ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;
|
|
- Τελαμών Γλυκύς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;
2 ΑΡΧΙΤΕΚΤΟΝΙΚΗ
3 ΗΛΕΚΤΡΟΝΙΚΗ
4 ΠΟΥ ΥΠΑΡΧΕΙ; Τηλει κοινω Τηλε νίες Υγεία Ροο τική Ηλεκτρονική Διοίκηση Υολο γιστές Διασκέδαση
5 Η ΠΟΛΗ ΚΑΙ ΤΟ ΚΥΚΛΩΜΑ
6
7
8 Ο Νόος το Mooe: «Ο αριθός των τρανζίστορ ανά ψηφίδα διλασιάζεται κάθε 8 ήνες». Ίσχσε τα τελεταία 4 χρόνια.
9 Μικρότερα σχήατα οδηγούν σε εγαλύτερο αριθό τρανζίστορ ανά ονάδα ειφανείας (ψηλότερη κνότητα) και ψηλότερη ταχύτητα.
10 Μέχρι τώρα είδαε Η Ηλεκτρονική είναι αντού Αοτελεί ένα εξαιρετικά ανταγωνιστικό εδίο ε ταχύτατο ρθό ροόδο Στην αιχή της τεχνολογίας Πιέζεισταάκραταόριατηςταχύτητας, το βαθού ολοκλήρωσης, των ατοατισών
11 Μεθοδολογία αντιετώισης το αντικειένο της Ηλεκτρονικής Υλικά Διατάξεις Κκλώατα Γνωστές Διατάξεις: Αντιστάσεις, Πκνωτές, Πηνία Διατάξεις ο θα ελετηθούν: Δίοδοι, Διολικά Τρανζίστορ (BJT), Τρανζίστορ Πεδίο (FET) Χρήση των Διατάξεων για τη σχεδίαση και την ανάτξη Κκλωάτων
12 Γενικές Γνώσεις
13 ΒασικοίΝόοικαιΘεωρήατα NOMO (ΚΑΝΟΝΕΣ) ΤΟΥ KCHHOFF Κόβος σε ένα κύκλωα είναι ένα σηείο στο οοίο σναντώνται τρεις ή ερισσότεροι αγωγοί. Βρόχος είναι οοιοσδήοτε κλειστός αγώγιος δρόος. ος Κανόνας (των κόβων): Τo αλγεβρικό άθροισα των ρεάτων σε ένα κόβο είναι ίσο ε ηδέν. ΣΙ (για κάθε κόβο) ος Κανόνας (των βρόχων): To αλγεβρικό άθροισα των τάσεων κατά ήκος οοιοδήοτε βρόχο είναι ίσο ε ηδέν. Σ (για κάθε βρόχο) [Σβάσεις για τα ρόσηα και την εφαρογή των κανόνων]
14 ΠΑΡΑΔΕΙΓΜΑ: Θεωρούε γνωστά τα E,,, και. Να ολογιστούν τα, και E. Ε a Ε b Άσκηση: Θεωρούε γνωστά τα και. Να ολογιστούν τα, eq και ab. a b
15 ΔΙΑΙΡΕΤΗΣ ΤΑΣΗΣ o s ΔΙΑΙΡΕΤΗΣ ΡΕΥΜΑΤΟΣ s
16 ΘΕΩΡΗΜΑ ΤΗΣ ΕΠΑΛΛΗΛΙΑΣ Η αόκριση ενός κκλώατος είναι ανάλογη της διέγερσης ο την ροκαλεί. Σε ένα γραικό δικτύωα ε δύο ή ερισσότερες ηγές, το ρεύα ο διαρρέει οοιοδήοτε αθητικό στοιχείο ή η τάση στα άκρα το ορεί να ολογιστεί σαν το αλγεβρικό άθροισα των εί έρος ρεάτων ή τάσεων ο οφείλονται σε καθειά αό τις ανεξάρτητες ηγές όταν ατή δρα χωριστά, ε όλες τις άλλες ανεξάρτητες ηγές αενεργοοιηένες. ΠΑΡΑΔΕΙΓΜΑ: Να ολογιστεί το ρεύα ' '' ' v s '' s A 4 A 4 A 4 3 A
17 Θεώρηα Tevenn: Οοιοδήοτε γραικό κύκλωα ορεί να αντικατασταθεί αό ία ηγή τάσης σε σειρά ε ία αντίσταση. Η τάση, t, ολογίζεται ώστε να δηιοργεί το ίδιο ρεύα ο εφανίζει το δικτύωα. Η αντίσταση, t, ισούται ε την αντίσταση ο εφανίζει το δικτύωα ε τις ηγές βραχκκλωένες. t t Θεώρηα Noton: Οοιοδήοτε γραικό κύκλωα ορεί να αντικατασταθεί αό ία ηγή ρεύατος αράλληλα ε ία αντίσταση. Το ρεύα, N, ισούται ε το ρεύα βραχκύκλωσης των ακροδεκτών και η αντίσταση, Ν, όως και στο θεώρηα Tevenn. N N
18 Θεώρηα Tevenn-Noton Noton: Θεώρηα έγιστης εταφοράς ισχύος: Μια αντίσταση φόρτο δέχεται τη έγιστη ισχύ αό ένα γραικό κύκλωα αν ισούται ε την αντίσταση Tevenn το κκλώατος ατού. Στην ερίτωση ατή L TH, out TH / και P out TH /4 TH. TH TH L
19 Άσκηση: Για το κύκλωα το σχήατος, να ολογιστεί η αντίσταση φόρτο L για την οοία ειτγχάνεται έγιστη εταφορά ισχύος στον φόρτο. Να ολογιστεί είσης η έγιστη ατή ισχύς, P L. Υόδειξη: Να αντικατασταθεί το κύκλωα εταξύ των ακροδεκτών α και β (χωρίς την L ) αό το ισοδύναό το κατά Tevenn και να ολογιστούν η τάση Tevenn t και η αντίσταση Tevenn t. Ω α Ω L β
20 Δίθρα ή Τετράολα Δικτώατα (a) (c) (b) z z z z (d)
21 Ισοδύναα Κκλώατα για τα αντίστοιχα δίθρα z z z z
22 Αντιστοιχία εταξύ των αραέτρων:αν γνωρίζοε τις αραέτρος ενός τετραόλο ορούε να ολογίσοε τις αραέτρος. Αόδειξη Εφ όσον οι αράετροι και αφορούν το ίδιο τετράολο θα ρέει τα αντίστοιχα δικτώατα να είναι ισοδύναα εταξύ τος. ( ) ( ) Γενικά:Αν γνωρίζοε ένα είδος αραέτρων ορούε ε τον τρόο ατό να ολογίσοε οοιοδήοτε άλλο.
23 Παράδειγα: Υολογίστε τις τιές των z αραέτρων το κκλώατος ) ( ) ( z ) ( ) ( z z 3 z
24 Άσκηση: Υολογίστε τις τιές των αραέτρων το αρακάτω κκλώατος k Ω Ω.. Αάντηση: m oe e m fe x e // β
25 Λύση Το βριδικό ισοδύναο ενός τετραόλο (γενικά) () () () () B Το βριδικό για το διολικό τρανζίστορ κοινού εκοού (ειδικά) b be e e ce E feb oe C C ce c be fe e b b oe e ce ce
26 b c fe ce Ω k.6 // ) // ( x e x b be b be e ce E C b C e ce e b fe oe be B E ce ) )( // ( // ) ( // // // ) ( // // ) (, // //,, m m x be m x be b c fe x be b m x be m m c x be be m c ce Λύση (σνέχεια)
27 ce be e b ce c oe b 4 e ce be.5.5k M.5k Ω Ω Ω 5 3 m oe m ce m ce ce ce ce m ce c ce ce m ce c k ).5 ( 4.5k k ) ( ] [ )] ( [, Ω Ω ΜΩ Ω ΜΩ Ω Ω Λύση (σνέχεια)
28 Σήατα Τχαίο, αναλογικό σήα τάσης Ηιτονικό σήα τάσης, λάτος α, σχνότητας f/t και γωνιακής σχνότητας ωf. α (t) α sn ωt
29 Τετραγωνικός αλός τάσης 4 (t) snωot sn 3ω ot sn 5ω ot Φάσα σχνοτήτων το σετρικού τετραγωνικού αλού τάσης Φάσα σχνοτήτων τχαίο αναλογικού σήατος
30 Δειγατοληψία αναλογικού σήατος σνεχούς χρόνο Σήα διακριτού χρόνο Ψηφιακός αλός
31 Ενισχτές Γραικός ενισχτής τάσης (t) A ( t) o : σήα εισόδο o : σήα εξόδο A: αολαβή ή ενίσχση τάσης
32 Ενισχτής τάσης ε φόρτο αντίσταση L Χαρακτηριστική εταφοράς γραικού ενισχτή τάσης ε αολαβή Α Αολαβή τάσης A Ο Ι Αολαβή ισχύος A p ισχύς στον φόρτο P ισχύς εισόδο P L Ο Ο Ι Ι A A p A Αολαβή ρεύατος A Ο Ι Έκφραση της αολαβής σε decbel
33 Άσκηση: Αν γνωρίζοε τις αραέτρος το ενισχτή το σχήατος, να ολογιστεί η αολαβή τάσης το: A S S L L ( ) () ( L // ) ( L ) () S ( S ) ( ) ( S ( S ) ( ) )( L ) L A ( ( S S )( )( L L ) )
34 Η τροφοδοσία το ενισχτή Αόδοση ισχύος P dc Ισχύς ο ροσφέρεται αό την τροφοδοσία: Ισχύς ο ροσφέρεται αό την ηγή σήατος εισόδο: P Ισχύς ο αοδίδεται στον φόρτο: P L Ισχύς ο καταναλίσκεται στο κύκλωα: P κατ P dc P P P L κατ Αόδοση ισχύος το ενισχτή: η P P L dc
35 Παράδειγα: Ενισχτής τροφοδοτείται ε τάσεις ± και τραβάει ρεύα 9.5mA αό κάθε τροφοδοτικό. Στην είσοδό το σνδέεται ηιτονικό σήα ο δίνει τάση λάτος και ρεύα λάτος.ma. Στην έξοδό το ο ενισχτής δίνει ηιτονική τάση λάτος 9 σε φόρτο kω. Να ολογιστούν οι αολαβές τάσης, ρεύατος και ισχύος καθώς και η αόδοση το ενισχτή. DC, DC, n n out L ± 9.5mA.mA 9 kω P P n out P P DC κατ out 9 AU 9 AU lo 9 9.8dB db n out 9 out 9mA kω L out 9mA A 9 A lo dB db.ma n nn.ma.5mw outout 9mA 9 4.5mW P DC DC P DC n 9. 5mW 9mW P out A P ( ) mw mW A P db lo 8 9,8 n Pout 4.5. P 9 DC %
36 Όρια γραικής λειτοργίας το ενισχτή - Κόρος
37 Μη γραική χαρακτηριστική εταφοράς Πόλωση το ενισχτή ) ( ) ( o t t O O ) ( ) ( t t ) ( (t) t A o Q d d A Ι Ο Στιγιαία τιή της τάσης εισόδο: Στιγιαία τιή της τάσης εξόδο: Όο : Η αολαβή τάσης είναι η κλίση της χαρακτηριστικής στο σηείο λειτοργίας:
38 Άσκηση: Δίνεται η χαρακτηριστική εταφοράς ενός ενισχτή: O e 4 Ι για Ι και Ο.3 Να ερεθούν τα όρια γραικής λειτοργίας το ενισχτή και η τάση όλωσης εισόδο ώστε η τάση εξόδο να είναι ίση ε 5. U 4U e 4U ln[( U ) e ] U 4U ( U ln[( U 4 ) ) ] για για U U.3 5 U U ( ) u A du du Q
39 Σβολισοί C sn( ω t φ) C c C c
40 Χρήση γραικών δικτωάτων για την ανάλση των ενισχτών Όταν ένας ενισχτής έχει ολωθεί σωστά και το σήα στην είσοδο το κρατείται αρκούντως ικρό, τότε οθέτοε ότι λειτοργεί στη γραική εριοχή και ορούε να χρησιοοιήσοε τεχνικές ανάλσης γραικών κκλωάτων για να ελετήσοε τη λειτοργία το.
ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;
ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές
Ηλεκτρονική. Ενότητα 1: Εισαγωγή. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Ενότητα : Εισαγωγή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας Ανασκόπηση των βασικών εννοιών, κανόνων και θεωρημάτων των γραμμικών δικτυωμάτων: κανόνες
Ενισχυτών μιας βαθμίδας με διπολικά τρανζίστορ
Αόκριση κατά Σχνότητα τν Ενισχτών ιας βαθίδας ε διολικά τρανζίστορ Τική Σνάρτηση Μεταφοράς Ενισχτή αολαβή τάσης GW A f H Εν γένει η αολαβή τάσης ενός ενισχτή είναι σνάρτηση της σχνότητας. f Στις χαηλές
μιας βαθμίδας με διπολικά τρανζίστορ
Βασικές τοολογίες ενισχτών μιας βαθμίδας με διολικά τρανζίστορ Ενισχτής κοινού Εκομού Πόλωση με δικτύωμα τεσσάρων αντιστάσεων. Το C σήμα εισόδο εισάγεται στη Βάση το τρανζίστορ μέσω ενός κνωτή σύζεξης.
μιας βαθμίδας με διπολικά τρανζίστορ
Βασικές τοολογίες ενισχτών μιας βαθμίδας με διολικά τρανζίστορ Ενισχτής κοινού Εκομού Πόλωση με δικτύωμα τεσσάρων αντιστάσεων. Το C σήμα εισόδο εισάγεται στη Βάση το τρανζίστορ μέσω ενός κνωτή σύζεξης.
1. Μαγνητικό Πεδίο Κινούμενου Φορτίου. Το μαγνητικό πεδίο Β σημειακού φορτίου q που κινείται με ταχύτητα v είναι:
1. Μαγνητικό Πεδίο Κινούενου Φορτίου Το αγνητικό εδίο Β σηειακού φορτίου q ου κινείται ε ταχύτητα v είναι: qv u 4 qvsinφ 4 Το Β είναι ανάλογο του q και του 1/ όως και το Ε. Το Β δεν είναι ακτινικό, είναι
Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ενισχυτές 2
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Ενισχτές Κεφάλαιο ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας VSI Technlgy and Cmputer rchtecture ab ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Ενισχτές 2. Κέρδος τάσης, ρεύματος,
Γ. Τσιατούχας. VLSI systems and Computer Architecture Lab. Εισαγωγή στη Θεωρία Κυκλωμάτων 2
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Εισαγωγή γή στη Θεωρία Κκλωμάτων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Ηλεκτρονικό κύκλωμα. Νόμοι Krcoff 3. Κκλωματικά στοιχεία Σνδέσεις
Ηλεκτρονικό Κύκλωµα. ΟΝόµος Kirchhoff για το Ρεύµα -KCL
ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Εισαγωγή στη Θεωρία Κκλωµάτων Εισαγωγή στη Θεωρία Γ Κκλωµάτων. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Εισαγωγή στη Θεωρία Κκλωµάτων Ηλεκτρονικό Κύκλωµα Ένα ηλεκτρονικό
, δηλαδή το R. είναι µεταβλητό, αλλά κάθε φορά ξέροµε πόσο είναι. Στην πλευρά Α υπάρχει µια γνωστή αντίσταση R
Εργασία 5, ΦΥΕ 4, 3-4 N Κυλάφης Μια ονάδα ανά άσκηση Σύνολο ονάδων Ηλεκτρονική αοστολή εργασίας αό τους φοιτητές: t 3/4/4 Ηλεκτρονική αοστολή λύσεων αό τον ΣΕΠ: 6/4/4 Άσκηση : Θεωρείστε ένα τετράγωνο λαίσιο
ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ. Ενισχυτές. Ενισχυτές. ΕνισχυτέςΓ. Τσιατούχας
ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ενισχτές ΕνισχτέςΓ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ενισχτές 2 Σήµατα Σήµα: πληροφορία πο αφορά τη δραστηριότητα το φσικού κόσµο. Σνήθως, τα σήµατα µετατρέπονται
2. Ποιά από τις παρακάτω γραφικές παραστάσεις αντιστοιχεί στο νόµο του Ohm; (α) (β) (γ) (δ)
ΘΕΜΑ ο Στις ερωτήσεις - 4 να γράψετε στο τετράδιό σας τον αριθό της ερώτησης και δίπλα το γράα που αντιστοιχεί στη σωστή απάντηση.. Πυκνωτής χωρητικότητας είναι φορτισένος ε φορτίο Q και η τάση στους οπλισούς
AC λειτουργία Ισοδύναμα κυκλώματα μικρού σήματος του
A λειτοργία Ισοδύναμα κκλώματα μικρού σήματος το διπολικού τρανζίστορ Το τρανζίστορ ως ενισχτής Επαλληλία της D πόλωσης με το A σήμα: + Το ρεύμα σλλέκτη γράφεται: S ( + )/ S / / / Η διαγωγιμότητα μικρού
Εισαγωγή. Στο κεφάλαιο αυτό θα µελετηθεί ο τελεστικός ενισχυτής.
Εισαγωγή Στο κεφάλαιο ατό θα µελετηθεί ο τελεστικός ενισχτής. Οι πρώτοι τελεστικοί ενισχτές ήταν κατασκεασµένοι από διακριτά στοιχεία (λχνίες κενού, και κατόπιν τρανζίστορ και αντιστάσεις) και το κόστος
Κεφάλαια 4 ο και 6 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Τρανζίστορ Επίδρασης Πεδίου ΙΙ 2
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Τρανζίστορ Επίδρασης Πεδίο (FET FET) Ι Κεφάλαια 4 ο και 6 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Το MOS τρανζίστορ σε ενισχτές. Ενισχτής
Κεφάλαια 4 ο και 6 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Τρανζίστορ Φαινομένου
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Τρανζίστορ Φαινομένο Πεδίο (FET FET) Ι Κεφάλαια 4 ο και 6 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Το MO τρανζίστορ σε ενισχτές. Ενισχτής
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1 1. ΘΕΩΡΗΜΑ KENNELLY (ΜΕΤΑΤΡΟΠΗ ΤΡΙΓΩΝΟΥ ΑΣΤΕΡΑ) Ο βασικός στόχος του θεωρήματος αυτού είναι η μετατροπή της συνδεσμολογίας τύπου αστέρα σε τρίγωνα
Τρανζίστορ Φαινοµένου Πεδίου ((FET) Γ.Πεδίου
ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Τρανζίστορ Φαινοµένο Πεδίο ((FET) FET) ΙΙ Τρανζίστορ Φαινοµένο ΙΙ Γ.Πεδίο Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Τρανζίστορ Φαινοµένο Πεδίο ΙΙ Το MO ως Ενισχτής
1. Η εξίσωση της αποµάκρυνσης σε έναν απλό αρµονικό ταλαντωτή, πλάτους x0 και κυκλικής συχνότητας ω δίνεται από τη σχέση x = x0ηµωt
ΑΠΟΛΥΤΗΡΙΣ ΞΤΑΣΙΣ Γ ΤΑΞΗΣ ΝΙΑΙΟΥ ΛΥΚΙΟΥ ΣΑΒΒΑΤΟ 9 ΜΑΙΟΥ ΞΤΑΟΜΝΟ ΜΑΘΗΜΑ ΘΤΙΚΗΣ ΚΑΙ ΤΧΝΟΛΟΓΙΚΗΣ ΚΑΤΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ Θέµα ο. Η εξίσωση της αοµάκρυνσης σε έναν αλό αρµονικό ταλαντωτή, λάτους
Διπολικά τρανζίστορ (BJT)
Διπολικά τρανζίστορ (BJT) Το τρανζίστορ npn Εκπομπός Σλλέκτης Βάση Σχηματική παράσταση το τρανζίστορ npn Περιοχές λειτοργίας διπολικού τρανζίστορ Περιοχή EBJ BJ Αποκοπή Ανάστροφα Ανάστροφα Εγκάρσια τομή
Γ. Τσιατούχας. 1. Δίθυρα Δίκτυα. VLSI Systems and Computer Architecture Lab. Ανάλυση ικτύου ΙΙI
ΑΣΙΚΣ ΑΡΧΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ ΙΙ ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Δίθρα Δίκτα. Παραδείγματα LS Systems and ompute Actectue Lab Μονόθρα
Θέµατα Ηλεκτρολογίας Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2000
Ζήτηµα ο Θέµατα Ηλεκτρολογίας Τεχνολογικής Κατεύθυνσης Γ Λυκείου 000 Α. Στις ερωτήσεις -5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίλα το γράµµα ου αντιστοιχεί στη σωστή αάντηση.. Κατά
ΗΛΕΚΤΡΟΝΙΚΗ Ι. 1. Ημιαγωγική γ δίοδος Ένωση pn 2. Τρανζίστορ FET
ΗΛΕΚΤΡΟΝΙΚΗ Ι 1. Ημιαγωγική γ δίοδος Ένωση pn 2. Τρανζίστορ FET 3. Πόλωση των FET - Ισοδύναμα κυκλώματα 4. Ενισχυτές με FET 5. Διπολικό τρανζίστορ (BJT) 6. Πόλωση των BJT - Ισοδύναμα κυκλώματα 7. Ενισχυτές
0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4. Volts. Από τον κανόνα Kirchhoff: Ευθεία φόρτου: Όταν I 0 η (Ε) γίνεται V VD V D
Πρόβλημα 1 Μία μπαταρία 1,5 volt πολώνει ορθά μία δίοδο που έχει συνδεθεί στη σειρά με μία αντίσταση 20Ω. α) χρησιμοποιήστε την χαρακτηριστική της διόδου για να προσδιορίσετε το σημείο λειτουργίας. β)
Η ιδανική Δίοδος. Ορθή πόλωση Χαρακτηριστική τάσης ρεύματος της ιδανικής διόδου. Ανάστροφη πόλωση
Δίοδοι Η ιδανική Δίοδος Ορθή πόλωση Χαρακτηριστική τάσης ρεύματος της ιδανικής διόδο. Ανάστροφη πόλωση Εφαρμογή: Ο ιδανικός Ανορθωτής Κύκλωμα Ανορθωτή Κματομορφή Εισόδο Ορθή πόλωση Ανάστροφη πόλωση Ημιανόρθωση:
Μοντέλα Διόδων i. Δίοδος Διακόπτης Δίοδος Πηγή. i=i(υ) i=i(υ) i i. i i. = 0 γιά. 0 γιά. Παρεμπόδισης
Μοντέλα Διόδων Ανάστροφη Δναµικό Πόλωση Κατάρρεσης PI Ορθή Πόλωση Δναμικό Παρεμπόδισης Δίοδος Διακόπτης Δίοδος Πηγή =() =() 0 γιά = 0 = 0 γιά < 0 0 γιά = 0 γιά = < Μοντέλα Διόδων σνεχ. Ανάστροφη Δναµικό
Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Κυκλώματα ιόδων 2
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Κκλώματα Διόδων Κεφάλαιο 3 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΗΛΕΚΤΡΟΝΙΚΗ LSI echnology an Compue Achecue Lab Διάρθρωση. Ιδανική δίοδος 2. Μοντέλα διόδων
Η ιδανική Δίοδος. Ορθή πόλωση Χαρακτηριστική τάσης ρεύματος της ιδανικής διόδου. Ανάστροφη πόλωση
Δίοδοι Η ιδανική Δίοδος Ορθή πόλωση Χαρακτηριστική τάσης ρεύματος της ιδανικής διόδο. Ανάστροφη πόλωση Εφαρμογή: Ο ιδανικός Ανορθωτής Κύκλωμα Ανορθωτή Κματομορφή μ Εισόδο Ορθή πόλωση Ανάστροφη πόλωση Ημιανόρθωση:
Το Τρανζίστορ ως Ενισχυτής (ΙΙ)
ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ιπολικό Τρανζίστορ Επα φής ΙΙ Επαφής ιπολικό ΤρανζίστορΓΕπαφής. Τσιατούχας 1 ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ιπολικό Τρανζίστορ Επαφής 2 1 Το Τρανζίστορ ως Ενισχτής
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ Ειµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Παρασκευή, Μα ου Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΓΙΑ ΟΜΑ Α ΠΡΩΤΗ A. Για τις αρακάτω ροτάσεις Α. και Α. να γράψετε στο τετράδιό
Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 8: Διπολικά Τρανζίστορ
Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 8: Διπολικά Τρανζίστορ Γιάννης Λιαπέρδος TI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ιστορικά Στοιχεία Περιεχόμενα 1 Ιστορικά
ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής
ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 2008 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α
ΘΕΜΑ ο ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) 008 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις αρακάτω ροτάσεις, Α. έως και Α.5, να γράψετε στο τετράδιό σας τον αριθµό της ρότασης και δίλα
π 5 = 6 δηλ. μας δίνει την αρχή του κύματος (το σημείο Ο), το μέσο που διαδίδεται ( η έκφραση οµογενές
Στην άσκηση για µηχανικό κύµα ο ακοοθεί, γίνεται ανατική εεξεργασία 7 ερωτηµάτων ΑΣΚΗΣΗ Αρµονικό κύµα διαδίδεται κατά µήκος γραµµικού οµογενούς εαστικού µέσο κατά τη διεύθνση το θετικού ηµιάξονα Ox. Η
2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ
ρ. Λάμρος Μισδούνης Καθηγητής 2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ T.E.I. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περιεχόμενα 2 ης ενότητας Στην δεύτερη ενότητα θα ασχοληθούμε με
Ενισχυτικές Διατάξεις 1. Πόλωση BJT
Ενισχυτικές Διατάξεις 1 Πόλωση BJT Η πόλωση τρανζίστορ όπως την έχετε γνωρίσει, υποφέρει από δύο βασικά μειονεκτήματα: Υπερβολική χρήση πηγών dc. Το γεγονός αυτό είναι ιδιαίτερα έντονο σε κυκλώματα πολυβάθμιων
Η Ιδανική ίοδος. Η Ιδανική ίοδος σε Ανορθωτή. Ανάστροφη Πόλωση. Ορθή Πόλωση
ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Κκλώµατα ιόδων Κκλώµατα ιόδων Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Κκλώµατα ιόδων 2 Η Ιδανική ίοδος Άνοδος Κάθοδος Ανάστροφη Πόλωση 0 Ορθή Πόλωση Αν στην
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 014 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (1ος Κύκλος) ΗΛΕΚΤΡΟΛΟΓΙΑ Ηµεροµηνία: Παρασκευή 5 Αριλίου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις αρακάτω ροτάσεις
Δεύτερο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών. Δρ. Χ. Μιχαήλ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Δεύτερο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών Δρ. Χ. Μιχαήλ Πάτρα, 2009 ΑΣΚΗΣΗ 1 Αναλύστε τι ισχύει για την πύλη DTL του Σχ.1, ανάλογα
Θέµατα Ηλεκτρολογίας Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2000
Θέµατα Ηλεκτρολογίας Τεχνολογικής Κατεύθυνσης Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α. Στις ερωτήσεις -5, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίλα το γράµµα ου αντιστοιχεί στη σωστή αάντηση..
Διπολικά τρανζίστορ (BJT)
Διπολικά τρανζίστορ (BJT) Το τρανζίστορ npn Εκπομπός Σλλέκτης Βάση Σχηματική παράσταση το τρανζίστορ npn Περιοχές λειτοργίας διπολικού τρανζίστορ Περιοχή EBJ BJ Αποκοπή Ανάστροφα Ανάστροφα Εγκάρσια τομή
ΚΕΦΑΛΑΙΟ 7 Ο : ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΔΙΚΤΥΩΝ
ΚΕΦΑΛΑΙΟ 7 Ο : ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΔΙΚΤΥΩΝ Ο βασικός στόχος του θεωρήματος αυτού είναι η μετατροπή της συνδεσμολογίας τύπου αστέρα σε τρίγωνα και το αντίθετο έτσι ώστε τα δίκτυα α και β να είναι ισοδύναμα
Η Λ Ε Κ Τ Ρ Ο Ν Ι Κ Η
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Φροντιστηριακές Ασκήσεις Ι Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας Άσκηση η1 1) Στο κύκλωμα οι τελεστικοί ενισχτές 2 είναι ιδανικοί () και =10ΚΩ. α) Υπολογίστε
Πρόχειρες σημειώσεις στα επίπεδα ηλεκτρομαγνητικά κύματα
Πρόχειρες σηειώσεις στ είεδ ηλεκτρογνητικά κύτ ΠΡΙΧΟΜΝΑ Διάδοση είεδων ΗΜΚ σε η γώγι έσ Ανάκλση κι διάδοση γι ρόστωση κάετη στην ειφάνει Ο νόος του Sell στην λάγι ρόστωση Πόλωση κάετη στο είεδο ρόστωσης
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Βασικές αρχές ηλεκτροτεχνίας
Βασικά στοιχεία τοπολογίας (1/2) Κλάδος δικτύου: Κάθε στοιχείο (πηγές,r,l,c) του δικτύου με δύο ακροδέκτες ή οποιαδήποτε ομάδα συνδεδεμένων στοιχείων που σχηματίζουν ένα σύνολο δύο ακροδεκτών Ακροδέκτης
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Τελεστικοί Ενισχυτές 2
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Τελεστικοί Ενισχτές Κεφάλαιο ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας VLS Technology and Computer rchtecture Lab ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Ιδανικός τελεστικός
Γ ΚΥΚΛΟΣ ΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ
Προτεινόµενα Θέµατα Γ Λυκείου Νοέµβριος 00 Φυσική κατεύθυνσης ΘΕΜΑ Α Στις ροτάσεις αό -4 να βρείτε την σωστή αάντηση.. Μία αό τις αρακάτω σχέσεις εριγράφει την συχνότητα της αµείωτης ηλεκτρικής ταλάντωσης
Το διπολικό τρανζίστορ
2 4 η ΕΝΟΤΗΤΑ Το διπολικό τρανζίστορ 11 ο 12 ο 13 ο 14 ο Εργαστήριο ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ 3 Άσκηση 11 η. 11.1 Στατικές χαρακτηριστικές κοινού εκπομπού του διπολικού τρανζίστορ. Στόχος: Μελέτη και χάραξη των χαρακτηριστικών
ΑΝΑΛΥΣΗ ΚΥΚΛΩΜΑΤΟΣ ΚΟΙΝΟΥ ΕΚΠΟΜΠΟΥ ΜΕΛΕΤΗ DC ΣΥΜΠΕΡΙΦΟΡΑΣ Στο σχήμα φαίνεται ένα κύκλωμα κοινού εκπομπού από το βρόχο εισόδου Β-Ε ο νόμος του Kirchhoff δίνει: Τελικά έχουμε: I I BB B B E E BE B BB E IE
ΗΛΕΚΤΡΟΝΙΚΗ Ι. 1. Ημιαγωγική γ δίοδος Ένωση pn 2. Τρανζίστορ FET
ΗΛΕΚΤΡΟΝΙΚΗ Ι 1. Ημιαγωγική γ δίοδος Ένωση pn. Τρανζίστορ FT 3. Πόλωση των FT - Ισοδύναμα κυκλώματα 4. Ενισχυτές με FT 5. Διπολικό τρανζίστορ (JT) 6. Πόλωση των JT - Ισοδύναμα κυκλώματα 7. Ενισχυτές με
ΣΑΒΒΑΤΟ 3 ΙΟΥΝΙΟΥ 2006 ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ)
ΣΑΒΒΑΤΟ 3 ΙΟΥΝΙΟΥ 200 ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΟΜΑ Α Α Για τις αρακάτω ροτάσεις, Α.1. έως και Α.5., να γράψετε στο τετράδιό σας τον αριθµό της ρότασης και
ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 09/12/2012
ΔΙΑΓΩΝΙΣΜΑ ΚΠ. ΤΟΥΣ 0-03 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΚΤΡΟΛΟΓΙΑ ΚΑΤΥΘΥΝΣΗΣ/Γ ΛΥΚΙΟΥ ΘΡΙΝΑ ΣΙΡΑ: ΗΜΡΟΜΗΝΙΑ: 09//0 ΟΜΑΔΑ Α Οδηγία: Να γράψετε στ τετράδιό σας τν αριθμό κάθε μίας αό τις αρακάτω ερωτήσεις Α.- Α.5 και
3. Μετασχηματισμοί Πηγών 4. Μεταφορά Μέγιστης Ισχύος 5. Μη Γραμμικά Κυκλωματικά Στοιχεία 6. Ανάλυση Μικρού Σήματος
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ ΙΙ ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Μονόθρα Δίκτα. Θεωρήματα hevenn Norton. Μετασχηματισμοί Πηγών
Συνδεσμολογίες αντιστάσεων. Αντιστάσεις σε σειρά Αντιστάσεις παράλληλα
Συνδεσμολογίες αντιστάσεων Αντιστάσεις σε σειρά Αντιστάσεις παράλληλα (A) (B) (C) Τέσσερις διαφορετικοί τρόποι σύνδεσης τριών αντιστατών. (D) Σύνδεση αντιστατών σε σειρά: Η διατήρηση του φορτίου απαιτεί
ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός.
ΕΡΓΑΣΙΑ (Παράδοση:.) Σηείωση: Οι ασκήσεις είναι βαθολογικά ισοδύναες Άσκηση Να προσδιορίσετε τα όρια: sin( ) I. lim, II. lim sin, III. lim ( ln ) sin z Όπου χρειαστεί να θεωρήσετε γνωστό ότι lim z z Ι.
3 η ΕΝΟΤΗΤΑ. Το διπολικό τρανζίστορ
3 η ΕΝΟΤΗΤΑ Το διπολικό τρανζίστορ Άσκηση 8η. Στατικές χαρακτηριστικές κοινού εκπομπού του διπολικού τρανζίστορ. 1. Πραγματοποιήστε την συνδεσμολογία του κυκλώματος του Σχ. 1α (τρανζίστορ 2Ν2219). Σχήμα
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2010 ΕΚΦΩΝΗΣΕΙΣ
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2010 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ A1. Για τις ηµιτελείς προτάσεις Α1.1 έως και Α1.4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης
ΘΕΜΑ 1 ο (3 μονάδες):
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 9/0/00 ΘΕΜΑ ο ( μονάδες): Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 0, 0.7, kω, 0 kω, Ε kω, L kω, β fe 00, e kω. (α) Να προσδιορίσετε τις τιμές των αντιστάσεων,
ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ = Ο. Μαγνητικό πεδίο ευθύγραµµου ρευµατοφόρου αγωγού. Μαγνητικό πεδίο κυκλικού ρευµατοφόρου αγωγού.
ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ Μαγνητικό πεδίο είναι ο χώρος που έχει την ιδιότητα να ασκεί αγνητικές δυνάεις σε κατάλληλο υπόθεα (αγνήτες, ρευατοφόροι αγωγοί ) Το αγνητικό πεδίο το ανιχνεύουε ε την βοήθεια ιας αγνητικής
1 1+ Η εφαρµογή ανάδρασης υποβιβάζει την αντίσταση εξόδου στην τιµή
V o g S o ( R r ), m Επειδή β, είναι Τ V,. Το κέρδος κλειστού βρόχου υπολογίζεται ως Vf, 0,957, Η αντίσταση εισόδου είναι ίση µε ΜΩ. Η αντίσταση εξόδου είναι z o 5 k 40k 4, 44kΩ Η εφαρµογή ανάδρασης υποβιβάζει
Physics by Chris Simopoulos
ΠΥΚΝΩΤΗΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Πυκνωτή ονομάζουμε ένα σύστημα δυο αγωγών οι οοίοι βρίσκονται σε μικρή αόσταση μεταξύ τους και φέρουν ίσα και αντίθετα ηλεκτρικά φορτία. Χαρακτηριστικό μέγεθος των υκνωτών
ΣΤΟΙΧΕΙΑ ΚΥΚΛΩΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. Σ.Δ. Φωτόπουλος 1/24. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ
ΣΤΟΙΧΕΙΑ ΚΥΚΛΩΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ 1/24 βασικά μεγέθη φορτίο ρεύμα τάση ενέργεια ισχύς 2/24 ορισμοί στοιχείο κκλώματος είναι το μαθηματικό μοντέλο ενός πραγματικού στοιχείο πο έχει δύο
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Σκοπός : 1. Γνωριμία με το τρανζίστορ. Μελέτη πόλωσης του τρανζίστορ και ευθεία φορτίου. 2. Μελέτη τρανζίστορ σε λειτουργία
Ερωτήσεις στην ενότητα: Γενικά Ηλεκτρονικά
Ερωτήσεις στην ενότητα: Γενικά Ηλεκτρονικά -1- Η τιμή της dc παραμέτρου β ενός npn transistor έχει τιμή ίση με 100. Το transistor λειτουργεί στην ενεργή περιοχή με ρεύμα συλλέκτη 1mA. Το ρεύμα βάσης έχει
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 12/09/2013
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: /09/0 ΘΕΜΑ ο (4 μονάδες Στον ενισχυτή του παρακάτω σχήματος, το τρανζίστορ πολώνεται με συμμετρικές πηγές τάσης V και V των V Για το τρανζίστορ δίνονται:
Ταλαντωτές. Ηλεκτρονική Γ Τάξη Β εξάμηνο Μάρτιος 2011 Επ. Καθ. Ε. Καραγιάννη
Ταλαντωτές Ηλεκτρονική Γ Τάξη Β εξάμηνο Μάρτιος Επ. Καθ. Ε. Καραγιάννη Ταλαντωτές ΑΝΑΔΡΑΣΗ Στοιχεία Ταλάντωσης Ενισχυτής OUT Ταλαντωτής είναι ένα κύκλωμα που παράγει ηλεκτρικό σήμα σταθερής συχνότητας
ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 28 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 8 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ A. Για τις ηµιτελείς προτάσεις Α. έως και Α.4 να γράψετε στο τετράδιό σας τον αριθµό της
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 5. Θεωρήματα κυκλωμάτων. ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Θεώρημα επαλληλίας ή υπέρθεσης Θεωρήματα Thevenin και Norton
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 5 Θεωρήματα κυκλωμάτων ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Θεώρημα επαλληλίας ή υπέρθεσης Θεωρήματα Thevenin και Norton Θεώρημα Επαλληλίας ή Υπέρθεσης (Superposition Theorem) Το θεώρημα της
Άσκηση 7. Τρανζίστορ Επίδρασης Πεδίου Επαφής (JFET)
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 7 Τρανζίστορ Επίδρασης Πεδίου Επαφής (JFET) Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η κατανόηση της λειτουργία των
Μαγνητική ροπή. SI: Am 2
Μαγνητική ροπή Ι Ι Ι I S SI: Μαγνητική ροπή Η αγνητική διπολική ροπή είναι ια βασική ποσότητα για τον αγνητισό (όπως είναι το φορτίο για τον ηλεκτρισό) γιατί καθορίζει: (α) το αγνητοστατικό πεδίο που παράγει
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Διδάσκων : Δημήτρης Τσιπιανίτης Γεώργιος Μανδέλλος
3. Μετασχηματισμοί Πηγών 4. Μεταφορά Μέγιστης Ισχύος 5. Μη Γραμμικά Κυκλωματικά Στοιχεία 6. Ανάλυση Μικρού Σήματος
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ ΙΙ ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Μονόθρα Δίκτα. Θεωρήματα hevenn Norton. Μετασχηματισμοί Πηγών
Συνδυασμοί αντιστάσεων και πηγών
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 3 Συνδυασμοί αντιστάσεων και πηγών ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Σύνδεση σε σειρά. Παράλληλη σύνδεση Ισοδυναμία τριγώνου και αστέρα Διαιρέτης τάσης Διαιρέτης ρεύματος Πραγματικές πηγές.
ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 7
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 7: Πόλωση των BJT - Ισοδύναμα κυκλώματα Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών
Πείραμα. Ο Διαφορικός Ενισχυτής. Εξοπλισμός. Διαδικασία
Ο Διαφορικός Ενισχυτής Ο διαφορικός ενισχυτής είναι η βαθμίδα εισόδου άμεσης σύζευξης ενός τυπικού τελεστικού ενισχυτή. Η πιο κοινή μορφή ενός διαφορικού ενισχυτή είναι ένα κύκλωμα με είσοδο δύο άκρων
Άσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 5 Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η μελέτη των
και συνδέει τον αριθμό των σπειρών του πρωτεύοντος και του
Μετασχηματιστής με μεσαία λήψη Ένας μετασχηματιστής αποτελείται από δύο πηνία που έχουν τυλιχτεί επάνω στον ίδιο πυρήνα. Στο ένα πηνίο εφαρμόζεται μία εναλλασσόμενη τάση. Η τάση αυτή, δημιουργεί ένα μεταβαλλόμενο
. Μητρόπουλος Επαγωγή
Μία ηλεκτροµηχανική ταλάντωση Μπορούµε άραγε να έχοµε ηλεκτρική ταλάντωση σε ένα κύκλωµα χωρίς τη σνύπαρξη πηνίο και πκνωτή C; Η πρώτη σκέψη είναι µάλλον «όχι» διότι όπως στη µηχανική είναι απαραίτητη
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
3. Νόμοι Kirchhoff 4. Αντιστάσεις Πυκνωτές Πηνία 5. Διαιρέτης Τάσης Ρεύματος 6. Ηλεκτρική Ισχύς
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΕΙΣΑΓΩΓΗ ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Ηλεκτρικό κύκλωμα. Ρεύματα Τάσεις. Πηγές ρεύματος τάσης. Νόμοι Krchhoff
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΟΜΑ Α ΠΡΩΤΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 Παρασκευή, 6 Ιουνίου 04 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ Α. Για τις ημιτελείς προτάσεις Α. και Α.
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ
6-- ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθό καθειάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράα που αντιστοιχεί στη σωστή απάντηση. ) Η ταχύτητα
Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Ενότητα 5: D λειτουργία Πόλωση του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative
Διαφορικοί Ενισχυτές
Διαφορικοί Ενισχυτές Γενικά: Ο Διαφορικός ενισχυτής (ΔΕ) είναι το βασικό δομικό στοιχείο ενός τελεστικού ενισχυτή. Η λειτουργία ενός ΔΕ είναι η ενίσχυση της διαφοράς μεταξύ δύο σημάτων εισόδου. Τα αρχικά
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 5 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητες: ΠΕ 15 ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ, ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ, ΦΥΣΙΚΩΝ ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΩΝ
του διπολικού τρανζίστορ
D λειτουργία - Πόλωση του διπολικού τρανζίστορ ρ Παραδείγματα D ανάλυσης Παράδειγμα : Να ευρεθεί το σημείο λειτουργίας Q. Δίνονται: β00 και 0.7. Υποθέτουμε λειτουργία στην ενεργό περιοχή. 4 a 4 0 7, 3,3
Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)
Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (
- Η ισοδύναμη πηγή τάσης Thevenin (V ή VT) είναι ίση με τη τάση ανοικτού κυκλώματος VAB.
ΘΕΩΡΗΜΑ THEVENIN Κάθε γραμμικό ενεργό κύκλωμα με εξωτερικούς ακροδέκτες Α, Β μπορεί να αντικατασταθεί από μια πηγή τάση V (ή VT) σε σειρά με μια σύνθετη αντίσταση Z (ή ZT), όπως φαίνεται στο παρακάτω σχήμα.
ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ. 2λ 3 Μονάδες 5
ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 11 ΙΟΥΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ)
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Απλη αρμονική ταλάντωση - δύναμη μεταβλητού μέτρου - πλαστική κρούση - αλλαγή της σταθεράς επαναφοράς.
Αλη αρμονική ταλάντωση - δύναμη μεταβλητού μέτρο - λαστική κρούση - αλλαγή της σταθεράς εαναφοράς. Σώμα Σ μάζας = g είναι δεμένο στο δεξιό άκρο οριζόντιο ιδανικού ελατηρίο σταθεράς = 5N / το οοίο το άλλο
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
Εαναλητικά Θέµατα ΟΕΦΕ 011 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίλα σε κάθε αριθµό το γράµµα
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ (19 ΠΕΡΙΟΔΟΙ)
ΚΕΦΑΑΙΟ 5 Κατηγορία Α ΗΕΚΤΡΟΜΑΝΗΤΙΣΜΟΣ (19 ΠΕΡΙΟΔΟΙ) 1. Δύο εθύγραμμοι, παράλληλοι και μεγάλο μήκος αγωγοί και Y διαρρέονται από ρεύμα όπως φαίνεται στο σχήμα. Αν η δύναμη F, ανά μέτρο, πο δέχεται ο αγωγός
Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις:
Εφαρμογή: ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ Ένα σώμα εκτελεί ταυτόχρονα τρεις () αλές αρμονικές ταλαντώσεις, ου έχουν ίδια διεύθυνση, ίδια θέση ισορροίας και εξισώσεις: x1 ( t) = 0.1 ηµ 99 t (S.I.) ( ) ηµ ( ) x t =
Ερωτήσεις πολλαπλής επιλογής
Ερωτήσεις πολλαπλής επιλογής 1. Ένα τρανζίστορ διπλής επαφής είναι πολωµένο σωστά όταν: α. Η βάση είναι σε υψηλότερο δυναµικό από τον εκποµπό και σε χαµηλότερο από το συλλέκτη β. Η βάση είναι σε χαµηλότερο
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξεταστική ερίοδος 05 Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 700 Διάρκεια: ώρες Ύλη: Ταλαντώσεις Καθηγητής: Ονοματεώνυμο: ΘΕΜΑ Α Στις ημιτελείς
γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης
γρατή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ύλη: Ονοματεώνυμο: Καθηγητές: Εαναλητικό σε όλη την ύλη. Ατρείδης Γιώργος - Κόζυβα Χρύσα Θ Ε Μ Α ο Στις αρακάτω ερωτήσεις να γράψετε
Κεφ. 7: Θεωρήματα κυκλωμάτων. Προβλήματα
Κεφ. 7: Θεωρήματα κυκλωμάτων Προβλήματα 1 Πρόβλημα 1 Χρησιμοποιώντας το θεώρημα της υπέρθεσης, υπολογίστε το ρεύμα μέσω της στο κύκλωμα της παρακάτω εικόνας 1.0kΩ 2 V 1.0kΩ 3 V 2.2kΩ Λύση Απομακρύνουμε
Ηλεκτρονική. Ενότητα 6: Η AC λειτουργία του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Ενότητα 6: Η A λειτουργία του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας Το μοντέλο μικρού σήματος του τρανζίστορ. Οι παράμετροι μικρού