα στο πεδίο τιµών 4/13/2016 9
10 Παράδειγµα Υπάρχουν 101 δυνατοί βαθµοί (0-100) στην επερχόµενη πρόοδο του ΗΥ118. Ας υποθέσουµε πως την πρόοδο θα τη δώσουν περισσότεροι από 101 φοιτητές. Εποµένως, πριν δω τα γραπτά, µε βάση την αρχή του περιστερώνα, είµαι βέβαιος ότι θα υπάρξουν τουλάχιστον δύο φοιτητές που θα πάρουν ακριβώς τον ίδιο βαθµό! 4/13/
11 Γενικευµένηαρχή του περιστερώνα Εάν N αντικείµενα τοποθετούνται σε k θέσεις,τότε υπάρχει µία θέση στην οποία έχουν τοποθετηθεί τουλάχιστον N/k αντικείµενα. 4/13/
12 Απόδειξη της γενικευµένης αρχής Εάν Nαντικείµενατοποθετούνται σε kθέσεις,τότε υπάρχει µία θέση στην οποία έχουν τοποθετηθεί τουλάχιστον N/k αντικείµενα. Απόδειξη Ας υποθέσουµε πως κάθε θέση έχει λιγότερα από N/k αντικείµενα. Εποµένως: αριθµός αντικειµένων ανά θέση = Α N/k 1. Τότε ο συνολικός αριθµός αντικειµένων είναι το πολύ N N N ka= k 1 < k = k = N k k k Άρα, ο συνολικός αριθµός αντικειµένων είναι µικρότερος από N, γεγονός που έρχεται σε αντίφαση µε την υπόθεσή µας για N αντικείµενα! 4/13/
13 Γενικευµένη αρχή:παράδειγµα οσµένο: Υπάρχουν 258 εγγεγραµµένοι φοιτητές στο ΗΥ118.Χωρίς να ξέρουµε τίποτε για τα γενέθλια του καθενός από εσάς, ποιά είναι η µεγαλύτερη δυνατή τιµή nγια την οποία µπορούµε να ισχυριστούµε µε βεβαιότητα ότι τουλάχιστον n φοιτητές γεννήθηκαν τον ίδιο µήνα; 4/13/
14 Γενικευµένη αρχή:παράδειγµα οσµένο: Υπάρχουν 258 εγγεγραµµένοι φοιτητές στο ΗΥ118.Χωρίς να ξέρουµε τίποτε για τα γενέθλια του καθενός από εσάς, ποιά είναι η µεγαλύτερη δυνατή τιµή nγια την οποία µπορούµε να ισχυριστούµε µε βεβαιότητα ότι τουλάχιστον n φοιτητές γεννήθηκαν τον ίδιο µήνα; Απάντηση: 258/12 = 21.5 = 22 4/13/
15 Παράδειγµα Υποθέστε ότι µέσα στον Ιούνιο, µία οµάδα θα παίξει τουλάχιστον ένα παιχνίδι την ηµέρα,αλλά συνολικά, το πολύ 45 παιχνίδια. είξτε ότι θα πρέπει να υπάρχει µια ακολουθία από ηµέρες στον Ιούνιο κατά τις οποίες η οµάδα θα παίξει ακριβώς 14 παιχνίδια. 4/13/
16 Παράδειγµα Υποθέστε ότι µέσα στον Ιούνιο, µία οµάδα θα παίξει τουλάχιστον ένα παιχνίδι την ηµέρα,αλλά συνολικά, το πολύ 45 παιχνίδια. είξτε ότι θα πρέπει να υπάρχει µια ακολουθία από µέρες στον Ιούνιο κατά τις οποίες η οµάδα θα παίξει ακριβώς 14 παιχνίδια. Απόδειξη: Έστω a j οαριθµόςτωνπαιχνιδιώνπουηοµάδαέχειπαίξειµέχρικαιτηµέρα j του Ιουνίου. Τότε, η a 1,,a 30 Z + είναι µία ακολουθία από 30 διαφορετικούς ακεραίους όπου 1 a j 45. Εποµένως, a 1 +14,,a είναι µία ακολουθία από 30 διαφορετικούς ακεραίουςµε 15 a j Άρα, (a 1,,a 30, a 1 +14,,a )είναιµίαακολουθία 60ακεραίωναπότοσύνολο {1,..,59}. Απότην αρχήτουπεριστερώνα,δύοαπόαυτούςείναιίσοι,αλλάοι a 1,,a 30 είναι διαφορετικοίµεταξύτουςκαιοι a 1 +14,,a είναιδιαφορετικοίµεταξύτους. Εποµένως, ij: a i = a j +14. Εποµένως, ij: a i a j =14, κι εποµένως υπάρχουν όντως ηµέρες i και j τέτοιες ώστε µεταξύ τους να έχουν παιχτεί 14 παιχνίδια. 4/13/
17 Κι άλλο παράδειγµα Αποδείξτε ότι εάν πέντε σηµεία επιλεγούν στο εσωτερικό ενός τετραγώνου πλευράς µήκους 1, τότε υπάρχουν δύο σηµεία που απέχουν το πολύ 2 / 2 4/13/
18 Κι άλλο παράδειγµα Πρόβληµα: Αποδείξτε ότι εάν πέντε σηµεία επιλεγούν στο εσωτερικό ενός τετραγώνου πλευράς µήκους 1, τότε αναγκαστικά πρέπει να υπάρχουν δύο σηµεία που απέχουν το πολύ 2 / 2 Λύση: Περιστέρια (5): Τα 5 επιλεγµένα σηµεία Περιστερώνες (4):Οι περιοχές 1/2 1/2 που παίρνουµε ενώνοντας τα µέσα των απέναντι πλευρών του τετραγώνου. Η επιλογή ενός σηµείου στο τετράγωνο αντιστοιχεί στην τοποθέτηση ενός περιστεριού σε ένα περιστερώνα. εδοµένου ότι 5 περιστέρια τοποθετούνται σε 4 περιστερώνες, τουλάχιστο ένα ζεύγος περιστεριών θα τοποθετηθεί στον ίδιο περιστερώνα. Γι αυτά τα σηµεία, είναι προφανές ότι η απόστασή τους είναι µικρότερη από το µήκος της διαγωνίου του 1/2 1/2 τετραγώνου (= 2/2). 4/13/
19 Κι άλλο παράδειγµα Πρόβληµα: Έστω µια σκακιέρα από την οποία αφαιρούµε το επάνω αριστερά και το κάτω δεξιά τετράγωνό της. Είναι δυνατόν να καλύψουµε το σκάκι µε κοµµάτια ντόµινο, καθένα από τα οποία έχει µέγεθος ακριβώς 2 τετράγωνα της σκακιέρας; (η τοποθέτηση ενός ντόµινο θεωρείται νόµιµη εάν είναι οριζόντια ή κατακόρυφη). Λύση??? 4/13/
20 Κι άλλο παράδειγµα Πρόβληµα: Έστω µια σκακιέρα από την οποία αφαιρούµε το επάνω αριστερά και το κάτω δεξιά τετράγωνό της. Είναι δυνατόν να καλύψουµε το σκάκι µε κοµµάτια ντόµινο, καθένα από τα οποία έχει µέγεθος ακριβώς 2 τετράγωνα της σκακιέρας; (η τοποθέτηση ενός ντόµινο θεωρείται νόµιµη εάν είναι οριζόντια ή κατακόρυφη). Λύση Τα τετράγωνα που αφαιρούµε έχουν το ίδιο χρώµα. Αυτό σηµαίνει πως µετά την αφαίρεσή τους, το ένα χρώµα θα έχει δύο τετράγωνα περισσότερα από το άλλο χρώµα Κάθε τοποθέτηση ενός ντόµινο στη σκακιέρα καλύπτει ακριβώς ένα άσπρο και ακριβώς ένα µαύρο τετράγωνο. Εποµένως, από την αρχή του περιστερώνα γνωρίζουµε ότι δεν θα µπορέσουµε τελικά να καλύψουµε όλα τα τετράγωνα. 4/13/
21 Αποδεικνύοντας προτάσεις µέσω της αρχής του περιστερώνα Αποφάσισε ποιά είναι τα «περιστέρια» Αποφάσισε ποιοί είναι οι «περιστερώνες» Αποφάσισε τον κανόνα µε τον οποίο τα «περιστέρια» αντιστοιχίζονται στους «περιστερώνες» Εφάρµοσε την αρχή του περιστερώνα προκειµένου να εξακριβωθεί αν µπορεί να εξαχθεί το επιθυµητό συµπέρασµα 4/13/
22 Κι άλλο παράδειγµα Έστω ότι σε ένα κουτί υπάρχουν 10 µπλε και 12καφέ κάλτσες. Πόσες είναι οι ελάχιστες που πρέπει να βγάλετε (χωρίς να βλέπετε) για να είστε σίγουροι ότι τελικά θα έχετε τουλάχιστο ένα ζευγάρι κάλτσες του ίδιου χρώµατος; 4/13/
23 Κι άλλο παράδειγµα Τρεις! Γιατί;;;; Περιστέρια: Κάλτσες που επιλέγονται. Περιστερώνες: τα δύο διαφορετικά χρώµατα. Ψάχνουµε να βρούµε εκείνο το ελάχιστο πλήθος «περιστεριών» που εάν τοποθετήσουµε στους «περιστερώνες», θα µας οδηγήσει στην τοποθέτηση δύο περιστεριών στον ίδιο περιστερώνα. Από την αρχή του περιστερώνα, αυτό είναι 3 Όντως, αν επιλέξω τρεις κάλτσες, τουλάχιστον οι δύο από αυτές θα είναι αναγκαστικά του ίδιου χρώµατος 4/13/
24 Κι άλλο παράδειγµα Ένα µπώλπεριλαµβάνει 10 κόκκινεςκαι 10 κίτρινες µπάλες. Πόσες πρέπει να επιλέξουµε προκειµένου να εξασφαλίσουµε ότι θα έχουµε τρεις του ίδιου χρώµατος; Πόσες µπάλες απαιτούνται αν έχουµε 2 χρώµατα και κάποιος πρέπει να επιλέξει 3 µπάλες ίδιου χρώµατος; Πόσα περιστέρια πρέπει να έρθουν στον περιστερώνα αν πρέπει 3 να µπουν υποχρεωτικά στην ίδια θέση και υπάρχουν 2 θέσεις; Αριθµός θέσεων: k = 2 Θέλουµε N/k = 3 Ποιο είναι το ελάχιστο N? N = 5 24
25 Μέσα σε έξι αµοιβαίες γνωριµίες, µπορεί κανείς να βρει αναγκαστικά µια υποοµάδα τριών αµοιβαίων φίλων, ή τριών αµοιβαίων εχθρών.
26 Μέσα σε έξι αµοιβαίες γνωριµίες, µπορεί κανείς να βρει αναγκαστικά µια υποοµάδα τριών αµοιβαίων φίλων, ή τριών αµοιβαίων εχθρών. Φ Φ Φ
27 Μέσα σε έξι αµοιβαίες γνωριµίες, µπορεί κανείς να βρει αναγκαστικά µια υποοµάδα τριών αµοιβαίων φίλων, ή τριών αµοιβαίων εχθρών. E E E
28 Μέσα σε έξι αµοιβαίες γνωριµίες, µπορεί κανείς να βρει αναγκαστικά µια υποοµάδα τριών αµοιβαίων φίλων, ή τριών αµοιβαίων εχθρών. Πως θα το αποδεικνύαµε αυτό; Θα µπορούσαµε να απαριθµήσουµε όλες τις σχέσεις γνωριµίας Υπάρχουν 15 ζεύγάρια... Για κάθε ζευγάρι, υπάρχουν δύο ενδεχόµενα, να είναι φίλοι ή εχθροί Άρα, 2 15 δυνατές σχέσεις Αν θέλουµε ένα λεπτό για να αναλύσουµε κάθε σχέση, θα χρειαζόµασταν 546 ώρες...
29 Ας επιλέξουµε ένα άτοµο: * Έχει 5 γνωριµίες * Αυτές οι 5 πρέπει να είναι είτε µε εχθρούς, είτε µε φίλους Η αρχή του περιστερώνα µας λέει ότι τουλάχιστον τρεις θα πρέπει να είναι ίδιες, δηλαδή είτε τρεις φίλοι είτε τρεις εχθροί
30 Έστω οι τρεις φίλοι του * *???
31 Έστω οι τρεις φίλοι του * Είτε τουλάχιστον δύο από τους τρείς είναι φίλοι µεταξύ τους *?? Οπότε έχουµε µια παρέα 3 φίλων
32 Έστω οι τρεις φίλοι του * Είτε τουλάχιστον δύο από τους τρείς είναι φίλοι µεταξύ τους Είτε κανείς δεν είναι φίλος µε τους υπόλοιπους δύο * Οπότε έχουµε τρεις εχθρούς
33 Ανάλογα αν θεωρήσουµε ότι και οι τρεις είναι εχθροί του * *???
34 Κάποιοι ορισµοί Υποθέστε ότι οι a 1,a 2, a n αποτελούν µια ακολουθία διαφορετικών πραγµατικών αριθµών. Μιαυποακολουθίααυτής της ακολουθίαςείναι µια ακολουθία a i1, a i 2,, a i m, όπου 1 i 1 < i 2 <... < i m n Μια ακολουθία λέγεταιαυστηρά αύξουσααν κάθε όρος της είναι αυστηρά µεγαλύτερος από τον προηγούµενο. Μια ακολουθία λέγεταιαυστηρά φθίνουσααν κάθε όρος της είναι αυστηρά µεγαλύτερος από τον επόµενο. Πχ: {1, 5, 6, 2, 3, 9} είναι µια ακολουθία. {5,6,9} είναι µια αυστηρά αύξουσα υπακολουθία
35 Θεώρηµα Θεώρηµα: Κάθε ακολουθία n 2 +1 διαφορετικών πραγµατικών αριθµών περιλαµβάνει υποακολουθία µήκους τουλάχιστον n+1, η οποία είναι αυστηρά αύξουσα ή φθίνουσα Παράδειγµα: 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 10 = όροι, άρα πρέπει να υπάρχει υπακολουθίαµήκους 4 η οποία είναι αυστηρά αύξουσα ή φθίνουσα. Πράγµατι, 1,4,6,12 1,4,6,7 11,9,6,5
36 Θεώρηµα Έστω a 1, a 2,, a n 2+1ακολουθία n 2 +1 διαφορετικών αριθµών. Σχετίστε κάθε όροτης µε ένα διατεταγµένο ζεύγος (i k,d k ) όπου i k το µήκος της µέγιστης αύξουσας ακολουθίας που ξεκινά από το a k και d k το µήκος της µέγιστης φθίνουσας ακολουθίας που ξεκινά από το a k. Πχ: 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 a 2 = 11, (2,4) a 4 = 1, (4,1) Απόδειξη µε αντίφαση: Ας υποθέσουµε ότι δεν υπάρχει αύξουσα ή φθίνουσα ακολουθία µήκους n+1 ή µεγαλύτερου. Τότε, οι i k και d k είναι θετικοί ακέραιοι n, για k=1 έως το n 2 +1.
37 Υπάρχουν n 2 δυνατάδιατεταγµένα ζεύγη (i k,d k ). (Γιατί;;;). Από την αρχή του περιστερώνα, εφόσον έχουµε n 2 +1 διατεταγµένα ζεύγη (ένα για κάθε όρο της ακολουθίας) δύο από αυτά θα είναι ακριβώς τα ίδια. Τυπικά, όροι a s και a t της ακολουθίας, µε s<t τέτοιοι ώστε i s = i t και d s = d t. Θα δείξουµε ότι αυτό δεν είναι δυνατόν. Επειδή οι όροι της ακολουθίας είναι διαφορετικοί, είτε a s <a t είτε a s > a t. Αν a s < a t, µια αύξουσα υπακολουθίαµήκους i t +1 (ή µεγαλύτερου) µπορεί να κατασκευαστεί, ξεκινώντας από το a s ακολουθούµενο από αύξουσα υπακολουθίαµήκους i t, ξεκινώντας από το a t. Αλλά είπαµε ότι i s = i t. Αυτό είναι αντίφαση. Όµοια, αν a s > a t, µπορούµε να δείξουµε ότι το d s πρέπει να είναι µεγαλύτερο από το d t, το οποίο είναι επίσης αντίφαση.
38 Ενδιαφέρουσες παρατηρήσεις Αυτή ήταν µια «δύσκολη» απόδειξη, που µας πήρε λίγη ώρα να διατυπώσουµε και να καταλάβουµε Πόσο χρόνο θα µας έπαιρνε για να λύσουµε αυτό το πρόβληµα δοκιµάζοντας όλα τα δυνατά ενδεχόµενα; Για ακολουθίες µήκους 2: 2 ενδεχόµενα Για ακολουθίες µήκους 5: 120 ενδεχόµενα Για ακολουθίες µήκους 10: ενδεχόµενα Για ακολουθίες µήκους 17: 3,6 x ενδεχόµενα Για ακολουθίες µήκους 26: 4.0 x ενδεχόµενα Για ακολουθίες µήκους 37: 1.4 x ενδεχόµενα
39 Ενδιαφέρουσες παρατηρήσεις Ταχύτητα του φωτός: 3,0 x 10 8 m/sec ιάµετρος πρωτονίου: m Ας υποθέσουµε ένα υπολογιστή που κάνει µια πράξη στο χρονικό διάστηµα που χρειάζεται το φως για να διανύσει απόσταση ίση µε τη διάµετρο του πρωτονίου. Μιλάµε για ένα υπολογιστή που κάνει 3,0 x πράξεις το δευτερόλεπτο Συγκρίνετέ τον µε τους σηµερινούς σειριακούς υπολογιστές που µπορούν να κάνουν 6,0 x πράξεις το δευτερόλεπτο
40 Ενδιαφέρουσες παρατηρήσεις Το Big Bang συνέβειπριν από περίπου 14 δισεκατοµµύρια χρόνια ηλαδή πριν από 4,4 x sec Άρα, αν ξεκινάγαµε µε το Bing Bang, θα είχαµε κάνει 1,33 x πράξεις σε αυτόν τον υπολογιστή ηλαδή, η εξαντλητική απαρίθµηση δεν θα είχε ολοκληρωθεί και δεν θα είχαµε καταφέρει να αποδείξουµε το θεώρηµα ούτε καν για ακολουθίες 37 διαφορετικών αριθµών Για την ακρίβεια, θα χρειαζόµασταν κάπου 100 φορές την ηλικία του σύµπαντος Η µαθηµατική απόδειξη πήρε πολύ λιγότερο και µας δίνει τη βεβαιότητα για οποιοδήποτε µήκος ακολουθίας
41 Συνέπειες Συµπίεση χωρίς απώλειες (Lossless compression) Κάθε αλγόριθµος συµπίεσης γενικού σκοπού ο οποίος επιτρέπει πλήρη ανάκτηση της αρχικής πληροφορίας και ο οποίος µειώνει το µέγεθος ενός αρχείου εισόδου, είναι καταδικασµένος να κάνει το µέγεθος κάποιου άλλου αρχείου µεγαλύτερο! ( Αλλιώς, δύο αρχεία θα έπρεπε υποχρεωτικά να συµπιέζονται στο ίδιο, µικρότερο αρχείο, πράγµα που θα σήµαινε ότι δεν θα µπορούσαµε να ανακτήσουµε την αρχική πληροφορία) (Hash functions Τα collisions είναι αναπόφευκτα σε hash tables γιατί ο αριθµός των κλειδιών είναι µεγαλύτερος από τον αριθµό των δεικτών στο hash table. ) 4/13/
Συναρτήσεις ένα-προς-ένα. HY118- ιακριτά Μαθηµατικά. Συναρτήσεις «επί» Αγγλική ορολογία Η αρχή του περιστερώνα
HY118- ιακριτά Μαθηµατικά Πέµπτη, 06/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Διαβάστε περισσότεραιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συναρτήσεις ένα-προς-ένα Συναρτήσεις «επί» 17 - Η αρχή του περιστερώνα
HY118- ιακριτά Μαθηµατικά Τρίτη, 12/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/13/2016
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 06/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Διαβάστε περισσότεραιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 08/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/10/2016
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Συναρτήσεις. Συνάρτηση. Συνάρτηση: Τυπικός ορισµός Συναρτήσεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 08/04/2016 Συναρτήσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of
Διαβάστε περισσότεραΜερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή
Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
Διαβάστε περισσότεραιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου
Αρχή του Περιστερώνα ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση: διµελής
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...
HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική
Διαβάστε περισσότεραΔιακριτά Μαθηματικά Συνδυαστική
Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 8 Αυγούστου 2012 Η Αρχή του Dirichlet ή της περιστεροφωλιάς Aν γνωρίζουμε πως σε κάποια μέτρηση στις n ϕωλιές καταμετρήθηκαν συνολικά
Διαβάστε περισσότεραΘεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός
HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/9/2017
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/4/2016
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα
Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:
Διαβάστε περισσότεραΦροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016
ΜΕΡΟΣ Α: ΣΥΝΑΡΤΗΣΕΙΣ Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις f : A B, g : B διάγραμμα. C και h : C Dπου ορίζονται στο παρακάτω Υπολογίστε
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις
HY118- ιακριτά Μαθηµατικά Τρίτη, 28/03/2017 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι
HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Πέµπτη, 19/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι έχουµε δει µέχρι τώρα Κατευθυνόµενοι µη κατευθυνόµενοι
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016
Διαβάστε περισσότεραΦροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015
Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h
Διαβάστε περισσότεραΑρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αρχή του Περιστερώνα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση: διμελής σχέση
Διαβάστε περισσότεραΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]
Διαβάστε περισσότεραΚεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές
Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα
Διακριτά Μαθηματικά Απαρίθμηση Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών
Διαβάστε περισσότεραΑρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αρχή του Περιστερώνα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση: διμελής σχέση
Διαβάστε περισσότεραΔιδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αρχή του Περιστερώνα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση:
Διαβάστε περισσότεραP( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!
HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση
Διαβάστε περισσότεραΑποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
Διαβάστε περισσότεραΣυνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016
HY118- ιακριτά Μαθηµατικά Πέµπτη, 21/4/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων
Διαβάστε περισσότεραΠαράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε
HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016
HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Προτασιακός Λογισµός (συνέχεια...) Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από
Διαβάστε περισσότερα(1) 98! 25! = 4 100! 23! = 4
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση ΙΙ και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές
Διαβάστε περισσότεραΜορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ
Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Διαβάστε περισσότερα1 Ορισµός ακολουθίας πραγµατικών αριθµών
ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
Διαβάστε περισσότεραΑπαρίθμηση: Εισαγωγικά στοιχεία
Απαρίθμηση: Εισαγωγικά στοιχεία Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση: μέτρηση αντικειμένων με ορισμένες
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 28/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/30/2017
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/2017
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen Τι
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016
Διαβάστε περισσότεραΟι πραγµατικοί αριθµοί
Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Σχέσεις. Κλάσεις ισοδυναµίας. Σχέσεις ισοδυναµίας. 15 -Σχέσεις
HY118- ιακριτά Μαθηµατικά Τρίτη, 05/04/2016 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
Διαβάστε περισσότερα( ( )) ( 3 1) 2( 3 1)
Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 7/4/2017 ΜΕΡΟΣ Α: ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις f : A B, g : B διάγραμμα. C και h : C D που ορίζονται στο παρακάτω Υπολογίστε
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις
HY8- ιακριτά Μαθηµατικά Πέµπτη, 23/03/207 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/207
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
Διαβάστε περισσότεραΑσκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of
Διαβάστε περισσότεραsup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων
Διαβάστε περισσότεραΓνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.
Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/16/2016
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 01/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
Διαβάστε περισσότεραΣυνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ
Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός
Διαβάστε περισσότεραροµολόγηση πακέτων σε δίκτυα υπολογιστών
ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 01 ιδάσκων : Π Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /10/01 Ηµεροµηνία Παράδοσης : /11/01
Διαβάστε περισσότεραΣηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
Διαβάστε περισσότερα3 Αναδροµή και Επαγωγή
3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/24/2017
Διαβάστε περισσότεραιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα
Διακριτά Μαθηματικά Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Διαβάστε περισσότεραΑσκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)
Διαβάστε περισσότεραα) Συµπληρώστε τα κενά γνωρίζοντας ότι: β) Αν στη κάτω σειρά χρησιµοποιούνται µονοψήφιοι θετικοί ακέραιοι και διαφορετικοί µεταξύ τους τότε ποιος είναι µεγαλύτερος αριθµός που µπορεί να υπάρχει στην κορυφή;
Διαβάστε περισσότερα2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008
2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης
Διαβάστε περισσότερα4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Διαβάστε περισσότερα(1) 98! 25! = 4 100! 23! = 4
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές Επιµέλεια
Διαβάστε περισσότερα2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ
.3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι
Διαβάστε περισσότεραΘέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος.
Πανεπιστηµιο Αιγαιου Τµηµα Μαθηµατικων 8 200 Καρλοβασι Σαµος Καρλόβασι 09/02/2012 Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος. 1. Απαντήστε µε α(αλήθεια)
Διαβάστε περισσότεραιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις
HY118- ιακριτά Μαθηµατικά Πέµπτη, 31/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
Διαβάστε περισσότεραΘεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.
Διαβάστε περισσότεραΕπίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com
Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 15/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 15-Mar-18
Διαβάστε περισσότεραΠαρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen
Διαβάστε περισσότερα11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο
Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου
Διαβάστε περισσότερα< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε
Διαβάστε περισσότεραΥπερβατικοί Αριθµοί και Θεώρηµα του Liouville
Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville Χρήστος Κονταράτος 14 Νοεµβρίου 2014 1 Περιεχόµενα 1 Εισαγωγή 3 2 Το Θεώρηµα του Liouville 4 3 Η Υπερβατικότητα του ξ 6 4 Αριθµοί του Liouville 8 2 1 Εισαγωγή
Διαβάστε περισσότερα(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς
Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) (α) Επιλέγουµε αυθαίρετα φυσικούς αριθµούς από το σύνολο {,,3,, 3, } Να δείξετε ότι µεταξύ των αριθµών που έχουµε επιλέξει υπάρχει πάντα ένα ζευγάρι όπου ο µεγαλύτερος
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από
Διαβάστε περισσότεραΟρια Συναρτησεων - Ορισµοι
Ορια Συναρτησεων - Ορισµοι Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 3 Σεπτεµβρίου 205 Εισαγωγή Στην παράγραφο αυτή ϑα δούµε πως προκύπτει η ιδέα του ορίου στην προσπά- ϑεια να ορίσουµε την
Διαβάστε περισσότερα2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.
2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΓιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.
HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό
Διαβάστε περισσότεραΦροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018
Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018 Άσκηση 9.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;
Διαβάστε περισσότερα11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.
ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε
Διαβάστε περισσότερα