4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης
|
|
- ῾Ερμιόνη Ζερβός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων Δρ Μ.Σπηλιώτης
2 Ολοκληρωμένη διαχείριση υδατικών πόρων (integrated water resources management), έμφαση στην εξέταση όλων των πτυχών της απόφασης, προσέγγιση με πολλαπλά λά κριτήρια, ινστιτούτα και δημοκρατικές δομές διαβούλευσης) (Louckset al., 2006)
3 Βελτιστοποίηση Χωρίς περιορισμούς: Επίλυση αναλυτικά (π.χ. μηδενισμός μερικών παραγώγων) Αριθμητικά (π.χ. χ Newton Raphson) Παράδειγμα: γραμμική παλινδρόμηση, νευρωνικά δίκτυα Ευρετικοί αλγόριθμοι (ενσωματώνουν την προσομοίωση) Με περιορισμούς: Συμβατική μορφή: Περίπτωση: Γραμμικός προγραμματισμός Συμβατικές μέθοδοι επίλυσης (π.χ. πολλαπλασιαστές Lagrange (περιορισμοί ισοτήτων), πιο γενικά Κuhn Tucker (περιορισμοί ισοτήτων και ανισοτήτων)) Αριθμητική επίλυση Μη συμβατική μορφή (ευρετικοί αλγόριθμοι) ενσωμάτωση προσομοίωσης
4 Βελτιστοποίηση χωρίς περιορισμούς (ή με απλό περιορισμό, ως καρτεσιανό γινόμενο) Μηδενισμός μερικών παραγώγων Έλεγχος δεύτερης τάξης παραγώγων Γραμμική παλινδρόμηση: ελαχιστοποίηση του τετραγωνικού αθροίσματος των αποκλίσεων (μέτρηση γραμμικό μοντέλο) Δες βοηθητικές σημειώσεις
5 Γενίκευση. Μία συνεχή συνάρτηση πολλαπλών μεταβλητών παίρνει μία ολική και μία μέγιστη τιμή σε κάθε κλειστή οριοθετημένη περιοχή στην οποία ορίζεται (διάβασε σύνολο εφικτών λύσεων). Τα (υποψήφια σημεία) είναι εσωτερικά σημεία ή τα σύνορα του πεδίου ορισμού. Θα υπάρχει σίγουρα ελάχιστο και μέγιστο η στο εσωτερικό U ή στο όριο U
6 ΠΑΡΑΔΕΙΓΜΑ, ΠΡΟΣΟΧΗ ΣΤΑ ΤΟΠΙΚΑ ΒΕΛΤΙΣΤΑ z 3(1 x ) exp x ( x 1) (0.2 x x x )exp( x x ) 2 x exp ( x 1) 6
7 10 5 multimodal! z x x global max local min saddle x local max local max global lbl min x 1 7
8 Τοπικό μέγιστο παγίδα 8
9 Mathematical Description Minimize : f ( x) objective function hx ( ) 0 equality constraints Subject to: gx ( ) 0 inequality constraints where x n, is a vector of n variables ( x1, x2,, x n ) hx ( ) is a vector of equalities of dimension m 1 gx ( ) is a vector of inequalities of dimension m 2 Γενική διατύπωση γενικού προβλήματος βελτιστοποίησης συμβατικού τύπου χωρίς άμεση προσομοίωση 9
10 Χρυσάνθου, 2013
11 Κατανόηση γραμμικού προγραμματισμού Συνάρτηση στόχου: π.χ. επιδιωκόμενο κέρδος (μία συνάρτηση συμμετοχής) Μεταβλητές απόφασης, π.χ. απολήψιμες ποσότητες νερού (μη αρνητικές ποσότητες) Περιορισμοί, περιορισμοί διαθεσιμότητας νερού Υλικοί περιορισμοί Λύση εντός του εφικτού πεδίου (που θα είναι κυρτό).στα σύνορα και μάλιστα στις κορυφές (για γραμμικό προγραμματισμό)
12 Κυρτό πεδίο ορισμού, γραμμικός προγραμματισμός λύση στις κορυφές
13 Πιο γενικά: Ευστρατιαδης, 2013
14 Αλγόριθμος Simplex από κορυφή σε κορυφή Επίσης lingo, Matlab, εξέλ
15 Χρυσάνθου, 2013 x n+k για να γίνουν οι ανισότητες ισότητες (βοηθητικές μεταβλητές)
16 Τονίζεται ότι οι περιορισμοί είναι υπό την μορφή ανισοτήτων αλλά με τις βοηθητικές ζ ρ ρ μ η μ ρφή ή μ ς β η η ς μεταβλητές μετατρέπονται σε ισότητες
17 MATLAB, με πίνακες
18 Εφαρμογή σε πρόβλημα διανομής νερού. Στο σχήμα 1 έχει απεικονιστεί ένα απλό σύστημα διανομής νερού. Από τους κόμβους Ν 1 και Ν 2 τροφοδοτούνται τα κέντρα κατανάλωσης 1 (άρδευση) και 2 (βιομηχανία) αντίστοιχα. Ζητείται να προσδιορισθούν οι ποσότητες ύδατος που μεταφέρονται από τους κόμβους Ν 1 και Ν 2 στα κέντρα κατανάλωσης 1 και 2 αντίστοιχα με τρόπο ώστε να επιτυγχάνεται όσο το δυνατόν μεγαλύτερο κέρδος. NΟ 1 NΟ 2 A 2 N 2 N 1 A 1 N 3 N 4 Σχήμα 1: Σχηματική παρουσίαση του υδατικού συστήματος. Η ποσότητα όγκου αναμεταξύ των κόμβων ΝΟ 1 και Ν 1 (για την περίοδο της ανάλυσης είναι 66UV(μονάδες όγκου). Η ποσότητα όγκου αναμεταξύ των κόμβων ΝΟ 2 και Ν 2 (για την περίοδο της ανάλυσης) είναι 49UV. Το κέρδος από την χρήση του νερού για το κέντρο κατανάλωσης 1 είναι 1 νομισματική μονάδα ανά μονάδα όγκου. Tο κέρδος από την χρήση του νερού για το κέντρο κατανάλωσης 2 είναι 1,5 νομισματική μονάδα ανά μονάδα όγκου: c 1 1BU / UV, c2 1.5 BU / UV. Οι μέγιστες ποσότητες κατανάλωσης ύδατος για τα κέντρα κατανάλωσης 1, 2 είναι 55UV και 41UV αντίστοιχα. Το ποσοστό νερού που από το κέντρο κατανάλωσης 1 επιστρέφει στον κόμβο Ν 3 είναι 30%. Η ελάχιστη απαιτούμενη ποσότητα νερού στους κλάδους N 3 N 4 και N 2 N 3 είναι 49UV και 11UV αντίστοιχα.
19 V V 07. x x QN 49UV V x QN 11UV , x x 66 x Περιορισμοί διαθεσιμότητας νερού x x 1 2 V 1 V 2 66UV 49UV
20 Κυρτό πεδίο ορισμού, γραμμικός προγραμματισμός λύση στις κορυφές
21 Σχηματοποίηση Υδατικού Συστήματος Σχηματοποίηση Άλλη προσέγγιση: Υδατικού συστήματος Κόμβοι Κλάδοι Καταναλώσεις: «σημειακές» από κόμβους) Διαθεσιμότητα νερού: από τον αμέσως ανάντη κλάδο (προσέγγιση). Γνώση από προσομοίωση Ανά κλάδο, θεώρηση, ή μη απωλειών η εμπλουτισμού η σταθερή παροχή όπως εδώ The cumulative demand dat the branch 1 2 (d0+d1) are covered with the (MCPWW1) 2 MPWW 1 The demand at branch 0 1 (d0) are covered with the (MCPWW0) node 1 MCPWW 1 MPWW 0 branch 0 node 0 initial sub basin MCPWW 0 = MPWW 0 = MCPWW 0 + MPWW 1 branch ideal representation of the branch in reality Άλλη προσέγγιση διαθεσιμότητα ανάντη κόμβου στον κατάντη κόμβο κατανάλωσης Fig.1: Calculation of the Maximum Cumulative Potential Withdrawal
22 Μερικές διαφορές γραμμικού και μη γραμμικού προγραμματισμού Ακόμη και αν το πεδίο εφικτών λύσεων είναι κυρτό σύνολο (π.χ. λόγω ύπαρξης μόνο γραμμικών περιορισμών) το βέλτιστο δεν είναι απαραίτητα στο σύνορο του πεδίου ορισμού Το πεδίο των εφικτών λύσεων δεν είναι πάντα κυρτό Δυναμική ενσωμάτωση της προσομοίωσης με ευρετικούς αλγορίθμους
23 Μαρκόπουλος και Ευστρατιάδης, uments/week1_introduction_full.pdf
24 Κριτική/ μετάβαση στο επόμενο μάθημα Ύπαρξη πολλαπλών λώ στόχων κριτήρια στη βελτιστοποίηση, συναρτήσεις στόχου. (βλπ πολλαπλά κριτήρια, αποτελεσματικές λύσεις) Δεν μπορούμε να παραμείνουμε σε μία απλή συνθετική συνάρτηση (σύνθεση διαφορετικών ποσοτήτων, βάρη???, ισόρροπες αποφάσεις???) Ενσωμάτωση της αβεβαιότητας β στην απόφαση (βλπασαφή ήλογική) Ανάγκη πρόβλεψης ευκαμψίας, οι οριακές λύσεις (π.χ. μετά από βελτιστοποίηση με αυστηρούς περιορισμούς) σε μία περίπτωση βλάβης οδηγούν σε καθολική αστοχία απόφαση (βλπ δίκτυα διανομής νερού) (βλπ ασαφή λογική και πολλαπλά κριτήρια) Αλληλεπιδραστική διαδικασία Ανάγκη για πιστότερη προσομοίωση του συστήματος (βλπ προσομοίωση+βελτιστοποίηση ή ευρετικοί αλγόριθμοι)
Διαχείριση Ταμιευτήρα
Διαχείριση Ταμιευτήρα Μονοκριτηριακή βελτιστοποίηση Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα Κουτσογιάννης,
Επιμέλεια: Δρ Μ. Σπηλιώτης Κείμενα σχήματα Τσακίρης 2008 Και κατά τις παραδόσεις του Κ.Κ.Μπέλλου
Συλλογικά δίκτυα κλειστών αγωγών υπό πίεση Βελτιστοποίηση Επιμέλεια: Δρ Μ. Σπηλιώτης Κείμενα σχήματα Τσακίρης 2008 Και κατά τις παραδόσεις του Κ.Κ.Μπέλλου Γενικές αρχές Συλλογικό: Μόνιμοι αγωγοί με σκάμμα
Γραµµικός Προγραµµατισµός (ΓΠ)
Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
ΔΥΠ χρησιμοποιώντας πολύκριτηριακές μεθόδους
Διαχείριση Ταμιευτήρα ΔΥΠ χρησιμοποιώντας πολύκριτηριακές μεθόδους Διαχείριση Ταμιευτήρα Προσομοίωση VS Βελτιστοποίηση(?) Προσομοίωση, διάφορα δάφ «τρεξίματα» για την επιλογή της βέλτιστης τιμής, ικανότητα
ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, διαλ. 4. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 6/5/2017
ΕΝΝΟΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ διαλ. 4 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 6/5/7 Χαρακτηριστικά του προβλήματος Μελέτη αντικειμενικών συναρτήσεων και συναρτήσεων περιορισμών: Απλούστευση προβλήματος
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αναλυτικές τεχνικές - Ειδικά θέματα θεωρίας - Λύση ασκήσεων πράξης ΑΝΑΛΥΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Τι μάθαμε μέχρι τώρα: Να επιλύουμε
Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής
Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος
Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης:
Το µαθηµατικό µοντέλο του Υδρονοµέα
Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Ανάλυση δικτύων διανομής
Υδραυλική & Υδραυλικά Έργα 5 ο εξάμηνο Σχολής Πολιτικών Μηχανικών Ανάλυση δικτύων διανομής Χρήστος Μακρόπουλος, Ανδρέας Ευστρατιάδης & Παναγιώτης Κοσσιέρης Τομέας Υδατικών Πόρων & Περιβάλλοντος, Εθνικό
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ - Εφικτός χώρος λύσεων - Συνάρτηση Lagrange - Γενικές συνθήκες ECM ΣΥΝΘΗΚΕΣ CONSTRAINED Ιδιαιτερότητες των προβλημάτων
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας
ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας Σχεδιασμός αντικειμένων, διεργασιών, δραστηριοτήτων (π.χ. τεχνικά έργα, έπιπλα, σκεύη κτλ) ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΜΕΛΕΤΗ (conceptual design) ΠΡΟΜΕΛΕΤΗ
Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής
Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου
Ειδικά θέµατα δικτύων διανοµής
Ειδικά θέµατα δικτύων διανοµής Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 2005-06 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών
Fermat, 1638, Newton Euler, Lagrange, 1807
Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης: Εύρεση
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του
Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού
3ο Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής Αθήνα,, IούνιοςI 200 Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού Γιώργος Μαυρωτάς Δανάη
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου
Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 τελευταία ενημέρωση: 21/10/2016 1 Γραφική μέθοδος
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα
Επιχειρησιακή Έρευνα. Εισαγωγική Διάλεξη
Επιχειρησιακή Έρευνα Εισαγωγική Διάλεξη Πληροφορίες Διδάσκων: Αντώνης Δημάκης (dimakis@aueb.gr) Γραφείο: 506, 5 ος όροφος, Τροίας 2 (νέο κτήριο), Ώρες: Πέμπτη 1-3μμ Τηλ: 210-8203-924 Βοηθός: Δέσποινα Μεντζελιώτου
Προβλήματα Μεταφορών (Transportation)
Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T
Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
C A (P A ) = *P A *P A
Α.Σ.ΠΑΙ.Τ.Ε. ΤΜΗΜΑ ΕΚΠ. ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΕΠΩΝΥΜΟ ΟΝΟΜΑ: Υπογραφή: ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΓΙΑ ΤΟ ΣΠΙΤΙ Take Home Exam ΗΛΕΚΤΡΙΚΗ ΟΙΚΟΝΟΜΙΑ Λεωνίδας Δ. Δρίτσας, 6 Δεκεμβριου 015 ΑΜ: Σελίδα 1 από 7 Timestamp
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού
Η γραφική μέθοδος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 τελευταία ενημέρωση: 21/10/2016
Επισκόπηση ητου θέματος και σχόλια. Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014
Υδραυλική ανοικτών αγωγών Επισκόπηση ητου θέματος και σχόλια Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008 και από τις σημειώσεις Χρυσάνθου, 2014 Σκαρίφημα Σκελετοποίηση Διάταξη έργων: 3 περιοχές+υδροληψεία
Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17
Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Ειδικές μέθοδοι κλίσης - Τεχνικές φραγής/ποινής - Σύνθετα προβλήματα ΧΕΙΡΙΣΜΟΣ ΠΕΡΙΟΡΙΣΜΩΝ Απορία: Πως επιλύονται με τις
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Θεμελιώδεις έννοιες βελτιστοποίησης και κλασικές μαθηματικές μέθοδοι
Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση συστημάτων υδατικών πόρων Υδροπληροφορική Θεμελιώδεις έννοιες βελτιστοποίησης και κλασικές μαθηματικές μέθοδοι Ανδρέας Ευστρατιάδης & Χρήστος Μακρόπουλος
Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex
Β. Βασιλειάδης Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex Περιεχόμενα Ο αλγόριθμος Simplex Βασικά Βήματα Παραδείγματα Συμπεράσματα 1o Bήμα: εξάλειψη των ανισοτήτων Στη μαθηματική διατύπωση του
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση
Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης
Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών
Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20
Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη
ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΑΚΕΡΑΙΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ολοκληρωμένη μαθηματική τεχνική βελτιστοποίησης Ευρύτατο φάσμα εφαρμογών Εισαγωγή ακέραιων/λογικών/βοηθητικών μεταβλητών Δυνατότητα γραμμικοποίησης με 0-1 μεταβλητές
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: Εισαγωγή Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 3 η /2017 Γραμμικός προγραμματισμός Είναι μια μεθοδολογία
Α. Επανάληψη και εμπλουτισμός εννοιών Β. Ζήτηση νερού Γ. Επιφανειακό Εκμεταλλεύσιμο Υδατικό Δυναμικό
Α. Επανάληψη και εμπλουτισμός εννοιών Β. Ζήτηση νερού Γ. Επιφανειακό Εκμεταλλεύσιμο Υδατικό Δυναμικό ΔΥΠ Ορισμός Διαχείριση Υδατικών Πόρων είναι το σύνολο των ενεργειών (μέτρα, έργα, κανονιστικές διατάξεις,
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος 1a: Συμβατικές Μέθοδοι Βελτιστοποίηση; Maximum Minimum Βελτίωση Δικτύων Ύδρευσης
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α.Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΠΡΩΤΟ - Εισαγωγικές έννοιες - Ταξινόμηση προβλημάτων - Παραδείγματα ΠΕΡΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 4: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις πολλών μεταβλητών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Θεώρημα ΚΚΤ - Γενικές συνθήκες (ΝEC) - Δυαδικά προβλήματα ΠΕΡΙΟΡΙΣΜΟΙ ΑΝΙΣΟΤΗΤΑΣ Πως χειριζόμαστε
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής
Συστήματα υποστήριξης αποφάσεων στη διαχείριση υδατικών πόρων: Η περίπτωση του υδροδοτικού συστήματος της Αθήνας
Ημερίδα της ΕΥΔΑΠ για την Παγκόσμια Ημέρα Νερού Αθήνα, 22 Μαρτίου 2001 Συστήματα υποστήριξης αποφάσεων στη διαχείριση υδατικών πόρων: Η περίπτωση του υδροδοτικού συστήματος της Αθήνας Δημήτρης Κουτσογιάννης
Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Δυϊκότητα Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Το δυϊκό πρόβλημα Για κάθε πρόβλημα Γραμμικού Προγραμματισμού υπάρχει
ΚΑΤΑΣΚΕΥΗ ΠΙΝΑΚΑ ΣΥΝΕΚΤΙΚΟΤΗΤΑΣ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Ι. Γραμμικά τετραγωνικά στοιχεία Q4 Έστω πλέγμα ΝxΜ Έστω πλέγμα με ΝxM στοιχεία:
ΚΑΤΑΣΚΕΥΗ ΠΙΝΑΚΑ ΣΥΝΕΚΤΙΚΟΤΗΤΑΣ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Ι. Γραμμικά τετραγωνικά στοιχεία Q Έστω πλέγμα ΝxΜ Έστω πλέγμα με ΝxM στοιχεία: Τοπικό σύστημα σε κάθε στοιχείο J Ο πίνακας συνεκτικότητας
Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός
Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.
Συστήματα υποστήριξης αποφάσεων στη διαχείριση υδατικών πόρων: Η περίπτωση του υδροδοτικού συστήματος της Αθήνας
Ημερίδα της ΕΥΔΑΠ για την Παγκόσμια Ημέρα Νερού Αθήνα, 22 Μαρτίου 2001 Συστήματα υποστήριξης αποφάσεων στη διαχείριση υδατικών πόρων: Η περίπτωση του υδροδοτικού συστήματος της Αθήνας Δημήτρης Κουτσογιάννης
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης
Κεφάλαιο 5ο: Ακέραιος προγραμματισμός
Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα
Δρ Μ.Σπηλιώτης. Σχήματα, κέιμενα όπου δεν αναφέρεται πηγή: από Τσακίρης, 2008 και Εγγειοβελτιωτικά έργα
Δρ Μ.Σπηλιώτης ρ η ης Σχήματα, κέιμενα όπου δεν αναφέρεται πηγή: από Τσακίρης, 2008 και 1986. Εγγειοβελτιωτικά έργα Προσέγγιση Στην πραγματικότητα: μη μόνιμη ροή Αβεβαιότητα στην πρόβλεψη των παροχών
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 1) Μάρτιος
Επιχειρησιακή έρευνα (ασκήσεις)
Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Διαχείριση Τεχνικών Έργων 3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Μέθοδοι κατανομής πόρων Ορισμοί-Παραδοχές: Πόροι: προσωπικό,
Μοντέλα και Τεχνικές Αξιολόγησης. Ενεργειακών και Περιβαλλοντικών Πολιτικών
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Μοντέλα
ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΔΙΑΧΕΙΡΙΣΗ
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
Τ.Ε.Ι. Πειραιά Π.Μ.Σ. ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ακαδημαϊκό Έτος: 2013-2014 (Χειμερινό Εξάμηνο) Μάθημα: Σχεδιασμός Αλγορίθμων και Επιχειρησιακή Έρευνα Καθηγητής: Νίκος Τσότσολας Εργασία
2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό