ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.)
|
|
- Άριστόδημος Ανδρέου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.) Ένα κύκλωµα βρίσκεται στην Ηµιτνική Μόνιµη Κατάσταση (Η.Μ.Κ.) όταν : α) Όλες ι πηγές τυ κυκλώµατς είναι ηµιτνειδείς συναρτήσεις τυ χρόνυ Α sin (ωt+φ) ή Α cs (ωt+φ) β) Η εξέταση τυ κυκλώµατς να γίνεται «αρκετό» χρόν µετά την χρνική στιγµή έναρξης λειτυργίας τυ κυκλώµατς, ώστε τ κλείσιµ των διακπτών να µην επιδρά στην κατάσταση τυ κυκλώµατς. Πρακτικά αυτό φαίνεται από τη µη αναφρά σε διακόπτες ή στη χρνική στιγµή έναρξης λειτυργίας τυ κυκλώµατς. Συνψίζντας λιπόν, ένα πρόβληµα θα αναφέρεται σε Η.Μ.Κ. όταν ισχύυν (γενικά) ι ακόλυθες δυ πρϋπθέσεις : - Κύκλωµα µε πηγές τάσης ή έντασης της µρφής Α sin (ωt+φ) ή Α cs (ωt+φ) - µη αναφρά σε διακόπτες. Τ ζητύµεν συνήθως είναι η ένταση ρεύµατς ή η τάση σε κάπι στιχεί τυ κυκλώµατς. Μεθδλγία α) Από τη δεδµένη τάση ή ένταση πρσδιρίζυµε την κυκλική συχνότητα ω λειτυργίας τυ κυκλώµατς. (Τ ω είναι συντελεστής τυ t στη φάση ωt+φ). β) Αντικαθιστύµε κάθε πηγή της µρφής Α cs (ωt+φ) µε µια πηγή συνεχύς πυ έχει τιµή Αe. Αν η πηγή είναι Α sin (ωt+φ) = Α cs (ωt +φ-π/) αντικαθιστύµε µε Αe j(φ-π/) γιατί ισχύει sinx = cs (x-π/). γ) Αντικαθιστύµε κάθε πηνί L µε αντίσταση jωl. Αντικαθιστύµε κάθε πυκνωτή C µε αντίσταση Είναι : jωc = j ωc Σύνθετη αντίσταση L: Ζ L =jωl Σύνθετη αντίσταση C : Z C = j ω C Αντίδραση L : Χ L = ωl Αντίδραση C: X C = - ωc Οι ωµικές αντιστάσεις µένυν ως έχυν. δ) Συµβλίζυµε µε άγνωστυς µιγαδικύς αριθµύς τα ρεύµατα ή τις τάσεις τυ κυκλώµατς π.χ. Ι ή Ι ~ ή ~ Ι και O ή ~ ή µεγέθη «συνεχή» δηλαδή ~ ανεξάρτητα τυ t. Στ κύκλωµα πυ πρέκυψε ισχύυν όλα τα γνωστά θεωρήµατα και µέθδι. ΣΟΛΩΜΟΥ 9 ΑΘΗΝΑ inf@arns.gr
2 ε) Λύνυµε τ πρόβληµα και υπλγίζυµε τ µιγαδικό Ο Χ. Τ Ο Χ µπρεί να είναι κάπι ρεύµα ή τάση στ κύκλωµα «συνεχύς» αντίστιχ τυ µεγέθυς x(t) πυ ζητάµε. στ) Τ µέγεθς x(t) είναι : x(t) = Re Χ Ο e Ο µιγαδικός Ο Χ νµάζεται παραστατικός µιγάδας ή phasr (φάσρας) τυ µεγέθυς x(t). Για τη εύρεση τυ x(t), αρκεί πρφανώς η εύρεση τυ phasr Ο Χ jωt ΠΑΡΑΤΗΡΗΣΕΙΣ. Ισχύει e = cs φ + j sin φ. Απαγρεύεται η πρόσθεση παραστατικών µιγαδικών πυ δεν είναι στην ίδια συχνότητα ω. 3. Η παράγωγς D αντιστιχεί στ jω. Συνεπώς Z L = LD, Z C = /CD. Ισχύς στην Η.Μ.Κ. Έστω στιχεί κυκλώµατς πυ έχει τάση υ(t) στα άκρα τυ και διαρρεεται από ρεύµα i(t), στην Η.Μ.Κ. σε καθρισµένη συχνότητα f. υ(t) = m cs (ωt + φ v ), i(t) = I m cs (ωt + φ Ι ) µε ω=πf Οι αντίστιχι phasrs είναι : = me v, Ι =Ιme I Ι + - ΟΡΙΣΜΟΣ Μιγαδική ισχύς στιχείυ : όπυ S = I * Ι * : συζυγής τυ Ι (βάζυµε όπυ j τ j στην έκφραση τυ Ι ) φ είναι Ι * - j =Ι Ι me Έχυµε : S= v - j( me me Ι φ Ι = mιme v φ Ι ) ΣΟΛΩΜΟΥ 9 ΑΘΗΝΑ inf@arns.gr
3 3 Έστω φ=φ v φ Ι πότε S = Ι m me Επειδή e = cs φ +j sin φ είναι : S= Ι csφ+ j m m mι msinφ Πραγµατική (ή ενεργός) ισχύς : = Re( S ) = Ι csφ (σε Watt) m m Φανταστική ή (άεργς) ισχύς : Q= Im (S) = mι msinφ (σε AR) Φαινόµενη ισχύς : S= S = mιm (σε A) (γιατί e =) Είναι =S csφ Q=S sin φ ΣΥΝΤΕΛΕΣΤΗΣ ΙΣΧΥΟΣ Αν σ ένα στιχεί έχυµε τάση και ρεύµα Ι µε τότε η µιγαδική ισχύς είναι : j v m e = φ, Ι =Ι Ι m e όπυ φ=φ v φ Ι. S= cs j mιm φ+ mι msinφ= + Τ συνηµίτν της γωνίας φ νµάζεται συντελεστής ισχύς (Σ.Ι.) δηλαδή : (Σ.Ι.) = cs φ (-90 φ 90 ) Όταν csφ= η συνλική αντίσταση είναι καθαρά ωµική. Σε δεδµένη τιµή τυ συνηµίτνυ αντιστιχύν δυ γωνίες αντίθετες : φ, φ =-φ Όταν πρόκειται για τη θετική τιµή Σ.Ι. θα νµάζεται επαγωγικός, ενώ όταν πρόκειται για την αρνητική τιµή θα χαρακτηρίζεται χωρητικός. ηλαδή : α) φ>0 φ v >φ Ι, Σ.Ι. επαγωγικός πρηγείται Ι sin φ >0 Q>0 β) φ<0 φ v <φ Ι, Σ.Ι. χωρητικός Ι πρηγείται sin <0 Q<0 Μερικές φρές συντελεστής ισχύς νµάζεται και παράγων ισχύς. ΣΟΛΩΜΟΥ 9 ΑΘΗΝΑ inf@arns.gr
4 4 Ένα εναλλασσόµεν µέγεθς Αmcs (ωt + φ) έχει µέγιστη τιµή Α m. Η ενεργός τιµή (ή ενδεικνυόµενη τιµή ) τυ µεγέθυς Α εν = Α rms Α m είναι : Α εν = Αm = Αεν = Αrms Έτσι αν έχυµε : i(t) = I m cs ωt i(t)= Ι εν cs ωt υ(t) = m cs ωt υ(t)= εν cs ωt η ενεργός τιµή της έντασης είναι : Ι Ι m εν = και της τάσης m εν = Αν δίνεται κάπια τάση ή κάπι ρεύµα σε κάπι στιχεί κυκλώµατς, χωρίς να αναφέρεται αν είναι µέγιστη τιµή ή ενεργός θα εννείται σαν ενεργός τιµή. Πρόβληµα (πυ τίθεται) Μέγιστη µεταβίβαση ισχύς Υπθέτυµε ότι έχυµε ένα ηλεκτρικό κύκλωµα στην Η.Μ.Κ. µε ρισµένη κυκλική συχνότητα ω. Μια σύνθετη αντίσταση Ζ = R+ jx έχει µεταβλητά R, X. Η µέση πραγµατική ισχύς στην αντίσταση αυτή είναι µια συνάρτηση των R, X : =(R,X). Ζητύνται ι τιµές των R, X ώστε η (R,X) να γίνει µέγιστη. (τ πρόβληµα αυτό είναι πρόβληµα εύρεσης ακρότατυ συνάρτησης δυ µεταβλητών). Λύση (πυ δίνεται) Τ υπόλιπ κύκλωµα µπρεί ν αντικατασταθεί µε τ ισδύναµ Thevenin. Μετά την µαθηµατική επεξεργασία καταλήγυµε στ ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΜΕΤΑΒΙΒΑΣΗΣ ΙΣΧΥΟΣ : Η µέση πραγµατική ισχύς στ φρτί Ζ γίνεται µέγιστη όταν = Ζ δηλαδή όταν η Ζ παίρνει την τιµή Ζ = R T + jx T. * Z T + υ Τ - Ζ Τ = R T + jx T Ζ = R+ jx ΣΟΛΩΜΟΥ 9 ΑΘΗΝΑ inf@arns.gr
5 5 Τρίγων ισχύς Θεωρύµε µια σύνθετη αντίσταση Ζ όπυ η µιγαδική ισχύς S είναι : S = + Τ είναι πραγµατικός αριθµός και θετικός για αντίσταση Ζ. Τ είναι καθαρά φανταστικός αριθµός. Τ «φανταστικό µέρς» Q µπρεί να είναι θετικό ή αρνητικό. Οι µιγαδικί αριθµί ισδυναµύν µε διανύσµατα στ επίπεδ. Η µιγαδική ισχύς S είναι ίση µε τ διανυσµατικό άθρισµα των,. Άρα πρέπει να σχεδιάσυµε διαδχικά τα,. Η αρχή τυ διανύσµατς τπθετείτε στ πέρας τυ. y Έτσι τ διάνυσµα S έχει αρχή την αρχή τυ πρώτυ () και τέλς (ή πέρας) τ τέλς (ή πέρας) τυ δεύτερυ. 0 x Πρκύπτει έτσι ένα ρθγώνι τρίγων πυ νµάζεται τρίγων ισχύς. φ S Q<0 φ Q>0 S Πρφανώς ισχύει πάντα : = S Se = Q tanφ = Q/ S + csφ = + Q όπυ φ είναι η γωνία της S, δηλαδή φ=φ v φ Ι. ΣΟΛΩΜΟΥ 9 ΑΘΗΝΑ inf@arns.gr
6 6 Βαττόµετρ Είναι τ όργαν µέτρησης της ενεργύ ισχύς και συµβλίζεται όπως στ σχήµα. Φέρει δυ πηνία : τ πηνί της τάσης και τ πηνί έντασης. Αν η τάση στα άκρα τυ πηνίυ τάσης και Ι η ένταση πυ διαρρέει τ πηνί έντασης, η ένδειξη τυ βαττόµετρυ είναι : Ε= Re{ * I } Αν δηλαδή τ πηνί τάσης συνδεθεί παράλληλα µε ένα στιχεί και τ πηνί έντασης σε σειρά µε τ στιχεί αυτό, η ένδειξη τυ βαττόµετρυ συµπίπτει µε την ενεργό ισχύ στ στιχεί. Η παρυσία τυ βαττόµετρυ δεν επηρεάζει τις τιµές των ρευµάτων και τάσεων στ κύκλωµα (γιατί Π ηνίυ έντασης =0, Π ηνίυ τάσης = ) Κατά την λύση πρβληµάτων : α) αφαιρύµε τελείως τ όργαν από τ κύκλωµα, βραχυκυκλώνντας τα σηµεία πυ ήταν συνδεδεµέν τ πηνί έντασης και ανυχτκυκλώνντας εκείνα πυ ήταν συνδεδεµέν τ πηνί τάσης. β) υπλγίζυµε τ Ι ɺ πυ διαρρέει τ βραχυκύκλωµα και τ στ ανιχτκύκλωµα. γ) η ένδειξη τυ ργάνυ είναι : Ε= Re{ * I }. Συγγραφέας : Βυδύκης Νικόλας ΣΟΛΩΜΟΥ 9 ΑΘΗΝΑ inf@arns.gr
ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ
Εισαγωγή Ρεύµατα βρόχων ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ Η µέθδς ρευµάτων βρόχων για την επίλυση κυκλωµάτων (ή δικτύων) είναι υσιαστικά εφαρµγή τυ νόµυ τάσεων τυ Kirchhff µε κατάλληλη εκλγή κλειστών βρόχων ρεύµατς.
m e j ω t } ja m sinωt A m cosωt
ΕΝΟΤΗΤΑ IV ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 26 Στρεόµενα διανύσµατα Σε κυκλώµατα όπου η διέγερση είναι περιοδική και ηµιτονοειδής οι τάσεις και τα ρεύµατα αναπαρίστανται µε µιγαδικούς αριθµούς, ή όπως συνήθως λέµε
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 86 ΑΣΚΗΣΗ. Ένα κύκλωµα RC αποτελείται από µια αντίσταση R 5Ω και έναν πυκνωτή χωρητικότητας C σε σειρά. Αν το ρεύµα προηγείται της τάσης κατά 6 ο και η κυκλική συχνότητα της πηγής είναι
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177
Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)
Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (
ΚΕΦΑΛΑΙΟ 10. Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση
26 ΚΕΦΑΛΑΙΟ 0 Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση 0. ) Γενικά για την Ηµιτονική Μόνιµη Κατάσταση ( Η.Μ.Κ.) Η µελέτη ενός ηλεκτρικού δικτύου γίνεται πρώτιστα στο στο πεδίο του χρόνου.
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
Σειρά 1 η : Άσκηση 1.2
B: Λύση επιλεγμένων ασκήσεων Ηλεκτρτεχνικών Εαρμγών Σειρά η : Άσκηση. Αρχικά υπλγίζνται ι μαγνητικές αντιστάσεις τυ μαγνητικύ κυκλώματς, όπυ λόγω των συμμετριών χρειάζεται να υπλγιστύν μόνν τέσσερις αντιστάσεις:
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ)
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ 1/5 Τι περιλαμβάνει Εκθετική διέγερση Φάσορας Επίλυση κυκλώματος μετασχηματισμός των στοιχείων Εμπέδηση Ισχύς
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Μάθηµα ευτέρας 20 / 11 / 17
90 Μάθηµα ευτέρας 20 / / 7 5) ιανυσµατικά διαγράµµατα στην Η.Μ.Κ. Κατά την µελέτη ηλεκτρικών δικτύων στην Η.Μ.Κ. χρησιµοποιούνται πολύ συχνά τα λεγόµενα διανυσµατικά διαγράµµατα. Οι στρεφόµενοι µε την
ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ
ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια
ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 09/12/2012
ΔΙΑΓΩΝΙΣΜΑ ΚΠ. ΤΟΥΣ 0-03 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΚΤΡΟΛΟΓΙΑ ΚΑΤΥΘΥΝΣΗΣ/Γ ΛΥΚΙΟΥ ΘΡΙΝΑ ΣΙΡΑ: ΗΜΡΟΜΗΝΙΑ: 09//0 ΟΜΑΔΑ Α Οδηγία: Να γράψετε στ τετράδιό σας τν αριθμό κάθε μίας αό τις αρακάτω ερωτήσεις Α.- Α.5 και
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ /6/ ΘΕΜΑ (3 μνάδες) (α) Η αντίσταση ενός D λευκόχρυσυ μετρήθηκε στη θερμκρασία πήξης τυ νερύ και βρέθηκε 8 Ω, ενώ στη συνέχεια μετρήθηκε σε θερμκρασία θ και βρέθηκε 448 Ω Να
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 5: Εναλλασσόμενα κυκλώματα μόνιμης κατάστασης Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
Εναλλασσόμενο και μιγαδικοί
(olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας
ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Ως ισχύς ορίζεται ο ρυθμός παροχής ή κατανάλωσης ενέργειας. Η ηλεκτρική ισχύς ορίζεται ως το γινόμενο της τάσης επί το ρεύμα: p u i Ιδανικό πηνίο
γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: // ΘΕΜΑ ( μνάδες) T κύκλωμα τυ παρακάτω σχήματς λαμβάνει ως εισόδυς τις εξόδυς των αισθητήρων Α και Β. Η έξδς τυ αισθητήρα Α είναι ημιτνικό
Έστω μια ΓΜ η οποία περιγράφεται από ένα δίθυρο κύκλωμα με γενικευμένες παραμέτρους ABCD, όπως φαίνεται στο Σχήμα 5.1. Οι σταθερές ABCD είναι:
5 Κεφάλαιο ΗΛΕΚΤΡΙΚΑ ΜΕΓΕΘΗ ΓΡΑΜΜΩΝ ΜΕΤΑΦΟΡΑΣ 5.1 Εισαγωγή Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές σχέσεις για τον υπολογισμό της ενεργού και άεργου ισχύς στα δύο άκρα μιας γραμμής μεταφοράς (ΓΜ),
Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)
Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική
Γʹ ΤΑΞΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΑΒΒΑΤΟ 5 ΙΟΥΝΙΟΥ 2004 ΟΜΑ Α Α
ΗΛΕΚΤΡΟΛΟΓΙΑ Γʹ ΤΑΞΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΑΒΒΑΤΟ 5 ΙΟΥΝΙΟΥ 2004 ΟΜΑ Α Α Για τις παρακάτω προτάσεις, Α.1. έως και Α.4., να γράψετε στο τετράδιό σας τον αριθµό της
Τµήµα Βιοµηχανικής Πληροφορικής Σηµειώσεις Ηλεκτρονικών Ισχύος Παράρτηµα
ΠΑΡΑΡΤΗΜΑ Ηµιτονοειδές Ρεύµα και Τάση Τριφασικά Εναλλασσόµενα ρεύµατα Ισχύς και Ενέργεια Ενεργός τιµή περιοδικών µη ηµιτονικών κυµατοµορφών 1. Ηµιτονοειδές Ρεύµα και Τάση Οταν οι νόµοι του Kirchoff εφαρµόζονται
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Μια μαθηματική συνάρτηση f(t) χαρακτηρίζεται ως εναλλασσόμενη όταν: Όταν η τιμή παίρνεις θετικές και αρνητικές τιμές (εναλλάσσεται) σε σχέση με το χρόνο. Όταν η εναλλαγή
Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ
Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και
1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ 3 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής ιάρθρωση. Χρονικά Εξαρτημένες Πηγές. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση
ÏÅÖÅ. Α. 3. Στις οπτικοηλεκτρονικές διατάξεις δεν ανήκει: α. η δίοδος laser β. το τρανζίστορ γ. η φωτοδίοδος δ. η δίοδος φωτοεκποµπής LED Μονάδες 5
Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΗΛΕΚΤΡΟΛΟΓΙΑ ΟΜΑ Α Α Για τις παρακάτω προτάσεις Α. έως και Α.4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα σε κάθε αριθµό
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ (A.C)
ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 4ο ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ (A.C) Εναλλασσόμενο ρεύμα Ονομάζεται το ρεύμα του οποίου η φορά και η τιμή (ένταση) μεταβάλλονται περιοδικά με το χρόνο. Φάση: φ=ω*t Κυκλική συχν: ω=2*π*f
Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ (ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ)
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ (ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΘΕΜΑ 1 ο 1.1 Στον παρακάτω πίνακα η Στήλη Α αναφέρεται σε νόµους,
Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αcos(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ
Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αco(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ Η ημιτονοειδής συνάρτηση δίνεται από τον τύπο f(t) = Αco(ωt + φ) όπου Α είναι το πλάτος, φ είναι η φάση και ω είναι η γωνιακή συχνότητα.
HΛEKTΡOTEXNIA ΙΙ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ
HΛEKTΡOTEXNIA ΙΙ 3/0/09 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή
Κυκλώµατα εναλλασσόµενης τάσης
Κυκλώµατα εναλλασσόµενης τάσης Στόχος αυτής της ενότητας του µαθήµατος είναι η µελέτη των ηλεκτρικών κυκλωµάτων στα οποία η ηλεκτροκινητήρια δύναµη παρέχεται από πηγή εναλλασσόµενης τάσης Σε αυτή την ενότητα
Α.3. Στην παρακάτω συνδεσμολογία οι τέσσερις αντιστάσεις R 1, R 2, R 3 και R 4 είναι διαφορετικές μεταξύ τους. Το ρεύμα Ι 3 δίνεται από τη σχέση:
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΟΜΑΔΑ Α Για τις παρακάτω προτάσεις,
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 0 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ A. Για τις ηµιτελείς προτάσεις Α. και Α. να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα σε
Προτεινόµενες Ασκήσεις στα Κυκλώµατα δύο ακροδεκτών στο Πεδίο της Συχνότητας
Προτεινόµενες Ασκήσεις στα Κυκλώµατα δύο ακροδεκτών στο Πεδίο της Συχνότητας από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργαρη Πρόβληµα Ένα κύκλωµα δύο ακροδεκτών αποτελείται από δύο στοιχεία δύο
C (3) (4) R 3 R 4 (2)
Πανεπιστήμιο Θεσσαλίας Βόλος, 29/03/2016 Τμήμα: Μηχανολόγων Μηχανικών Συντελεστής Βαρύτητας: 40%/ Χρόνος Εξέτασης: 3 Ώρες Γραπτή Ενδιάμεση Εξέταση στο Μάθημα: «ΜΜ604, Ηλεκτροτεχνία Ηλεκτρικές Μηχανές»
2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids)
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Plarids) Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 94677 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 4. Πόλωση
ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΤΑΞΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003
ΗΛΕΚΤΡΟΛΟΓΑ Γ ΤΑΞΗΣ ΤΕΧΝΟΛΟΓΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΑΟΥ ΛΥΚΕΟΥ 3 ΟΜΑ Α Α Στις ερωτήσεις Α. - Α.6 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή
ΚΕΦΑΛΑΙΟ 2 Ο : ΣΥΝΘΕΤΗ ΜΙΓΑΔΙΚΗ ΑΝΤΙΣΤΑΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΣΥΝΘΕΤΗ ΜΙΓΑΔΙΚΗ ΑΝΤΙΣΤΑΣΗ Ο νόμος του Ohm σε κυκλώματα με στοιχεία R, L και C στο εναλλασσόμενο συνοψίζεται στον πιο κάτω πίνακα: Στοιχείο Νόμος του Ohm Παρατηρήσεις Ωμική αντίσταση (R) Επαγωγική
Στοιχεία R, L, C στο AC
Στοιχεία R, L, C στο AC Εμπέδηση (περιγραφή, υπολογισμός για κάθε στοιχείο) Νόμος OHM στο AC Στόχοι μαθήματος Προηγούμενο Εύρεση phasors αρμονικών συναρτήσεων Πράξεις (Πρόσθεση/αφαίρεση κλπ) ημιτονοειδών
ΟΜΑ Α Α. α. i = β. i = ηµ (ωt-90 ο ) γ. i =
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2010 ΕΚΦΩΝΗΣΕΙΣ
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2010 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ A1. Για τις ηµιτελείς προτάσεις Α1.1 έως και Α1.4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
() { ( ) ( )} ( ) () ( )
Ηλεκτρική Ισχύς σε Μονοφασικά και Τριφασικά Συστήματα. Μονοφασικά Συστήματα Έστω ότι σε ένα μονοφασικό καταναλωτή η τάση και το ρεύμα περιγράφονται από τις παρακάτω δύο χρονικές συναρτήσεις: ( t cos( ω
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 00 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ : Θεωρύμε τυς μιγαδικύς αριθμύς α) z(t) + z(t) = z(t)
ΚΥΚΛΩΜΑΤΑ ΣΤΗ ΜΟΝΙΜΗ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΤΑΣΤΑΣΗ
Διανυσματική παράσταση μεταβλητών 1 υ = υ R + υ L υ = V m cos(ωt+θ υ V m = R + ( ωl Im ωl R θ υ = arctan ( Παράσταση μιγαδικού αριθμού Α στο μιγαδικό επίπεδο θ Α Α = ReIAI +jimiai = Α r + ja j ΙΑΙ = A
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 27 ΜΑΪΟΥ 2009 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 7 ΜΑΪΟΥ 009 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις παρακάτω προτάσεις, Α. έως και Α.5, να γράψετε στο τετράδιό σας τον αριθµό της πρότασης
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 01 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης 1 ΟΜΑ Α ΠΡΩΤΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 01 Τετάρτη, 9 Μαίου 01 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1.
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΔΙΔΑΣΚΩΝ: Λ ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: //7 ΘΕΜΑ ( μνάδες) Οι τιμές των αντιστάσεων και τυ κυκλώματς τυ
ΑΠΑΝΤΗΣΕΙΣ. Α2. Η σχέση που συνδέει την πραγματική ισχύ P,την άεργη ισχύ Q και την φαινόμενη ισχύ S είναι:
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 03//03 Σελίδα από 6 ΑΠΑΝΤΗΣΕΙΣ A ΟΜΑΔΑ Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό κάθε μιας από τις παρακάτω
2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2.1. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5 Ο ΜΑΘΗΜΑ 2.1.1. Τ σύνλ των πραγματικών αριθμών Τ σύνλ των πραγματικών αριθμών, είναι γνωστό και με τα στιχεία τυ δυλέψαμε όλες τις πρηγύμενες τάζεις.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΜΑ Α Α
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 2 ΙΟΥΛΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ
1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ 3 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής ιάρρωση. Χρονικά Εξαρτημένες Πηγές. Φάσορες 3. Σύνετη Αντίσταση 4. Ανάλυση
Μετρήσεις µε βαττόµετρο
Η3 Μετρήσεις µε βαττόµετρο 1. Σκοπός Στην άσκηση χρησιµοποιούµε το βαττόµετρο ως µετρητικό όργανο της καταναλισκόµης ισχύος σε κυκλώµατα αλλασσόµου ρεύµατος που περιλαµβάνουν διαδοχικά ωµική αντίσταση,
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΜΑΪΟΥ 004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) : ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΕΞΙΣΩΣΕΙΣ MAXWELL ΘΕΩΡΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2009 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 009 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις παρακάτω προτάσεις, Α. έως και Α.5, να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το
ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ Γ ΕΠΑΛ 15 / 04 / 2018
Γ ΕΠΑΛ 5 / 04 / 08 ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ ΘΕΜΑ ο. Σε τρίγωνο ισχύος με =5KVA και Ρ=4KW η άεργη ισχύς θα ισούται με: α. KVar β. 3KVar γ. 4KVar δ. 5KVar β. 3KVar. Σε κύκλωμα RC σε σειρά με Uεν = 500V, URεν = 300V
Φυσική ΙΙΙ. Ενότητα 6: Εναλλασσόμενα Ρεύματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 6: Εναλλασσόμενα Ρεύματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Εναλλασσόμενη τάση V=V sinωt Πλεονεκτήματα ω=πf όπου f η συχνότητα V το πλάτος Μεταφορά ισχύος. Μετασχηματίζεται
Κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ)
Κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ) Οι ηλεκτρικές συσκευές των κατοικιών χρησιμοποιούν κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ). Κάθε κύκλωμα ΕΡ αποτελείται από επιμέρους ηλεκτρικά στοιχεία (αντιστάτες,
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α I A. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα
HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων
HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Μέρος Α Ωμικά Κυκλώματα (Διαλέξεις 6 Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Gree Park, Γραφείο Τηλ. 899 Διάλεξη Εισαγωγή στην ημιτονοειδή ανάλυση στην σταθερή κατάσταση
3.2 ΑΘΡΟΙΣΜΑ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ
3. ΘΡΟΙΣΜ ΩΝΙΩΝ ΤΡΙΩΝΟΥ ΙΙΟΤΗΤΕΣ ΙΣΟΣΚΕΛΟΥΣ ΤΡΙΩΝΟΥ ΘΕΩΡΙ. Άθρισµα γωνιών τριγώνυ Σε πιδήπτε τρίγων τ άθρισµα των γωνιών τυ είναι ίσ µε 80. Ιδιότητες ισσκελύς τριγώνυ Η ευθεία της διαµέσυ πυ αντιστιχεί
1.0 Βασικές Έννοιες στην Τριγωνομετρία
1.0 Βασικές Έννιες στην Τριγωνμετρία 1 η Μρφή Ασκήσεων: Ασκήσεις όπυ θέλυμε να βρύμε στιχεία ενός γεωμετρικύ σχήματς 1. Στ διπλανό σχήμα να απδείξετε ότι: ΒΓ υ εφω + εφθ. Τ τρίγων ΑΔΒ είναι ρθγώνι στ Δ,
ΑΣΚΗΣΗ 6. Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς
ΑΣΚΗΣΗ 6 Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς Σκοπός : Να μελετήσουμε το φαινόμενο του συντονισμού σε ένα κύκλωμα που περιλαμβάνει αντιστάτη (R), πηνίο (L) και πυκνωτή (C) συνδεδεμένα σε σειρά (κύκλωμα
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Καθηγητές: Δ. ΚΑΛΛΙΓΕΡΟΠΟΥΛΟΣ & Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επιστημνικός Συνεργάτης: Σ. ΒΑΣΙΛΕΙΑΔΟΥ
ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 28 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 8 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ A. Για τις ηµιτελείς προτάσεις Α. έως και Α.4 να γράψετε στο τετράδιό σας τον αριθµό της
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
1. πρώτος κανόνας Kirchhoff α) Ε=Ι.R oλ 2. κλειστό κύκλωµα ιδιοσυχνότητα 3. κυκλώµατος RLC σε σειρά. t νόµος της επαγωγής δ) 1 4.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ (ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ(6) ΘΕΜΑ 1ο 1.1 Στον παρακάτω
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 28 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) : ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ
ΟΜΑ Α Α. δ. R = 0. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Εναλλασσόμενο ρεύμα και ταλάντωση.
Εναλλασσόμο ρεύμα και ταλάντωση. Δίνεται το κύκλωμα του διπλανού σχήματος, όπου το ιδανικό πηνίο έχει συντελεστή αυτεπαγωγής 8mΗ, ο πυκνωτής χωρητικότητα 0μF, η αντίσταση R του αντιστάτη R30Ω, ώ η τάση
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
0 f(t)e st dt. L[f(t)] = F (s) =
Α. Δροσόπουλος 3 Ιανουαρίου 29 Περιεχόμενα Μετασχηματισμοί Laplace 2 Αντιστάσεις, πυκνωτές και πηνία 2 3 Διέγερση βαθμίδας σε L κυκλώματα 5 3. Φόρτιση.....................................................
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΙΟΥΝΙΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 2. Σ ένα κύκλωμα η στιγμιαία τιμή έντασης του ρεύματος δίνεται από τη σχέση i=100 ημ (314t). Η ενεργός τιμή της έντασης είναι:
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 30 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ
Κυκλώματα δύο Ακροδεκτών στο Πεδίο της Συχνότητας
Ανάλυση Κυκλωμάτων Κυκλώματα δύο Ακροδεκτών στο Πεδίο της Συχνότητας Φώτης Πλέσσας fplea@inf.uth.gr Εισαγωγή (/2) Ένα κύκλωμα δύο ακροδεκτών διαθέτει μια θύρα, που είναι ταυτόχρονα είσοδος και έξοδος.
και ότι όλες οι τάσεις ή ρεύματα που αναπτύσσονται σε ένα κύκλωμα έχουν την ίδια συχνότητα ω. Οπότε για τον πυκνωτή
1 130306 Πρώτο μάθημα. Επανάληψη μιγαδικών. Παράδειγμα με z 1 = 5 j3. Μέτρο z 1 = 5 2 3 2 = 5.83, φάση /z 1 = tan 1 (3/5) = 30.96. Τι γίνεται με τα τεταρτημόρια όταν z 2 = 5 j3, z 3 = 5 j3, z 4 = 5 j3.
ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09
ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση
ΟΜΑ Α Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΛΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ)
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
Φυσική ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Μετρήσεις με βαττόμετρο. Ιωάννης Βαμβακάς. Τμήμα Ναυπηγών Μηχανικών Τ.Ε.
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική ΙΙ (Ε) Ενότητα 3: Μετρήσεις με βαττόμετρο Ιωάννης Βαμβακάς Τμήμα Ναυπηγών Μηχανικών Τ.Ε. Το περιεχόμενο του μαθήματος διατίθεται
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΙΙ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 00 ΘΕΜΑ Δύο συζευγμένα πραγματικά πηνία συνδέονται εν παραλλήλω, όπως στο Σχ.. Να βρεθούν () οι ενδείξεις των τριών βατομέτρων, () η
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΑΚΕΛΛΑΡΗ ΔΕΣΠΟΙΝΑ ΦΥΣΙΚΟΣ- M.SC.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΣΑΚΕΛΛΑΡΗ ΔΕΣΠΟΙΝΑ ΦΥΣΙΚΟΣ- M.SC. ΠΕΡΙΕΧΟΜΕΝΑ ΆΣΚΗΣΗ ΣΥΝΔΕΣΜΟΛΟΓΙΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 4
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 2011 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ
ΗΕΚΤΡΟΟΓΙΑ ΤΕΧΝΟΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΟΣ ΤΕΧΝΟΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) 011 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ 1. Για τις παρακάτω προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα σε
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Το εξεταστικό δοκίµιο µαζί µε το τυπολόγιο αποτελείται από εννιά (9) σελίδες. Τα µέρη του εξεταστικού δοκιµίου είναι τρία (Α, Β και Γ ).
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (ΙI) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΕΦΑΡΜΟΣΜΕΝΗ ΗΛΕΚΤΡΟΛΟΓΙΑ
από ρεύμα I=I 0 ημ ωt +. Τότε:
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 23 ΜΑÏΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ
N 1 :N 2. i i 1 v 1 L 1 - L 2 -
ΕΝΟΤΗΤΑ V ΙΣΧΥΣ - ΤΡΙΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ 34 Μετασχηµατιστής Ο µετασχηµατιστής είναι µια διάταξη που αποτελείται από δύο πηνία τυλιγµένα σε έναν κοινό πυρήνα από σιδηροµαγνητικό υλικό. Το πηνίο εισόδου λέγεται
ΟΜΑΔΑ Α. Α.3. Η λογική συνάρτηση x + x y ισούται με α. x β. y γ. x+y δ. x
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γʹ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΟΜΑΔΑ Α Στις ερωτήσεις Α. - Α.6 να γράψετε
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) : ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ
ΘΕΜΑ 1ο α. β. γ. δ. 2.
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) ΗΛΕΚΤΡΟΛΟΓΙΑ ΘΕΜΑ 1ο Στις παρακάτω ερωτήσεις 1,