ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
|
|
- Ἀπολλωνία Αθανασιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος ΔΙΑΛΕΞΗ Θεμελιώσεις με πασσάλους : Ομάδες πασσάλων Κατηγοίες πασσάλων. Αξονική φέουσα ικανότητα μεμονωμένου πασσάλου. Εμπηγνυόμενοι πάσσαλοι (πάσσαλοι εκτοπίσεως). Εγχυτοι πάσσαλοι (φεατοπάσσαλοι).3 Ανάλυση πασσάλων κατά τον Ευωκώδικα 7 3. Καθιζήσεις μεμονωμένου πασσάλου 4. Φέουσα ικανότητα ομάδας 4. Κατανομή των φοτίων της ομάδας στους πασσάλους 4.3 Καθιζήσεις ομάδας πασσάλων 5. Εγκάσια φότιση πασσάλων
2 4. Φέουσα ικανότητα ομάδας πασσάλων. Εμπηγνυόμενοι πάσσαλοι (πάσσαλοι εκτοπίσεως) : Βολβοί τάσεων γύω από πασσάλους Λόγω της συμπύκνωσης του εδάφους κατά την έμπηξη των πασσάλων, συνήθως η φέουσα ικανότητα της ομάδας είναι μεγαλύτεη από το άθοισμα των φεουσών ικανοτήτων των πασσάλων. Η αύξησηείναι μεγαλύτεη για πασσάλους μεγάλης εκτόπισης σε μή-συνεκτικά εδάφη. Σε συνεκτικά εδάφη, η αύξησηείναι μικότεη, ενώ σε ευαίσθητες αγίλους μποεί να παατηεί και μείωση της φέουσας ικανότητας (λόγω αναμόχλευσης του εδάφους κατά την κατασκευή). 4. Φέουσα ικανότητα ομάδας πασσάλων. Έγχυτοι πάσσαλοι (πάσσαλοι χωίς εκτόπιση) : Βολβοί τάσεων γύω από πασσάλους Q u, f Q ( ) Αα : Q N Q f Q u, pu u u Ηαντίστασηαιχμής(Q pu ) συνήθως δεν επηεάζεται από την αλληλεπίδαση των πασσάλων της ομάδας (σε πολύ μικές αποστάσεις πασσάλων, ηαντίστασηαιχμής αυξάνει). Η αντίσταση πλευικής τιβής (Q u ) ενίοτε μειώνεται λόγω της αλληλεπίδασης των πασσάλων της ομάδας. Μιά πολύ συντηητική εκτίμηση της απομείωσης της αντίστασης πλευικής τιβής του μεμονωμένου πασσάλου (Q u ) λόγω της ομάδας δίνεται από τη σχέση Covere- Labarre (Q u, πλευική τιβή πασσάλου ομάδας, σε ομάδα πασσάλων σε κάνναβο Ν m πασσάλων, διαμέτου D, με αποστάσεις μεταξύ πασάλων ): θ f 90 m θ arcta D
3 4. Φέουσα ικανότητα ομάδας πασσάλων. Έγχυτοι πάσσαλοι (πάσσαλοι χωίς εκτόπιση) : Σχέση Covere-Labarre : θ f 90 m θ arcta D Q u, πλευική τιβή πασσάλου ομάδας, σε ομάδα πασσάλων σε κάνναβο m πασσάλων Ν m αιθμός πασσάλων ομάδας D διάμετος πασσάλων αξονική απόσταση μεταξύ πασάλων Αα : u, Q u, f Q u Q N ( Q f Q ) pu u Παατήηση : Σκοπός της απομείωσης της Φ.Ι. της ομάδας μέσω του συντελεστή «f» είναι κυίως ο πειοισμός της καθίζησης της ομάδας (επειδή η καθίζηση της ομάδας είναι ακετά μεγαλύτεη από την καθίζηση του μεμονωμένου πασσάλου) 4. Φέουσα ικανότητα ομάδας πασσάλων. Έγχυτοι πάσσαλοι (πάσσαλοι χωίς εκτόπιση) : Ελεγχος της φέουσας ικανότητας της ομάδας πάσσαλων, μέσω του ελέγχου της φέουσας ικανότητας του πειβάλλοντος στεεού διαστάσεων B L D Η φέουσα ικανότητα (Q u,b ) του στεεού ισούται με το άθοισμα :. Τηςφέουσαςικανότηταςεπιφανειακού θεμελίου διαστάσεων B L εδαζόμενου σε βάθος (D). Της πλευικής τιβής της παάπλευης επιφάνειας του στεεού στο ύψος (D). Συνήθως, ο ως άνω έλεγχος είναι ευμενέστεος της φέουσας ικανότητας της ομάδας με την ποηγούμενη μέθοδο : Q > u, b ( Q f Q ) pu u
4 4. Φέουσα ικανότητα ομάδας πασσάλων Παατήηση : Αν και η φέουσα ικανότητα ομάδας πασσάλων συνήθως είναι μεγαλύτεη από το άθοισμα των φεουσών ικανοτήτων των μεμονωμένων πασσάλων, δηλαδή συχνά : Q > Q u, u ηκαθίζησητηςομάδαςείναι πάντοτε μεγαλύτεη από την καθίζηση του μεμονωμένου πασσάλου. Συχνά η αύξηση της καθίζησης της ομάδας επιτείνεται και από την παουσία συμπιεστών στώσεων κάτω από τη βάση της ομάδας. Η μαλακή άγιλος δεν επηεάζει την καθίζηση του μεμονωμένου πασσάλου αλλά επηεάζει σημαντικά την καθίζηση της ομάδας 4. Κατανομή των φοτίων της ομάδας στους πασσάλους αξονικό φοτίο ομάδας e εκκεντότητα φοτίου M e Πααδοχές :. Ακαμπτος κεφαλόδεσμος. Η ομάδα αποτελείται από () όμοιους πασσάλους Αα :. Το αξονικό φοτίο κατανέμεται ομοιόμοφα σε όλους τους πασσάλους (αξονικές δυνάμεις / ). Ηοπή(Μ ) κατανέμεται στους πασσάλους με αξονικές δυνάμεις ( ) που είναι ανάλογες της απόστασης ( ) κάθε πασσάλου από το κέντο βάους (Κ) της ομάδας -θετικά -ανητικά
5 4. Κατανομή των φοτίων της ομάδας στους πασσάλους e M αξονικό φοτίο ομάδας e εκκεντότητα φοτίου Αξονικό φοτίο πασσάλου () της ομάδας : e επειδή : c και : c M άα : e M c 4. Κατανομή των φοτίων της ομάδας στους πασσάλους Αξονικό φοτίο πασσάλου () της ομάδας : Στην πείπτωση φότισης με διπλή εκκεντότητα : αξονικό φοτίο της ομάδας e εκκεντότητα του φοτίου κατά () e εκκεντότητα του φοτίου κατά () K κέντο βάους των πασσάλων της ομάδας, συντεταγμένες πασσάλου () ως πος το Κ (θετικές ή ανητικές τιμές) e e
6 4. Κατανομή των φοτίων της ομάδας στους πασσάλους Παάδειγμα εφαμογής : Ομάδα έξι (6) πασσάλων. Ολικό φοτίο 0000 kn 6, e -m, e m 6m, -.5m 0m, -.5m 3-6m, 3 -.5m 4 6m, 4.5m 5 0m, 5.5m 6-6m, 6.5m 44 m 3.5 m Αξονικό φοτίο πασσάλου () της ομάδας : e e - 78 kn 556 kn kn kn kn 6 36 kn Σημείωση : Σ Η κυιότεη επιοή της ομάδας των πασσάλων είναι η σημαντική ΑΥΞΗΣΗ της καθίζησης της ομάδας σε σχέση με την καθίζηση του μεμονωμένου πασσάλου, λόγω της αλληλεπίδασης μεταξύ των πασσάλων (η καθίζηση ενός ποκαλεί «βύθιση» των γειτονικών πασσάλων). ( α ) καθίζηση ομάδας πασσάλων φοτίο ομάδας καθίζηση μεμονωμένου πασσάλου με φοτίο Ρ / 4.3. Ελαστική ανάλυση σε ομοιογενές έδαφος Ομάδα δύο πασσάλων p Μέθοδος oulo (97) Συντελεστής αλληλεπίδασης «α» για ομάδα δύο πασσάλων () με άπειη ακαμψία ( p )
7 4.3. Ελαστική ανάλυση σε ομοιογενές έδαφος Ομάδα δύο πασσάλων p Μέθοδος oulo (97) Συντελεστής αλληλεπίδασης «α» για ομάδα δύο πασσάλων (). ( α ) p μέτο ελαστικότητας πασσάλου μέτο ελαστικότητας εδάφους d διάμετος πασσάλου απόσταση μεταξύ πασσάλων Σχετική δυσκαμψία : K p d 4.3. Ελαστική ανάλυση σε ομοιογενές έδαφος Μέθοδος oulo (97) καθίζηση ομάδας πασσάλων (τεταγωνική διάταξη) φοτίο ομάδας καθίζηση μεμονωμένου πασσάλου με φοτίο Ρ / Ε p μέτο ελαστικότητας πασσάλου Ε μέτο ελαστικότητας εδάφους L/d /d ΠΑΣΣΑΛΟΙ ΤΡΙΒΗΣ (ΑΙΩΡΟΥΜΕΝΟΙ) K p
8 4.3. Ελαστική ανάλυση σε ομοιογενές έδαφος Μέθοδος oulo (97) καθίζηση ομάδας πασσάλων (τεταγωνική διάταξη) φοτίο ομάδας καθίζηση μεμονωμένου πασσάλου με φοτίο Ρ / Ε p μέτο ελαστικότητας πασσάλου Ε μέτο ελαστικότητας εδάφους ΠΑΣΣΑΛΟΙ ΑΙΧΜΗΣ (ΕΔΡΑΖΟΜΕΝΟΙ) K p L/d /d 4.3. Ελαστική ανάλυση σε ομοιογενές έδαφος Μέθοδος oulo (97) καθίζηση ομάδας πασσάλων φοτίο ομάδας καθίζηση μεμονωμένου πασσάλου με φοτίο Ρ / Τιμές του συντελεστή () για ομάδες πασσάλων (σε τεταγωνική διάταξη) αιθμού διαφοετικού από 4, 9, 6, 5 : [ ]( 5) ( ) ( ) ( 5) ( 6) 5 επειδή ο συντελεστής μεταβάλλεται πείπου γαμμικά με την τεταγωνική ίζα του αιθμού των πασσάλων
9 4.3.3 Μοντέλο Terzah /3 D Η καθίζηση της ομάδας ισούται με την καθίζηση ενός ισοδύναμου «πεδίλου» διαστάσεως B L σε βάθος Η /3 D από την επιφάνεια (D μήκος των πασσάλων της ομάδας) Γωνία πείπου 60 μοιών Μοντέλο Terzah /3 D Η καθίζηση της ομάδας ισούται με την καθίζηση ενός ισοδύναμου «πεδίλου» διαστάσεως B L σε βάθος Η /3 D από την επιφάνεια D μήκος των πασσάλων της ομάδας) Η καθίζηση μποεί να υπολογισθεί με χωισμό της στώσης (πάχους.5 Β) σε υποστώσεις (πάχους ΔΗ ), και άθοιση των καθιζήσεων κάθε υποστώσης, π.χ : Δε ΔH Δσ z ΔH
10 4.3.3 Μοντέλο Terzah Η άμεση καθίζηση ομάδας πασσάλων σε αγιλικά εδάφη μποεί να υπολογισθεί και με χήση της μεθόδου Jabu, Bjerrum & Kjaerl (που παουσιάσθηκε στο κεφάλαιο των καθιζήσεων πεδίλων σε αγιλικά εδάφη) : άμεσηκαθίζησητηςομάδας μ ο συντελεστής βάθους (D) θεμελίωσης μ συντελεστής πάχους (Η) συμπιεστής στώσης Ε u μέτο ελαστικότητας υπό αστάγγιστες συνθήκες L, Β μήκος και πλάτος κάτοψης της ομάδας (L B ) Δq B μ μ o Δq q q o q γ D u ΠΡΟΣΟΧΗ : D είναι τα /3 του μήκους των πασσάλων της ομάδας Μοντέλο Terzah Η άμεση καθίζηση ομάδας πασσάλων σε αγιλικά εδάφη μποεί να υπολογισθεί και με χήση της μεθόδου Jabu, Bjerrum & Kjaerl (που παουσιάσθηκε στο κεφάλαιο των καθιζήσεων πεδίλων σε αγιλικά εδάφη) : μ συντελεστής πάχους (Η) συμπιεστής στώσης Δq B μ μ o u Δq q q o q γ D ΠΡΟΣΟΧΗ : D είναι τα /3 του μήκους τωνπασσάλωντηςομάδας
11 4.3.3 Εκτίμηση της καθίζησης ομάδας πασσάλων Μοντέλο Terzah Ποσεγγιστικά μοντέλα εκτίμησης της καθίζησης ομάδας πασσάλων Εκτίμηση της καθίζησης ομάδας πασσάλων Μοντέλο Terzah Ποσεγγιστικά μοντέλα εκτίμησης της καθίζησης ομάδας πασσάλων Με συνεκτίμηση ανητικής τιβής
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 11 Θεμελιώσεις με πασσάλους : Καθιζήσεις πασσάλων 5.1.26 1. Κατηγοίες πασσάλων 2. Αξονική φέουσα ικανότητα μεμονωμένου
Διαβάστε περισσότεραΑνάληψη αξονικού φορτίου από πάσσαλο
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «Αλληλεπίδαση Εδάφους Κατασκευής» 8 ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 6 7 Διδάσκοντες : Γ. Γκαζέτας
Διαβάστε περισσότερα1) Ηλεκτρικό πεδίο φορτισμένου φύλλου απείρων διαστάσεων
1) Ηλεκτικό πεδίο φοτισμένου φύλλου απείων διαστάσεων Σε αυτό το εδάφιο θα υπολογιστεί το ηλεκτικό πεδίο παντού στο χώο ενός φοτισμένου λεπτού φύλλου απείων διαστάσεων και αμελητέου πάχους όπως αυτό που
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8γ Θεμελιώσεις με πασσάλους Υπολογισμός αξονικής φέρουσας ικανότητας μέσω : Αποτελεσμάτων επιτόπου δοκιμών Αξιοποίησης
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 9 Θεμελιώσεις με πασσάλους Αξονική φέρουσα ικανότητα έγχυτων πασσάλων 21.12.25 2. Αξονική φέρουσα ικανότητα μεμονωμένου
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 5 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αργιλικά εδάφη 02.11.2005 Υπολογισμός καθιζήσεων
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005
Διαβάστε περισσότεραΡΕΥΜΑΤΑ, ΝΟΜΟΣ ΤΟΥ OHM
Q ΡΥΜΑΤΑ, ΝΟΜΟΣ ΤΟΥ OHM Ισοοπία σε αγωγό μόνον όταν στο εσωτεικό του αγωγού είναι =0 λεύθεο Ηλεκτόνιο Πείσεια ελευθέων ηλεκτονίων ξωτεικό ηλεκτικό πεδίο εσ εξ = εσ = 0 εξ σωτεικό ηλ. πεδίο Ποσθήκη εξωτεικού
Διαβάστε περισσότερα8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Διαβάστε περισσότεραΝα βρίσκουμε τις σχετικές θέσεις δύο κύκλων, όταν γνωρίζουμε τις ακτίνες τους και το μήκος της διακέντρου.
Ενότητα 6 Κύκλος Στην ενότητα αυτή θα μάθουμε: Να βίσκουμε τις σχετικές θέσεις δύο κύκλων, όταν γνωίζουμε τις ακτίνες τους και το μήκος της διακέντου. Να αποδεικνύουμε και να εφαμόζουμε τις σχέσεις εγγεγαμμένων
Διαβάστε περισσότεραΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ
ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ Το έδαφος είναι ένα πολυφασικό υλικό που αποτελείται από: στεεούς κόκκους κενά (πόους) οι οποίοι πειέχουν νεό ή/και αέα Οι εξωτεικώς επιβαλλόμενες δυνάμεις αναλαμβάνονται
Διαβάστε περισσότεραΠεδιλοδοκοί και Κοιτοστρώσεις
/7/0 ΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 0 - ΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις 8.0.0 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεµελίωση µπορεί να γίνει µε πεδιλοδοκούς ή κοιτόστρωση
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 0 Θεμελιώσεις με πασσάλους : Ανάλυση φέρουσας ικανότητας κατά τον Ευρωκώδικα 7 2.2.2005 ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ.
Διαβάστε περισσότεραΠΕΙΡΑΜΑ 10. Aεροδυναµική Στερεών Σωµάτων
ΠΕΙΡΑΜΑ 10 Aεοδυναµική Στεεών Σωµάτων Σκοπός του πειάµατος Σκοπός του πειάµατος αυτού είναι η µελέτη της αντίστασης που αναπτύσσεται κατά τη σχετική κίνηση ενός αντικειµένου µέσα σε ένα αέιο. Οι εξισώσεις
Διαβάστε περισσότεραΝ. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών
ΚΕΦΑΛΑΙΟ 4 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» ρ η εδαφικής μάζας εύρος καθιζήσεων
Διαβάστε περισσότεραΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1
ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1 ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3Ο 3.1 Άσκηση Άκαμπτο πέδιλο πλάτους Β=2m και μεγάλου μήκους φέρει κατακόρυφο φορτίο 1000kN ανά μέτρο μήκους του θεμελίου και θεμελιώνεται σε βάθος
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 0.1.006 Υπολογισμός καθιζήσεων σε
Διαβάστε περισσότεραΑΣΚΗΣΗ 14. έκδοση DΥΝI-EXC b
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 14 έκδοση DΥΝI-EXC14-016b Copyright Ε.Μ.Π. - 016 Σχολή
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών
ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» εδαφικής μάζας εύρος καθιζήσεων
Διαβάστε περισσότεραΚεφάλαιο Προσοµοιώσεις
Κεφάλαιο 4 ΥΠΟΛΟΓΙΣΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Όλες οι ακιβείς επιστήµες κυιαχούνται από την ιδέα της ποσέγγισης. Bertrad Russell 4. Ποσοµοιώσεις Σκοπός του παόντος κεφαλαίου είναι η παουσίαση της υπολογιστικής ποσέγγισης
Διαβάστε περισσότεραΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7 ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2016-17 Μ. ΚΑΒΒΑΔΑΣ, Αναπλ. Καθηγητής ΕΜΠ Το
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ
Πανεπιστήμιο Δυτικής Αττικής Τμήμα Πολιτικών Μηχανικών ΜΑΘΗΜΑ: ΘΕΜΕΛΙΩΣΕΙΣ 6 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Α. Βαλσαμής ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΑΣΚΗΣΗ 1 Να υπολογιστούν οι μακροχρόνιες καθιζήσεις
Διαβάστε περισσότεραΘ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4
Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Βαθιές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 2010 1
Διαβάστε περισσότεραH 2 + x 2 cos ϕ. cos ϕ dϕ =
. Άπειη γαμμική κατανομή ϕοτίου λ Θεωούμε την γαμμική κατανομή ϕοτίου στον άξονα των x και ζητάμε το ηλεκτικό πεδίο στο σημείο A που απέχει από την κατανομή. Το στοιχειώδες τμήμα dx της κατανομής στη θέση
Διαβάστε περισσότεραεν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c
Χ. Κααγιάννης, Πολιτικός Μηχ. ΕΜΠ,. Μηχ. ΚΑΘΗΓΗΤΗΣ Κατασκευών Ωπλισµένου Σκυοδέµατος και Αντισεισµικού Σχεδιασµού ΠΡΟΕ ΡΟΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΘ Συνοπτική Παουσίαση Σχεδιασµού έναντι ιάτµησης
Διαβάστε περισσότεραΠαροράµατα. Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ. (για την έκδοση Σεπτέµβριος 2010)
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ - ΤΜΗΜΑ ΟΜΙΚΩΝ ΕΡΓΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Παροράµατα Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ (για την έκδοση Σεπτέµβριος 010) Επιµέλεια-Συγγραφή:
Διαβάστε περισσότεραΤελική γραπτή εξέταση διάρκειας 2,5 ωρών
τηλ: 410-74178, fax: 410-74169, www.uth.gr Τελική γραπτή εξέταση διάρκειας,5 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος,
Διαβάστε περισσότεραυναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 14.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εγαστήιο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 4. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών
Διαβάστε περισσότερατομή ακροβάθρου δεδομένα
B 1 = 4,4 m B 2 = 1,6 m B 3 = m B 4 = m B 5 =,3 m B 6 = m Η 1 = 1,6 m Η 2 = m Η 3 = m Η 4 = m Η 5 = m Η 6 =,3 m Η 7 = 1,3 m L 1 = m L 2 = 1 m L 3 = m E C = 28847,6 ΜPa μέτρο ελαστικότητας f ck = 2 ΜPa
Διαβάστε περισσότεραΑΚΡΟΒΑΘΡΟ ver.1. Φακής Κωνσταντίνος, Πολιτικός μηχανικός 1/8
ΑΚΡΟΒΑΘΡΟ ver.1 Πρόκειται για ένα υπολογιστικό φύλλο που αναλύει και διαστασιολογεί ακρόβαθρο γέφυρας επί πασσαλοεσχάρας θεμελίωσης. Είναι σύνηθες να επιλύεται ένα φορέας ανωδομής επί εφεδράνων, να λαμβάνονται
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 5.10.007 Υπολογισμός καθιζήσεων
Διαβάστε περισσότεραΘεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών
Διαβάστε περισσότερα1 r ολοκληρώνοντας αυτή τη σχέση έχουµε:
Σελ-- ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΣΤΟΝ ΙΑΓΩΝΙΣΜΟ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ Α.Σ.Ε.Π 998 ΕΡΩΤΗΜΑ ο Με βάση τα χαακτηιστικά των βαυτικών δυνάµεων, ποια µεγέθη συµπεαίνετε ότι διατηούνται κατά τη κίνηση των πλανητών υπό την επίδαση
Διαβάστε περισσότεραΕπαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Έργο Ημερομηνία : 6.12.2012 Ονομασία : Έργο Στάδιο : 1 7,00 2,00 +z 12,00 ΥΥΟ Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από
Διαβάστε περισσότεραΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ. ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC2 και EC7)
Θεμελιώσεις & Αντιστηρίξεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC και EC7) Παρακάτω δίνονται τα τελικά αποτελέσματα στις ασκήσεις του
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 3 Ανάλυση της Φέρουσας Ικανότητας Επιφανειακών Θεμελιώσεων κατά τον Ευρωκώδικα 7 8.0.2005 Έλεχος επάρκειας επιφανειακών
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΑΣΚΗΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ Η μέτηση της ταχύτητας οής ενός εστού μέσα σε ένα σωλήνα γίνεται με τη σσκεή Prandtl (σωλήνας Pitot) (βλέπε Σχήμα). Η σσκεή ατή αποτελείται από δο πολύ λεπτούς σωλήνες,
Διαβάστε περισσότεραΧειμερινό εξάμηνο 2007 1
ΜΜΚ 3 Μεταφοά Θεμότητας Φυσική Συναγωγή ΜΜΚ 3 Μεταφοά Θεμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Πααγωγής ΜΜK 3 Μεταφοά Θεμότητας Φυσική Συναγωγή (r convction) Στα ποηγούμενα ύο κεφάλαια ασχοληθήκαμε
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 4 Καθιζήσεις Επιφανειακών Θεμελιώσεων Ανάλυση με σχέσεις ελαστικής μορφής.9.006 Καθιζήσεις Επιφανειακών Θεμελιώσεων
Διαβάστε περισσότεραΣημειώσεις IV: Μαθηματικά Υπολογιστικής Τομογραφίας
HY 673 - Ιατική Απεικόνιση Στέλιος Οφανουδάκης Κώστας Μαιάς Σημειώσεις IV: Μαηματικά Υπολογιστικής Τομογαφίας Σεπτέμβιος 2003-Φεβουάιος 2004 Αχές Υπολογιστικής Τομογαφίας 1. Η ανάγκη απεικόνισης στις 3-Διαστάσεις
Διαβάστε περισσότεραΜαθηματι ά ατεύθυνσης
Β Λυκείου Μαθηματι ά ατεύθυνσης Ο Κύκλος Θεωία Μεθοδολογία -Ασκήσεις Σ υ ν ο π τ ι κ ή Θ ε ω ί α Ονομασία Διατύπωση Σχόλια Σχήμα Α. Κύκλος Οισμός: Ονομάζεται κύκλος με κέντο Ο και ακτίνα το σύνολο των
Διαβάστε περισσότεραΣυλλογή Ασκήσεων Υδροστατικής
Συλλογή Ασκήσεων Υδοστατικής Άσκηση. ℵ Να βεθεί η τιμή της πίεσης που δείχνει το πιεσόμετο, σε mmhg. Δίνονται οι πυκνότητες υδαγύου Hg 600kg/m, νεού Ν 000 kg/m και αέα Α,9 kg/m. 0 cm cm + 0 Επίλυση Αχικά
Διαβάστε περισσότερα4.4 Η Επιδοµή της Γραµµής
4. Η Υποδοµή της Γαµµής Η κατασκευή που βίσκεται κάτω από την επιδοµή, ονοµάζεται υποδοµή ή υπόβαση και αποτελείται από την στώση διαµόφωσης και την κυίως υποδοµή ή υπόβαση ή έδαφος θεµελίωσης. 4.4 Η Επιδοµή
Διαβάστε περισσότεραhttps://mycourses.ntua.gr
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2013 13-1414 Μ. ΚΑΒΒΑ ΑΣ, Αναπλ. Καθηγητής ΕΜΠ
Διαβάστε περισσότεραΚεφάλαιο 3: Μοντέλα Θεωρίας Αναμονής
Κεφάλαιο 3: Μοντέλα Θεωίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαοφαλάκης Αν. Καθηγητής Οισμός συστημάτων αναμονής Συστήματα αναμονής (Queueing Syses): Συστήματα στα οποία οι αφίξεις
Διαβάστε περισσότερα«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος 01-014 ΙΑΛΕΞΗ 1: ΟΡΙΖΟΝΤΙΑ ΦΟΡΤΙΣΗ ΜΕΜΟΝΩΜΕΝΩΝ ΠΑΣΣΑΛΩΝ Οι διαλέξεις υπάρχουν στην
Διαβάστε περισσότεραΕισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Φέρουσα Ικανότητα Επιφανειακών θεμελιώσεων (πεδίλων) Φέρουσα Ικανότητα Τάσεις κάτω από το
Διαβάστε περισσότεραΕισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει να στηριχθεί (βαθιές εκσκαφές, αντιστηρίξεις,
Διαβάστε περισσότεραΕπιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών
Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Υπολογισµός Φέρουσας Ικανότητας Ευρωκώδικας 7 Αστράγγιστες Συνθήκες Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 [ c b s i q] R k
Διαβάστε περισσότεραx D 350 C D Co x Cm m m
Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΘΗΓΗΤΗΣ : Ν ΚΩΤΣΟΒΙΝΟΣ ΛΕΚΤΟΡΑΣ : Π. ΑΓΓΕΛΙ ΗΣ ΛΥΣΕΙΣ B ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΚΟΡ ΟΠΟΥΛΟΣ ΗΜΗΤΡΙΟΣ ΑΜ 585 ΑΣΚΗΣΗ Θαλασσινό νεό από ένα εγοστάσιο, βεβαηµένο
Διαβάστε περισσότεραΕισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ
ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ Φέρουσα ικανότητα εδάφους (Dunn et al., 1980, Budhu, 1999) (Τελική) φέρουσα ικανότητα -q, ονοµάζεται το φορτίο, ανά µονάδα επιφανείας εδάφους,
Διαβάστε περισσότεραΘ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Παραδόσεις Θεωρίας ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος 2010 Τεχνολογικό
Διαβάστε περισσότεραΑνάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων
Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 8.0.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Aνάλυση τοίχου Υπολ ενεργητικών
Διαβάστε περισσότεραΘεµελιώσεις - Απαντήσεις Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ. = 180 kpa, σ = 206 kpa
Θεµελιώσεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ 1Ο Άσκηση 1.1 Βάθος z=0.0: σ = 0, u = 0, σ = 0 w Βάθος z=-2.0: σ Βάθος z=-7.0: σ Βάθος z=-20.0: σ = 6 kpa,
Διαβάστε περισσότεραΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα.
Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Μετάδοση τάσεων στο έδαφος (8 η σειρά ασκήσεων). Ημερομηνία:
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ ΕΠΙΠΛΕΟΝ ΣΗΜΕΙΩΣΕΙΣ για φέρουσα ικανότητα αβαθών θεµελίων (βασισµένες εν πολλοίς σε σηµειώσεις των Μ. Καββαδά, Καθηγητή
Διαβάστε περισσότεραB ρ (0, 1) = {(x, y) : x 1, y 1}
Κεφάλαιο 3 Τοπολογία μετικών χώων 3.1 Ανοικτά και κλειστά σύνολα 3.1.1 Ανοικτά σύνολα Οισμοί 3.1.1. Εστω (X, ) μετικός χώος και έστω x 0 X. (α) Η ανοικτή -μπάλα με κέντο το x 0 και ακτίνα ε > 0 είναι το
Διαβάστε περισσότεραΗ Φυσική των ζωντανών Οργανισμών (10 μονάδες)
Η Φυσική των ζωντανών Οργανισμών (10 μονάδες) Δεδομένα: Κανονική Ατμοσφαιρική Πίεση, P 0 = 1.013 10 5 Pa = 760 mmhg Μέρος A. Η φυσική του κυκλοφορικού συστήματος. (4.5 μονάδες) Q3-1 Στο Μέρος αυτό θα μελετήσετε
Διαβάστε περισσότεραΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότεραΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ Φέρουσα Ικανότητα Επιφανειακών Θεμελιώσεων 0.03.007 P Καμπύλες τάσεωνπαραμορφώσεων του εδάφους Γραμμική συμπεριφορά
Διαβάστε περισσότεραΔιδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Εξέταση Θεωρίας: Σχολή Τεχνολογικών Εφαρμογών ΕΔΑΦΟΜΗΧΑΝΙΚΗ Τμήμα Πολιτικών Δομικών Έργων Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο 010-011 Εξεταστική περίοδος
Διαβάστε περισσότεραEN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ.
Ανάλυση πασσάλου CPT Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 09.10.2008 Ρυθμίσεις Πρότυπο - EN 1997 - DA1 CPT πάσσαλος Μεθοδολογία επαλήθευσης : Τύπος ανάλυσης : Μερικός συντ αντίστασης αιχμής : Μερικός
Διαβάστε περισσότεραΕπαλήθευση Τοίχου με ακρόβαθρο Εισαγωγή δεδομένων
Επαλήθευση Τοίχου με ακρόβαθρο Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 29.10.2015 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Ακρόβαθρο : Συντελεστές EN 1992-1-1 : Aνάλυση τοίχου Υπολ ενεργητικών
Διαβάστε περισσότεραΜεθοδολογία επίλυσης εργασίας Εδαφομηχανικής
Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν κατά την ίλυση των ασκήσεων της εργασίας Εδαφομηχανικής, ενώ τονίζονται κάποια σημεία που χρίζουν
Διαβάστε περισσότεραΑριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,
Διαβάστε περισσότεραΜελέτη της Άνωσης. Α = ρ υγρού g V βυθ..
Μελέτη της Άνωσης F 1 h 1 h 2 Α) Η Άνωση οφείλεται στην βαύτητα. Αν ένα σώμα βίσκεται μέσα σε υγό με πυκνότητα υγού η επάνω επιφάνειά του με εμβαδό S δέχεται δύναμη F 1 = P 1 S και η ίσου εμβαδού κάτω
Διαβάστε περισσότεραBernoulli P ρ +gz Ω2 ϖ 2 2
Εθνικό και Καποιστιακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Δυναμική των Ρευστών, 6 Φεβουαίου 08 Απαντήστε σε 3 από τα 4 θέματα ιάκεια εξέτασης ώες Καλή επιτυχία = bonus εωτήματα) Θέμα ο :
Διαβάστε περισσότεραΚεφάλαιο 2 Εισαγωγή στα ροϊκά φαινόμενα
Κεφάλαιο Εισαγωγή στα οϊκά φαινόμενα Σύνοψη Η έννοια του ανοικτού συστήματος (όγκος ελέγχου) Ρυθμός μεταβολής των ιδιοτήτων του συστήματος Νόμος της συνέχειας Νόμος της ομής (δυνάμεις) Γενικευμένη εξίσωση
Διαβάστε περισσότερα(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π.
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 013 ΠΕΡΙΕΧΟΜΕΝΑ 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 4 η : Φέρουσα Ικανότητα Αβαθών Θεμελιώσεων Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τμήμα
Διαβάστε περισσότεραΕπανέλεγχος ηλεκτρικής εγκατάστασης
Επανέλεγχος ηλεκτικής εγκατάστασης Οδηγίες διεξαγωγής μετήσεων και δοκιμών για επανελέγχους ηλεκτικών εγκαταστάσεων με τη χήση σύγχονων ογάνων 1. Εισαγωγή στις απαιτήσεις των επανελέγχων Τα οφέλη του τακτικού
Διαβάστε περισσότεραΓραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών
Γραπτή εξέταση περιόδου Ιουνίου 011 διάρκειας,0 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική (ΜΕ0011), 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επ.Συν.Τμ.Πολ.Εργ.Υποδ.
Διαβάστε περισσότεραΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Διαβάστε περισσότεραΕΞΑΣΘΕΝΗΣΗ ΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ
ΕΞΑΣΘΕΝΗΣΗ ΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ Διάδοση κυλινδικού κύματος Καταγαφή σεισμού (Μ5.9) σε διαφοετικό πειβάλλον εξασθένησης ΗΕΞΑΣΘΕΝΗΣΗΤΩΝΕΛΑΣΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΣΧΕΣΗ ΜΕ ΤΟ ΜΕΣΟ ΔΙΑΔΟΣΗΣ ΓΕΩΜΕΤΡΙΚΗ ΔΙΑΣΠΟΡΑ ΑΠΟΣΒΕΣΗ
Διαβάστε περισσότεραΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ)
Σχεδιασμός Θεμελιώσεων με Πασσάλους με βάση τον Ευρωκώδικα 7.1 Β. Παπαδόπουλος Τομέας Γεωτεχνικής ΕΜΠ ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) ΑΣΤΟΧΙΑΣ Απώλεια συνολικής ευστάθειας
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: ΣΕΙΡ: (ΛΥΣΕΙΣ) ΘΕΜ Οδηγία: Να γάψετε στο τετάδιό σας τον αιθμό καθεμιάς από τις παακάτω εωτήσεις -4 και δίπλα το γάμμα που αντιστοιχεί στη σωστή απάντηση..
Διαβάστε περισσότεραΕπαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων
Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος
Διαβάστε περισσότεραΜεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011)
Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν, όπως και κάποια σημεία που χρίζουν ιδιαίτερης προσοχής, κατά τη διαδικασία
Διαβάστε περισσότεραΒαθιές Θεµελιώσεις Εισαγωγή
Φέρουσα Ικανότητα Απόκριση Πασσαλοθεµελιώσεων Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές
Διαβάστε περισσότεραΆσκηση 1. R y. R x. Επίλυση (2.1) (2.2) Q 1 1 = 1 1
Ασκήσεις εφαµογής ισοζυγίου οής γαµ. οµής Άσκηση Ακοφύσιο Α εκτοξεύει κυλινδική φλέβα νεού διαµέτου d c µε υθµό l/. H φλέβα του νεού εισέχεται σε ένα διαχύτη και χωίζεται σε κυλινδικές φλέβες µε διατοµές
Διαβάστε περισσότερα4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ
ΚΕΦΑΛΑΙΟ 4 4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ 4. Μέθοδος ανάλυσης Κατά τη διάνοιξη σηράγγων οι µετακινήσεις του εδάφους αρχίζουν σε θέσεις αρκετά εµπρός από
Διαβάστε περισσότεραΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ
ΤΕΙ Κεντρικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα ΠΜ & ΜΤΓ ΤΕ Κατεύθυνση Πολιτικών Μηχανικών ΤΕ ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ Εργαστήριο 1 Αναπτυσσόμενες τάσεις στο έδαφος Βοηθητικά Σχήματα Επιμέλεια
Διαβάστε περισσότερα14. Θεµελιώσεις (Foundations)
14. Θεµελιώσεις (Foundations) 14.1 Εισαγωγή Οι θεµελιώσεις είναι η υπόγεια βάση του δοµήµατος που µεταφέρει στο έδαφος τα φορτία της ανωδοµής. Για τον σεισµό σχεδιασµού το σύστηµα θεµελίωσης πρέπει να
Διαβάστε περισσότερα3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ
3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΜΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ 3.1 Τύποι αντιστηρίξεων 3.2 Αυτοφερόμενες αντιστηρίξεις (πρόβολοι) 3.3 Αντιστηρίξεις με απλή
Διαβάστε περισσότεραΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ. 04 Ανάλυση της Μόνιμης Επένδυσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ 9 ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2013-14 04 Ανάλυση
Διαβάστε περισσότερα) θα πρέπει να είναι μεγαλύτερη ή ίση από την αντίστοιχη τάση μετά από την κατασκευή της ανωδομής ( σ. ). Δηλαδή, θα πρέπει να ισχύει : σ ΚΤΙΡΙΟ A
ΜΑΘΗΜΑ : ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 001 00 1η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος Διδάκτορας ΕΜΠ Για την επίλυση των ασκήσεων
Διαβάστε περισσότεραΠαράρτημα Έκδοση Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών
Παράρτημα Έκδοση 2015 Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 2 2. Έδραση με κυκλικές κοιλοδοκούς...
Διαβάστε περισσότερα0.3m. 12m N = N = 84 N = 8 N = 168 N = 32. v =0.2 N = 15. tot
ΚΕΦΑΛΑΙΟ : Αριθµητικές Εφαρµογές... Παράδειγµα γ: Ελαστική ευστάθεια πασσαλοθεµελίωσης Το παράδειγµα αυτό αφορά την µελέτη της ελαστικής ευστάθειας φορέως θεµελίωσης, ο οποίος αποτελείται από µια πεδιλοδοκό
Διαβάστε περισσότεραΣχήµα ΒΣ-6. Προφίλ πάχους, ταχύτητας και θερµοκρασίας υµένα κατά την συµπύκνωση
υθµοί µετάοσης θεµότητας παουσιάζονται πολύ µεγαλύτεοι από τους αντίστοιχους στην συµπύκνωση τύπου υµένα. Κατά την συµπύκνωση υµένα, το υγό συµπύκνωµα ηµιουγείται αχικά στην επιφάνεια, από την οποία στην
Διαβάστε περισσότεραΑνάλυση τοίχου βαρύτητας Εισαγωγή δεδομένων
Ανάλυση τοίχου βαρύτητας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 8.0.005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99 : Φέρουσα (πέτρα) τοιχοπ :
Διαβάστε περισσότεραΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΠΡΟΒΟΛΩΝ ΕΓΚΑΡΣΙΑ ΜΕΡΚΑΤΟΡΙΚΗ ΠΡΟΒΟΛΗ
ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΠΡΟΒΟΛΩΝ ΕΓΚΑΡΣΙΑ ΜΕΡΚΑΤΟΡΙΚΗ ΠΡΟΒΟΛΗ Οι σχέσεις της Εγκάσιας Μεκατοικής Ποβοής στο εειψοειδές µποούν να ποκύψουν από την Εγκάσια Ισαπέχουσα Ποβοή Cassii εαµόζοντας
Διαβάστε περισσότεραΣύνδεση µε µη αβαρή ράβδο
Σύνδεση µε µη αβαή άβδο Με τη βοήθεια µιας άβδου µάζας Μ kg και µήκους L συνδέουµε τα κέντα µάζας ενός δίσκου µάζας 4kg και ενός δακτυλίου µάζας m 6kg, όπως αίνεται στο σχήµα. Ο m δίσκος και η άβδος έχουν
Διαβάστε περισσότεραΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΕΠΙ ΡΑΣΗΣ ΠΑΡΑΜΕΤΡΩΝ ΣΧΕ ΙΑΣΜΟΥ ΣΥΣΤΗΜΑΤΩΝ ΓΕΙΩΣΗΣ
ΣΥΓΚΡΙΤΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΕΠΙ ΡΑΣΗΣ ΠΑΡΑΜΕΤΡΩΝ ΣΧΕ ΙΑΣΜΟΥ ΣΥΣΤΗΜΑΤΩΝ ΓΕΙΩΣΗΣ M. Λοέντζου* Γ. Γεωγαντζής Ν. Χατζηαγυίου ΕΣΜΗΕ Α.Ε. / Ε ΑΣΣ ΕΗ Α.Ε. / ΚΣ Ε.Μ.Π. / ΣΜΗ&ΜΥ Στόχος του σχεδιασµού των συστηµάτων
Διαβάστε περισσότεραΑνάλυση τοίχου προβόλου Εισαγωγή δεδομένων
Ανάλυση τοίχου προβόλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 7.0.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Aνάλυση τοίχου Υπολ ενεργητικών
Διαβάστε περισσότερα( ) ( ) ( ) 1 ( ) ( ) Μάθηµα 8 ο ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN
Γαµµική Άλγεβα ΙΙ Σελίδα από Μάθηµα 8 ο ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDN Έστω λ είναι ιδιοτιµή του ν ν πίνακα, αλγεβικής πολλαπλότητας ν > Ένα διάνυσµα τάξης x, διάφοο του µηδέν, ονοµάζεται γενικευµένο ιδιοδιάνυσµα,,
Διαβάστε περισσότεραΚαθηγητής Ε.Μ.Π. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Δά Διάφορες Περιπτώσεις Προφόρτισης. 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια. 6.4 Σταδιακή Προφόρτιση
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 016 ΠΕΡΙΕΧΟΜΕΝΑ Ε 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. Δά Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός
Διαβάστε περισσότεραΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2018 Εργασία Εξαμήνου. ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ. Εργασία Εξαμήνου
Γενικές οδηγίες: ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2018 Εργασία Εξαμήνου Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ
Διαβάστε περισσότερα