HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...
|
|
- Αττις Αλεξάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/ Από τις υποθέσεις στα συµπεράσµατα... Έχουµε υποθέσεις p, θέλουµε να αποδείξουµε το συµπέρασµα q. Βρες ένα s 1 τέτοιο ώστε p s 1 Τότε o κανόνας modus ponens δίνει το s 1. Μετά, βρές s 2 τέτοιο ώστε s 1 s 2. Τότε o κανόνας modus ponens δίνει το s 2.. Και ελπίζουµε να βρούµε ένα s n τ.ω.: s n q. Το πρόβληµα µε αυτή τη άµεση απόδειξη είναι ότι µπορεί να είναι δύσκολο να «δούµε» το «µονοπάτι» που οδηγεί στην p. 2 Από τα συµπεράσµατα στις υποθέσεις... Συχνά είναι πιο εύκολο να «δούµε» το ίδιο ακριβώς µονοπάτι, αν ξεκινήσουµε από το συµπέρασµα q κι όχι από τις υποθέσεις ηλαδή, πρώτα βρες ένα s n τέτοιο ώστε s n q. Μετά ένα s n-1 : s n-1 s n, κ.ο.κ µέχρις ότου βρείς ένα s 1 τέτοιο ώστε p s 1. Σηµειώστε ότι εξακολουθούµε να χρησιµοποιούµε modus ponens για να διαδώσουµε την ισχύ των προτάσεων από την pστην s 1 στην στην s n στην q Βρίσκουµε το µονοπάτι προς τα πίσω, αλλά το εφαρµόζουµε προς τα εµπρός!!!! Αυτό δεν είναι το ίδιο µε την έµµεση απόδειξη!!! Παράδειγµα Θεώρηµα: a>0,b>0,a b: (a+b)/2 > (ab) 1/2. Απόδειξη: εν είναι προφανές πως από τις υποθέσεις a>0, b>0, a b οδηγούµαστε στο συµπέρασµα (a+b)/2 > (ab) 1/2. Οπότε, ας δοκιµάσουµε να ξεκινήσουµε από το συµπέρασµα, (a+b)/2 > (ab) 1/2! 3 4 1
2 Βήµατα... (a+b)/2 > (ab) 1/2 (a+b) 2 /4 > ab (a+b) 2 > 4ab a 2 +2ab+b 2 > 4ab a 2 2ab+b 2 > 0 (a b) 2 > 0 Τώρα, εφόσον a b, (a b) 0, προκύπτει ότι (a b) 2 >0, και µπορούµε να ακολουθήσουµε την σωστή σειρά των βηµάτων Απόδειξη παραδείγµατος Θεώρηµα: a>0,b>0,a b: (a+b)/2 > (ab) 1/2. Απόδειξη: a b (a b) 0 (a b) 2 >0 a 2 2ab+b 2 > 0 a 2 2ab+b 2 +4ab > 4ab a 2 +2ab+b 2 > 4ab (a+b) 2 > 4ab (a+b) 2 /4 > ab. Αφού ab>0, προκύπτει ότι (a+b)/2 > (ab) 1/ Άλλο ένα παράδειγµα Ξεκινώντας από το τέλος... Παιχνίδι µε τους εξής κανόνες: Υπάρχουν 15 πέτρες σε µία στοίβα. ύο παίκτες παίζουν εναλλάξ και καθένας τους µπορεί να πάρει 1, 2, ή 3 πέτρες από τη στοίβα. Νικητής είναι αυτός που παίρνει την τελευταία πέτρα. Θεώρηµα: Υπάρχει µία στρατηγική η οποία εξασφαλίζει στον 1 ο παίκτη την νίκη σε κάθε περίπτωση. Πως το αποδεικνύουµε; Ξεκινώντας από το τέλος του παιχνιδιού!!! Ο Π1 νικά αν είναι σειρά του Π2 και δεν υπάρχουν πέτρες Ο Π1 µπορεί να το επιτύχει αυτό αν του µείνουν 1 ή 2 ή 3 πέτρες... Αυτό θα συµβεί αν στον Π2 µείνουν 4 πέτρες... Ο Π1 µπορεί να το επιτύχει αυτό αν του µείνουν 5 ή 6 ή 7 πέτρες... Αυτό θα συµβεί αν στον Π2 µείνουν 8 πέτρες... Κλπ! Παίκτης 1 Παίκτης 2 0 1, 2, 3 4 5, 6, 7 8 9, 10, , 14,
3 ιατυπώνοντας την απόδειξη από την αρχή... Θεώρηµα: Υπάρχει µία στρατηγική η οποία εξασφαλίζει στον 1 ο παίκτη την νίκη σε κάθε περίπτωση. Απόδειξη. Ο Π1 παίρνει 3 πέτρες, αφήνοντας 12. Αφού παίξει ο Π2, θα περισσέψουν 11, 10, ή 9 πέτρες. Σε κάθε περίπτωση, ο Π1 µπορεί να µειώσει τον αριθµό από πέτρες σε 8. Τότε ο Π2 θα µειώσει τον αριθµό από πέτρες σε 7, 6, ή 5. Σε κάθε περίπτωση, ο Π1 µπορεί να µειώσει τον αριθµό από πέτρες σε 4. Τότε, ο Π2 πρέπει να τις µειώσει σε 3 ή 2, ή 1. Ο Π1 παίρνει τις τελευταίες πέτρες και κερδίζει!!! 9 3/15/2016 Τέλος, κάποιες κοινές απατηλές αποδείξεις Μία απατηλή απόδειξη είναι ένας µηχανισµός εξαγωγής συµπερασµάτων ο οποίος δεν ευσταθεί λογικά. Μία απατηλή απόδειξη µπορεί να οδηγεί σε εσφαλµένο συµπέρασµα Απατηλότητα αποδοχής του συµπεράσµατος: p q αληθές, και q αληθές, άρα p αληθές. (Όχι, γιατί F T αληθές.) Απατηλότητα άρνησης της υπόθεσης: p q αληθές, και p ψευδές, άρα q ψευδές. (Όχι, πάλι επειδή F T αληθές.) 3/15/2016 Κυκλικός συλλογισµός Η απατηλότητα (εµµέσως ή αµέσως) του να υποθέτουµε την ισχύ του συµπεράσµατος, στην πορεία προς την απόδειξή του! Παράδειγµα: (για ακεραίους n) εάν ο n 2 είναι άρτιος τότε ο n είναι άρτιος. Επιχειρούµενη απόδειξη: Ο n 2 είναι άρτιος. Τότε ο n 2 =2k για κάποιο ακέραιο k. ιαιρώντας και τα δύο µέλη µε n µας δίνει n = (2k)/n = 2(k/n). Οπότε υπάρχει ένας ακέραιος j (ο k/n) τέτοιος ώστε n=2j. Αρα ο n είναι άρτιος. Σε ποιό σηµείο χρησιµοποιείται κυκλικός συλλογισµός; Πως αποδεικνύεται ότι ο j= k/n = n/2 είναι ακέραιος, χωρίς πρώτα να υποθέσουµε ότι ο n είναι άρτιος;;;; 3/15/2016 Ας µην ξεχνάµε Έχουµε επίσης δει µία ορθή απόδειξη για την ίδια πρόταση: µία καλή υπενθύµιση για το ότι εάν µία απόδειξη είναι εσφαλµένη, αυτό δεν σηµαίνει ότι το συµπέρασµα του αντίστοιχου θεωρήµατος δεν ισχύει!!! 3
4 Όρια των αποδείξεων Μερικές πολύ απλές προτάσεις της θεωρίας αριθµών δεν έχουν αποδειχτεί ακόµα! Π.χ.. Εικασία του Goldbach: Έστω Α(x) = x άρτιος, P(x) = x πρώτος x( [x>2 A(x)] p q P(p) P(q) p+q = x). Κάθε άρτιος αριθµός µεγαλύτερος του 2 είναι το άθροισµα δύο πρώτων. Και οι µεγαλύτεροι µαθηµατικοί έχουν προτείνει ψευδείς εικασίες! Ο Euler έκανε την εικασία ότι εάν n>2, το άθροισµα n 1 n οστών δυνάµεων θετικών ακεραίων δεν είναι n οστή δύναµη κάποιου ακεραίου. Παρέµεινε «αληθές» για όλες τις περιπτώσεις που δοκιµάστηκαν για 200 χρόνια, χωρίς όµως να µπορεί να βρεθεί απόδειξη. Το 1966, κάποιος παρατήρησε ότι = Και οι µεγαλύτεροι µαθηµατικοί έχουν προτείνει ψευδείς εικασίες! Ο Euler έκανε την εικασία ότι εάν n>2, το άθροισµα n 1 n οστών δυνάµεων θετικών ακεραίων δεν είναι n οστή δύναµη κάποιου ακεραίου. Παρέµεινε «αληθές» για όλες τις περιπτώσεις που δοκιµάστηκαν για 200 χρόνια, χωρίς όµως να µπορεί να βρεθεί απόδειξη. Το 1966, κάποιος παρατήρησε ότι = Θεωρία Συνόλων 15 3/15/
5 Εισαγωγή στη θεωρία συνόλων Ένα σύνολο είναι µία δοµή που αναπαριστά µία συλλογή διαφορετικών αντικειµένων (ενδεχοµένως κενή) τα οποία δεν έχουν διάταξη. Η θεωρία συνόλων ασχολείται µε πράξεις, σχέσεις και προτάσεις σχετικά µε τα σύνολα. Τα σύνολα είναι πανταχού παρόντα στα υπολογιστικά συστήµατα. Όλα τα µαθηµατικά µπορούν να οριστούν µε κάποια µορφή της θεωρίας συνόλων (χρησιµοποιώντας κατηγορηµατικό λογισµό). Εισαγωγή στη θεωρία συνόλων Σχεδόν οτιδήποτε µπορείτε να κάνετε µε διαφορετικά αντικείµενα, µπορείτε να το κάνετε και µε σύνολα αντικειµένων. Π.χ. (µιλώντας άτυπα), µπορείτε Να αναφέρεστε σε αυτά, να τα συγκρίνετε, να τα συνδυάζετε, Επίσης, µπορείτε να κάνετε µε σύνολα, πράγµατα που δεν µπορείτε, πιθανά, να κάνετε µε συγκεκριµένα αντικείµενα: Π.χ., µπορείτε: Να ελέγξετε αν ένα σύνολο περιέχεται σε ένα άλλο Να καθορίσετε πόσα στοιχεία έχει Να τα χρησιµοποιήσετε σαν το πεδίο ορισµού µεταβλητών στον κατηγορηµατικό λογισµό 3/15/ /15/ Βασικοί συµβολισµοί για τα σύνολα Για τα σύνολα, θα χρησιµοποιούµε τις µεταβλητές S, T, U, Μπορούµε να συµβολίζουµε ένα σύνολο S µε το να απαριθµούµε όλα τα στοιχεία του σε αγκύλες: Το σύνολο S = {a, b, c} περιέχει τρία στοιχεία, τα οποία συµβολίζονται µε τα a, b, c. Επίσης, µπορούµε να ορίσουµε ένα σύνολο µε βάση µία ιδιότητα P που έχουν τα στοιχεία του το {x P(x)} είναι το σύνολο όλων των x που έχουν την ιδιότητα P. Βασικές ιδιότητες των συνόλων Τα σύνολα είναι από τη φύση τους µη διατεταγµένα: Ανεξάρτητα από το τι είναι τα στοιχεία a, b, και c, {a, b, c} = {a, c, b} = {b, a, c} = Όλα τα στοιχεία είναι διαφορετικά µεταξύ τους. Οι πολλαπλές εµφανίσεις ενός στοιχείου δεν κάνουν καµία διαφορά! Εάν a=b, τότε {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}. Πόσα στοιχεία περιλαµβάνει; 2 στοιχεία (το πολύ)! 3/15/ /15/
6 Πολυσύνολα Υπάρχει ένα διαφορετικό µαθηµατικό κατασκεύασµα το οποίο ονοµάζεται πολυσύνολο, για το οποίο η προηγούµενη υπόθεση δεν ισχύει. Εάν a=b, τότε [c, a] = [c, b], αλλά [a, b, c] [a, c] [a,a,a,c] Συµβολισµός: Εάν B είναι πολυσύνολο, τότε count B (e)=πλήθος εµφανίσεων του e στο B Εποµένως, count [1,2,3,3,1,3,3] (3)=4 Ορισµός της ισότητας συνόλων ύο σύνολα είναι ίσα αν και µόνο αν περιέχουν ακριβώς τα ίδια στοιχεία. εν έχει σηµασία πως το σύνολο έχει οριστεί: Για παράδειγµα: {1, 2, 3, 4} = {x x ακέραιος όπου x>0 και x<5 } = {x x θετικός ακέραιος του οποίου το τετράγωνο είναι µεγαλύτερο του 0 και µικρότερο του 25} 3/15/ /15/ Άπειρα σύνολα ιαγράµµατα Venn Τα σύνολα µπορεί να είναι άπειρα. Σύµβολα και µερικά άπειρα σύνολα ειδικού ενδιαφέροντος: N = {1, 2, } Οι φυσικοί (Natural). Z = {, -2, -1, 0, 1, 2, } Οι ακέραιοι (Γερµανικά: Zahl=αριθµός). R = Οι πραγµατικοί (Real) Q = Οι ρητοί (Quotient) Οι συµβολισµοί (N, Z, R, Q) χρησιµοποιούνται επίσης για τα παραπάνω ειδικά σύνολα. Τα άπειρα σύνολα έχουν διαφορετικά µεγέθη (!!!) Περισσότερα γι αυτό αργότερα... John Venn /15/ /15/
7 «ανήκει» x S ( το στοιχείο xανήκει στο σύνολο S ), είναι η πρόταση που λέει ότι το αντικείµενο x είναι ένα στοιχείο/µέλος του συνόλου S. π.χ. 3 N, α {x x γράµµα του αλφάβητου} : Από το ελληνικό «στίν» Συµβολισµός: x S : ορ. (x S) Πως θα ορίζαµε την ισότητα συνόλων µε βάση τον κατηγορηµατικό λογισµό; Ισότητα συνόλων Η ισότητα συνόλων ορίζεται µε βάση το : ύο σύνολα είναι ίσα αν και µόνο αν έχουν τα ίδια στοιχεία. S=T : ορ. x (x S x T) 3/15/ /15/ Ένα σύνολο µπορεί να είναι κενό Υποθέστε ότι καλούµε ένα σύνολο S κενό αν και µόνο αν δεν περιέχει κανένα στοιχείο: x(x S). Καλούµαστε να αποδείξουµε ότι: xy((κενό(x) κενό(y) x=y) Ποιό είναι το νόηµα της παραπάνω πρότασης; Ένα σύνολο µπορεί να είναι κενό Θέλουµε να αποδείξουµε ότι υπάρχει το πολύ ένα κενό σύνολο. Πως αυτό µπορούµε να το αποδείξουµε τυπικά; 3/15/ /15/
8 Υπάρχει µόνο ένα κενό σύνολο Το Κενό Σύνολο Θέλουµε να αποδείξουµε ότι: xy((κενό(x) κενό(y) x=y) Ας υποθέσουµε ότι υπάρχουν δύο σύνολα Α και Β διαφορετικά µεταξύ τους, έτσι ώστε και τα δύο να είναι κενά. Εποµένως, x(x A) x(x Β) Εφόσον Α Β, θα ισχύει πως x(x Α (x Β)) x(x Β (x Α)) Η 1η πρόταση δεν µπορεί να ισχύει γιατί x(x Α). Η 2η πρόταση δεν µπορεί να ισχύει γιατί x(x Β) Αντίφαση. Εποµένως υπάρχει το πολύ ένα κενό σύνολο. και επειδή υπάρχει και τουλάχιστον ένα, το κενό σύνολο είναι ένα και µοναδικό. 3/15/ Είδαµε ότι υπάρχει ακριβώς ένα κενό σύνολο, εποµένως θα του δώσουµε ένα ειδικό όνοµα: ( το κενό σύνολο ) είναι το µοναδικό σύνολο που δεν περιέχει κανένα στοιχείο. = {} 3/15/ S T ( Το S είναι υποσύνολο του T ) σηµαίνει ότι κάθε στοιχείο του S είναι επίσης και στοιχείο του T. Πως µπορούµε να ορίσουµε τη σχέση υποσυνόλου µε βάση τον κατηγορηµατικό λογισµό; S T ( Το S είναι υποσύνολο του T ) σηµαίνει ότι κάθε στοιχείο του S είναι επίσης και στοιχείο του T. S T : ορ. x (x S x T) 3/15/ /15/
9 S S ; S ; S S ; ΝΑΙ S ; 3/15/ /15/ S S ; ΝΑΙ S ; ΝΑΙ S S ; S ; 3/15/ /15/
10 S S ;ΟΧΙ S ; S S ;ΟΧΙ S ; ΌΧΙ πάντα! Π.χ., {, α, β} αλλά {α, β} 3/15/ /15/ Αυτό µας βοηθά να κατανοήσουµε περισσότερο τον τελεστή «εάν τότε» Η πρόταση x (P(x) Q(x)) σηµαίνει ότι «τα στοιχεία που έχουν την ιδιότητα P είναι υποσύνολο των στοιχείων που έχουν την ιδιότητα Q» Αν κανένα στοιχείο στο π.ο. της x δεν έχει την ιδιότητα P, τότε η πρόταση x (P(x) Q(x)) είναι αληθής Αν όλα τα στοιχεία έχουν την ιδιότητα Q, τότε η πρόταση x (P(x) Q(x)) είναι και πάλι αληθής Η µόνη περίπτωση να είναι ψευδής η πρόταση είναι να υπάρχει ένα στοιχείο µε την ιδιότητα P που να µην έχει την ιδιότητα Q Περισσότεροι συµβολισµοί: S T ( Το S είναι υπερσύνολο του T ) : ορ. T S. Σηµειώστε ότι S=T S T S T. : ορ. (S T), δηλ. x(x S x T) S T 3/15/ /15/
11 Γνήσια υποσύνολα και υπερσύνολα S T ( Το S είναι γνήσιο υποσύνολο του T ) σηµαίνει ότι S T S T Παράδειγµα:{1,2} {1,2,3} Ισχύει ότι {1,2,3} {1,2,3},... αλλά όχι ότι {1,2,3} {1,2,3} Τα σύνολα είναι αντικείµενα επίσης! Τα στοιχεία ενός συνόλου µπορούν να είναι από µόνα τους σύνολα. Π.χ. S={{1,2}, {1,3}} Προσοχή: {1,2} {{1,2}} 3/15/ /15/ Πληθικός αριθµός S ( ο πληθικός αριθµός του S ) είναι το πλήθος των στοιχείων του S. π.χ., =0, {1,2,3} = 3, {a,b} = 2, {{1,2,3},{4,5}} = 2 Εάν S N, τότε λέµε ότι το S είναι πεπερασµένο. Αλλιώς, λέµε ότι το S είναι άπειρο. 3/15/
Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός
HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/9/2017
HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of
HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή
Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016
HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Θεωρία Συνόλων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/24/2017
HY118- ιακριτά Μαθηµατικά. Συναρτήσεις. Συνάρτηση. Συνάρτηση: Τυπικός ορισµός Συναρτήσεις
HY118- ιακριτά Μαθηµατικά Παρασκευή, 08/04/2016 Συναρτήσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 08/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/10/2016
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/23/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/4/2016
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε
HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 15/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/16/2016
Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18
HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 15/02/2018 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 15-Feb-18
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/2017
ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις
HY118- ιακριτά Μαθηµατικά Πέµπτη, 31/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις
HY118- ιακριτά Μαθηµατικά Τρίτη, 28/03/2017 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen Τι
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Προτασιακός Λογισµός (συνέχεια...) Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από
Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.
Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.
1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται
HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις
HY8- ιακριτά Μαθηµατικά Πέµπτη, 23/03/207 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/207
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 16/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Feb-18
Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2
A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 01/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε
KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.
Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 28/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/30/2017
3 Αναδροµή και Επαγωγή
3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα
Κεφάλαιο 7 Βάσεις και ιάσταση
Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε
Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)
Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (
τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
HY118- ιακριτά Μαθηµατικά. Σχέσεις. ιµελής σχέση. 12 Εισαγωγή στις Σχέσεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017.
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/03/2017 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Ανοικτά και κλειστά σύνολα
5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της
ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη
Α. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ
ΜΑΘΗΜΑ 22 Κεφάλαιο 5o : Πιθανότητες Υποενότητα 5.1: Σύνολα. Θεµατικές Ενότητες: 1. Σύνολα-Υποσύνολα-Ίσα Σύνολα. 2. ιαγράµµατα Venn. 3. Πράξεις µε Σύνολα. Α. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ ΟΡΙΣΜΟΙ Σύνολο είναι
Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα
Κεφάλαιο 1 Εισαγωγικές Εννοιες Σ αυτό το κεφάλαιο ϑα αναφερθούµε συνοπτικά σε ϐασικές έννοιες για σύνολα και απεικονίσεις. Επιπλέον, ϑα αναφερθούµε στη µέθοδο της επαγωγής, η οποία αποτελεί µία από τις
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/21/2017
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )
HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι
HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Πέµπτη, 19/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι έχουµε δει µέχρι τώρα Κατευθυνόµενοι µη κατευθυνόµενοι
Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}
7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι
Ορια Συναρτησεων - Ορισµοι
Ορια Συναρτησεων - Ορισµοι Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 3 Σεπτεµβρίου 205 Εισαγωγή Στην παράγραφο αυτή ϑα δούµε πως προκύπτει η ιδέα του ορίου στην προσπά- ϑεια να ορίσουµε την
Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα
Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής
Απλές επεκτάσεις και Αλγεβρικές Θήκες
Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.
Μαθηµατικά για Πληροφορική
Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής
1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή
KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι
Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 15/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 15-Mar-18
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την
ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen Προηγούμενη
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 7 Απριλίου 2017 Ασκηση 1.
1 Ορισµός ακολουθίας πραγµατικών αριθµών
ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen 08-Feb-18
Εισαγωγικά Παραδείγματα: Παρατηρήσεις:
1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται
Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.
Γνωριµία ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr Ωρες γραφείου (502, Γρ.Λαµπράκη 26): ευτέρα
Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36
ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 Γνωριµία ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr
Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.
Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό
Η Ευκλείδεια διαίρεση
1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε
Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville
Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville Χρήστος Κονταράτος 14 Νοεµβρίου 2014 1 Περιεχόµενα 1 Εισαγωγή 3 2 Το Θεώρηµα του Liouville 4 3 Η Υπερβατικότητα του ξ 6 4 Αριθµοί του Liouville 8 2 1 Εισαγωγή
Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη
Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη
f(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι
HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που
HY118- ιακριτά Μαθηµατικά. Σχέσεις. Κλάσεις ισοδυναµίας. Σχέσεις ισοδυναµίας. 15 -Σχέσεις
HY118- ιακριτά Μαθηµατικά Τρίτη, 05/04/2016 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen