Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αcos(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ
|
|
- Κάλλιστος Παχής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Η ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ Αco(ωt + φ) ΚΑΙ Η ΦΑΣΟΡΙΚΗ ΤΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ Η ημιτονοειδής συνάρτηση δίνεται από τον τύπο f(t) = Αco(ωt + φ) όπου Α είναι το πλάτος, φ είναι η φάση και ω είναι η γωνιακή συχνότητα. Στο πιο κάτω σχήμα φαίνεται η ημιτονοειδής co(2π 0 t), δηλ. με ω = 62,83 rad/ και περίοδο 0, (μπλε γραμμή). Με κόκκινη γραμμή απεικονίζεται η ημιτονοειδής co(2π 0 t 30º) ενώ με πράσινη γραμμή απεικονίζεται η ημιτονοειδής co(2π 0 t + 60º). co(2π 0 t) co(2π 0 t + 60º) προήγηση co(2π 0 t 30º) καθυστέρηση Aπό τον τύπο του Euler: e ± jθ = coθ ± jinθ μπορούμε να γράψουμε: οπότε + ( ω in ( ω j e = co t+ + j t+ + ( ω in ( ω j Ae = Aco t + + ja t + που σημαίνει ότι ισχύει (προβολή στον άξονα των πραγματικών αριθμών) ( ω j+ jϕ { { Aco t + = Re Ae = Re Ae e Καταφέραμε έτσι να διαχωρίσουμε το πλάτος και τη φάση από τη γωνιακή συχνότητα και τη μεταβολή στον χρόνο). Η ποσότητα Αe jφ είναι ένας μιγαδικός αριθμός (με μέτρο Α και γωνία φ σε πολικές συντεταγμένες) και μπορεί να θεωρηθεί σαν ένα φωτογραφικό στιγμιότυπο της ημιτονοειδούς το οποίο αποκαλούμε φάσορα. Η ποσότητα e είναι ένας μιγαδικός αριθμός που περιγράφει την κίνηση (στροφή με γωνιακή συχνότητα ω) του φάσορα στο μιγαδικό επίπεδο. Γι αυτό υπάρχει και ο όρος στρεφόμενο διάνυσμα (βλ. πιο κάτω σχήμα).
2 Im ωt t = t β Α ω r φ α Α t = 0 Re γ ΠΕΔΙΟ ΣΥΧΝΟΤΗΤΑΣ (Παράμετροι ημιτονοειδούς: πλάτος r, φάση φ) ΠΕΔΙΟ ΧΡΟΝΟΥ (Παράμετροι ημιτονοειδούς: πλάτος r, φάση φ, γωνιακή συχνότητα) ω) Α 0 α Α β t περίοδος Τ = 2π ω γ α t 2
3 Όταν ένα κύκλωμα έχει ημιτονοειδή διέγερση και έχει περάσει αρκετός χρόνος ώστε να έχουν «σβήσει» τυχόν μεταβατικά φαινόμενα και να έχει επιτευχθεί μόνιμη κατάσταση, λέμε ότι βρίσκεται στη μόνιμη ημιτονοειδή κατάσταση (ΜΗΚ). Έχοντας σαν δεδομένο ότι όλες οι ποσότητες που εμπλέκονται στην ανάλυση ενός κυκλώματος σε ΜΗΚ είναι ημιτονοειδείς συναρτήσεις, ξέρουμε ότι κάθε ρεύμα και κάθε τάση θα είναι ημιτονοειδής. Κατά συνέπεια, και ο λόγος τέτοιων μεγεθών, που θα είναι πάλι μιγαδικός αριθμός, μπορεί να γραφεί σαν φάσορας. Έτσι, ο λόγος μιας ημιτονοειδούς τάσης προς μια ημιτονοειδή ένταση έχει μια μορφή (γενικευμένης) αντίστασης, που αποκαλούμε εμπέδηση ή σύνθετη αντίσταση. Αντίστοιχα, ο λόγος μιας ημιτονοειδούς έντασης προς μια ημιτονοειδή τάση αντιστοιχεί σε μια μορφή αγωγιμότητας, που αποκαλούμε δεκτικότητα ή σύνθετη αγωγιμότητα. Οι πιο πάνω έννοιες της εμπέδησης και δεκτικότητας μπορούν να εφαρμοστούν στα απλά στοιχεία κυκλώματος (αντιστάτη, πυκνωτή, επαγωγό). Χρησιμοποιώντας τις σχέσεις που συνδέουν την τάση και το ρεύμα σε κάθε ένα από τα βασικά κυκλωματικά στοιχεία και περνώντας στη φασορική τους μορφή (αφού θεωρούμε ότι το κύκλωμα βρίσκεται σε μόνιμη ημιτονοειδή κατάσταση) μπορούμε να φτάσουμε στις βασικές σχέσεις Αντιστάτης: V = RI I = GV Εμπέδηση: R Δεκτικότητα: G Πυκνωτής: j V = I I = jωcv Εμπέδηση: ωc j C ω Δεκτικότητα: jωc Επαγωγός: V = jωli j I = V Εμπέδηση: jωl Δεκτικότητα: ωl jωl Με τον ίδιο τρόπο, οι έννοιες αυτές μπορούν να εφαρμοστούν και σε μονόθυρα που περιέχουν περισσότερα από ένα βασικά στοιχεία. Τότε θα μιλάμε για εμπέδηση του μονόθυρου στο σημείο διέγερσης για τη συχνότητα ω που θα ορίζεται σαν ο λόγος του φάσορα V της τάσης εξόδου προς τον φάσορα I του ρεύματος εισόδου (διέγερσης), όπως φαίνεται στο πιο κάτω σχήμα. V Εμπέδηση Z = I i () t = Re { Ie I ) = I co + + vt () = Re { Ve V) = V co + ΜΟΝΟΘΥΡΟ (με γραμμικά χρονικά αμετάβλητα στοιχεία) 3
4 Αντίστοιχα (και δυαδικά!) θα μιλάμε για δεκτικότητα του μονόθυρου στο σημείο διέγερσης για τη συχνότητα ω που θα ορίζεται σαν ο λόγος του φάσορα I του ρεύματος εξόδου προς τον φάσορα V της τάσης εισόδου (διέγερσης), όπως φαίνεται στο πιο κάτω σχήμα. v () t = Re { Ve V ) = V co + + it () = Re { Ie I) = I co + ΜΟΝΟΘΥΡΟ (με γραμμικά χρονικά αμετάβλητα στοιχεία) I Δεκτικότητα Y = V ΣΥΝΟΠΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η εμπέδηση (ή η δεκτικότητα) του μονόθυρου μπορεί να υπολογιστεί αν κάθε στοιχείο αντικατασταθεί με την αντίστοιχη εμπέδησή του ή δεκτικότητά του (δηλαδή, αντικατασταθεί από το φασορικό του ισοδύναμο στο πεδίο συχνότητας) και επιλυθεί το κύκλωμα με τις γνωστές μεθόδους και τεχνικές (κομβικές τάσεις, βροχικές εντάσεις, απλοποιήσεις, κλπ.). Σε περίπτωση διέγερσης με πηγές διαφορετικών συχνοτήτων, εφαρμόζουμε την αρχή της επαλληλίας. Επειδή μας ενδιαφέρει η απόκριση του κυκλώματος σε ένα εύρος (ζώνη) συχνοτήτων, μπορούμε να υπολογίσουμε την εμπέδηση (ή τη δεκτικότητα) του μονόθυρου παραμετρικά σε σχέση με τη συχνότητα ω. Με τον τρόπο αυτό, παίρνουμε την εμπέδηση (ή τη δεκτικότητα) του μονόθυρου σαν συνάρτηση Ζ(jω) (ή Υ(jω)) ή σαν j ω Z όπου ω 0 είναι μια συχνότητα ειδικού ενδιαφέροντος, π.χ. η συχνότητα ω 0 συντονισμού σε ένα κύκλωμα RLC. 4
5 Η ΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗΣ ΜΕ ΦΑΣΟΡΕΣ ΣΤΟ ΠΕΔΙΟ ΣΥΧΝΟΤΗΤΑΣ Κύκλωμα με ημιτονοειδή διέγερση ΚΑΙ σε μόνιμη κατάσταση Μέθοδος κομβικών τάσεων ή βροχικών εντάσεων Κατάστρωση των διαφορικών εξισώσεων Μέθοδος φασόρων Μετασχηματισμός του κυκλώματος στο πεδίο συχνότητας (υπολογισμός των εμπεδήσεων ή δεκτικοτήτων) Μέθοδος κομβικών τάσεων ή βροχικών εντάσεων Υπολογισμός της μερικής λύσης των διαφορικών εξισώσεων Επίλυση των αλγεβρικών σχέσεων Απόκριση σε φασορική μορφή Απόκριση στη μόνιμη ημιτονοειδή κατάσταση Σημείωση: Τα βελάκια έχουν πάχος ενδεικτικό της δυσκολίας της αντίστοιχης ενέργειας 5
ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ8-1
ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ8-1 ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία) 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση
ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΕΙΣΑΓΩΓΙΚΑ Ι Από το πραγματικό κύκλωμα στο μοντέλο Μαθηματική μοντελοποίηση Η θεωρία κυκλωμάτων είναι
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177
Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)
Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική
HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων
HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Μέρος Α Ωμικά Κυκλώματα (Διαλέξεις 6 Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Gree Park, Γραφείο Τηλ. 899 Διάλεξη Εισαγωγή στην ημιτονοειδή ανάλυση στην σταθερή κατάσταση
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
Κυκλώματα με Ημιτονοειδή Διέγερση
Ανάλυση Κυκλωμάτων Κυκλώματα με Ημιτονοειδή Διέγερση Φώτης Πλέσσας fplessas@e-ce.uth.gr Εισαγωγή Πολλά πραγματικά συστήματα, όπως οι μονάδες παραγωγής και τα δίκτυα μεταφοράς ηλεκτρικής ενέργειας, οι τηλεπικοινωνίες
Κυκλώματα δύο Ακροδεκτών στο Πεδίο της Συχνότητας
Ανάλυση Κυκλωμάτων Κυκλώματα δύο Ακροδεκτών στο Πεδίο της Συχνότητας Φώτης Πλέσσας fplea@inf.uth.gr Εισαγωγή (/2) Ένα κύκλωμα δύο ακροδεκτών διαθέτει μια θύρα, που είναι ταυτόχρονα είσοδος και έξοδος.
m e j ω t } ja m sinωt A m cosωt
ΕΝΟΤΗΤΑ IV ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 26 Στρεόµενα διανύσµατα Σε κυκλώµατα όπου η διέγερση είναι περιοδική και ηµιτονοειδής οι τάσεις και τα ρεύµατα αναπαρίστανται µε µιγαδικούς αριθµούς, ή όπως συνήθως λέµε
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ i 1 i 2
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, 007008 ΦΕΒΡΟΥΑΡΙΟΣ 008 ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΕ ΑΥΤΟ ΤΟ ΧΡΩΜΑ ΘΕΜΑ. [0%] Για το κύκλωμα δεξιά, ένα λογισμικό ανάλυσης κυκλωμάτων έδωσε τα παρακάτω αποτελέσματα:
Εναλλασσόμενο και μιγαδικοί
(olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ)
ΑΠΟΚΡΙΣΗ ΚΥΚΛΩΜΑΤΩΝ ΣΕ HMITONIKH ΔΙΕΓΕΡΣH (HMITONIKH ANAΛYΣΗ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ 1/5 Τι περιλαμβάνει Εκθετική διέγερση Φάσορας Επίλυση κυκλώματος μετασχηματισμός των στοιχείων Εμπέδηση Ισχύς
ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ7-1
ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 19Κ7-1 ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία). Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση i.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ 3 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής ιάρθρωση. Χρονικά Εξαρτημένες Πηγές. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση
Έστω μια ΓΜ η οποία περιγράφεται από ένα δίθυρο κύκλωμα με γενικευμένες παραμέτρους ABCD, όπως φαίνεται στο Σχήμα 5.1. Οι σταθερές ABCD είναι:
5 Κεφάλαιο ΗΛΕΚΤΡΙΚΑ ΜΕΓΕΘΗ ΓΡΑΜΜΩΝ ΜΕΤΑΦΟΡΑΣ 5.1 Εισαγωγή Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές σχέσεις για τον υπολογισμό της ενεργού και άεργου ισχύς στα δύο άκρα μιας γραμμής μεταφοράς (ΓΜ),
Φυσική ΙΙΙ. Ενότητα 6: Εναλλασσόμενα Ρεύματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 6: Εναλλασσόμενα Ρεύματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Εναλλασσόμενη τάση V=V sinωt Πλεονεκτήματα ω=πf όπου f η συχνότητα V το πλάτος Μεταφορά ισχύος. Μετασχηματίζεται
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 04/02/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΘΕΜΑ 1 ο ( μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 1, 0.7, 00 kω, 4 kω, h e. kω και β h 100. (α) Να προσδιορίσετε τις τιμές των αντιστάσεων και ώστε το σημείο λειτουργίας Q (, ) του τρανζίστορ
R eq = R 1 + R 2 + R 3 = 2Ω + 1Ω + 5Ω = 8Ω. E R eq. I s = = 20V V 1 = IR 1 = (2.5A)(2Ω) = 5V V 3 = IR 3 = (2.5A)(5Ω) = 12.5V
Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Απαντήσεις στο 1 0 Homework στην Ανάλυση Κυκλωμάτων Χειμερινό Εξάμηνο 2014-2015 Πλέσσας Φώτης 1 Πρόβλημα 1 Βρείτε τη συνολική αντίσταση
ΗΜΥ203 Εργαστήριο Κυκλωµάτων και Μετρήσεων
ΗΜΥ203 Εργαστήριο Κυκλωµάτων και Μετρήσεων Κυκλώματα RLC Σειράς και Συντελεστής Ισχύος ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ατζέντα 1.
ΚΥΚΛΩΜΑΤΑ ΣΤΗ ΜΟΝΙΜΗ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΤΑΣΤΑΣΗ
Διανυσματική παράσταση μεταβλητών 1 υ = υ R + υ L υ = V m cos(ωt+θ υ V m = R + ( ωl Im ωl R θ υ = arctan ( Παράσταση μιγαδικού αριθμού Α στο μιγαδικό επίπεδο θ Α Α = ReIAI +jimiai = Α r + ja j ΙΑΙ = A
Στοιχεία R, L, C στο AC
Στοιχεία R, L, C στο AC Εμπέδηση (περιγραφή, υπολογισμός για κάθε στοιχείο) Νόμος OHM στο AC Στόχοι μαθήματος Προηγούμενο Εύρεση phasors αρμονικών συναρτήσεων Πράξεις (Πρόσθεση/αφαίρεση κλπ) ημιτονοειδών
ΚΕΦΑΛΑΙΟ 2 Ο : ΣΥΝΘΕΤΗ ΜΙΓΑΔΙΚΗ ΑΝΤΙΣΤΑΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΣΥΝΘΕΤΗ ΜΙΓΑΔΙΚΗ ΑΝΤΙΣΤΑΣΗ Ο νόμος του Ohm σε κυκλώματα με στοιχεία R, L και C στο εναλλασσόμενο συνοψίζεται στον πιο κάτω πίνακα: Στοιχείο Νόμος του Ohm Παρατηρήσεις Ωμική αντίσταση (R) Επαγωγική
Vout(s) Vout. s s s. v t t u t t u t t u t t u t Στη μορφή αυτή, η κυματομορφή είναι έτοιμη για μετασχηματισμό στο πεδίο συχνότητας:
ΘΕΜΑ. [0 %] Βρείτε τη συνάρτηση μεταφοράς Η(s) για το κύκλωμα στα δεξιά. Στη συνέχεια υπολογίστε την έξοδο vout(t) όταν η είσοδος v(t) έχει τη μορφή v V t s Η αναπαράσταση του κυκλώματος στο πεδίο συχνότητας
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
Κυκλώματα με ημιτονοειδή διέγερση
Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω
Αρχές και Θεωρήματα Ηλεκτρικών Κυκλωμάτων
Ανάλυση Κυκλωμάτων Αρχές και Θεωρήματα Ηλεκτρικών Κυκλωμάτων Φώτης Πλέσσας fplessas@inf.uth.gr Αρχή της επαλληλίας Θεώρημα της αντικατάστασης Εισαγωγή Θεωρήματα Thevenin και Norton Μετατόπιση των πηγών
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
ΑΡΜΟΝΙΚΑ ΜΕΓΕΘΗ-ΒΑΣΙΚΟ ΛΟΓΙΣΜΙΚΟ- ΕΦΑΡΜΟΓΗ ΣΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ
524 ΑΡΜΟΝΙΚΑ ΜΕΓΕΘΗ-ΒΑΣΙΚΟ ΛΟΓΙΣΜΙΚΟ- ΕΦΑΡΜΟΓΗ ΣΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Φραγκιαδουλάκης Μανώλης Φυσικός-Ρ/Η Καθηγητής Δευτεροβάθμιας Εκπαίδευσης fragkiad@sch.gr ΠΕΡΙΛΗΨΗ Ένα από τα βασικά προβλήματα που
ΑΠΑΝΤΗΣΗ Εφόσον το κύκλωμα λειτουργεί για πολύ χρόνο, έχει περάσει στη μόνιμη κατάσταση και πρέπει να υπολογίσουμε την κατάστασή του αμέσως πριν το
13 2019Κ1Φ-2 RC Το κύκλωμα λειτουργεί για πολύ χρόνο Στο t = 0 η πηγή τάσης αντιστρέφει την πολικότητά της και η πηγή ρεύματος πέφτει στα 2 ma Να υπολογιστεί η τάση v o (t) για t 0 2019Κ1Φ-3 RC ΑΠΑΝΤΗΣΗ
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1 Ο συντονισμός είναι μια κατάσταση κατά την οποία το φανταστικό μέρος της σύνθετης αντίστασης ενός κυκλώματος RCL μηδενίζεται. Αυτό συμβαίνει γιατί
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
Πρόλογος... i ΑΝΑΦΟΡΕΣ ΓΙΑ ΠΕΡΑΙΤΕΡΩ ΜΕΛΕΤΗ... 77
Περιεχόµενα Πρόλογος............................................ i 1 ΕΙΣΑΓΩΓΗ 1 1.1 Επισκόπηση του κειµένου............................... 2 1.2 Η σχέση ανάµεσα στην ανάλυση κυκλωµάτων και στην µηχανολογία........
Εργαστήριο Κυκλωμάτων και Μετρήσεων
ΗΜΥ203 Εργαστήριο Κυκλωμάτων και Μετρήσεων Κυκλώματα RLC Σειράς,Συχνότητα Συντονισμούκαι Διόρθωση Συντελεστή Ισχύος Διδάσκων: Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και
ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ
ΑΣΚΗΣΗ 05 ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ Αντικείμενο της άσκησης αυτής είναι η μέτρηση της διαφοράς φάσης μεταξύ δύο κυματομορφών τάσης σε ένα κύκλωμα εναλλασσομένου ρεύματος με τη βοήθεια
0 f(t)e st dt. L[f(t)] = F (s) =
Α. Δροσόπουλος 3 Ιανουαρίου 29 Περιεχόμενα Μετασχηματισμοί Laplace 2 Αντιστάσεις, πυκνωτές και πηνία 2 3 Διέγερση βαθμίδας σε L κυκλώματα 5 3. Φόρτιση.....................................................
HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων
HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Παράρτημα Α Μιγαδικοί Αριμοί Οι μιγαδικοί αριμοί είναι μια από τις πιο σημαντικές έννοιες στον τομέα της ηλεκτρολογίας. Τι είναι οι μιγαδικοί αριμοί (compl numbrs; Ξέρουμε
Ηλεκτροτεχνία 3 ο εξάμηνο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών ΕΜΠ
Ηλεκτροτεχνία 3 ο εξάμηνο Σ λή Ν ώ Μ λό Σχολή Ναυπηγών Μηχανολόγων Μηχανικών ΕΜΠ Ενότητες που καλύφθηκαν Σήματα και Συστήματα Ηλεκτρικά μεγέθη Ηλεκτρικά στοιχεία και κυκλώματα Επίλυση ηλεκτρικών κυκλωμάτων
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Μια μαθηματική συνάρτηση f(t) χαρακτηρίζεται ως εναλλασσόμενη όταν: Όταν η τιμή παίρνεις θετικές και αρνητικές τιμές (εναλλάσσεται) σε σχέση με το χρόνο. Όταν η εναλλαγή
Κυκλώµατα εναλλασσόµενης τάσης
Κυκλώµατα εναλλασσόµενης τάσης Στόχος αυτής της ενότητας του µαθήµατος είναι η µελέτη των ηλεκτρικών κυκλωµάτων στα οποία η ηλεκτροκινητήρια δύναµη παρέχεται από πηγή εναλλασσόµενης τάσης Σε αυτή την ενότητα
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 86 ΑΣΚΗΣΗ. Ένα κύκλωµα RC αποτελείται από µια αντίσταση R 5Ω και έναν πυκνωτή χωρητικότητας C σε σειρά. Αν το ρεύµα προηγείται της τάσης κατά 6 ο και η κυκλική συχνότητα της πηγής είναι
περιεχομενα Πρόλογος vii
Πρόλογος vii περιεχομενα ΜΕΡΟΣ ΠΡΩΤΟ: Κυκλώματα Συνεχούς Ρεύματος... 2 ΚΕΦΑΛΑΙΟ 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ... 3 1.1 Εισαγωγή...4 1.2 Συστήματα και Μονάδες...5 1.3 Φορτίο και Ρεύμα...6 1.4 Δυναμικό...9 1.5 Ισχύς
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕ ΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ 2004
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕ ΙΑΣΜΟΣ Ι, 3-4 ΦΕΒΡΟΥΑΡΙΟΣ 4 ΘΕΜΑ. [5 µονάδες] Στο πιο κάτω κύκλωµα οι κοµβικές τάσεις υπολογίστηκαν από ένα συνάδελφό σας σαν v = 3 V και v = V. Μπορείτε να επαληθεύσετε
Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Κυκλώματα Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Τα ηλεκτρικά κυκλώματα ταξινομούνται σε διάφορες κατηγορίες,
Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών
Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών Ηλεκτρονική ΗΥ231 Εισαγωγή στην Ηλεκτρονική Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Σήµατα Ένα αυθαίρετο σήµα τάσης v s (t) 2 Φάσµα συχνοτήτων των σηµάτων
1. Χρονικά Εξαρτημένες Πηγές 2. Φάσορες 3. Σύνθετη Αντίσταση 4. Ανάλυση Δικτύων AC
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ 3 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής ιάρρωση. Χρονικά Εξαρτημένες Πηγές. Φάσορες 3. Σύνετη Αντίσταση 4. Ανάλυση
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ
Pierre-Simn Laplace ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ /4 Τι περιλαμβάνει Ορισμοί Μετασχ. Laplace απλών σημάτων Ιδιότητες Εφαρμογή στη λύση ΔΕ Μετασχηματισμένο
1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Φάσμα συχνοτήτων. Πεδίο μιγαδικής μγ συχνότητας Πόλοι & μηδενικά
ΚΕΦΑΛΑΙΟ 10. Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση
26 ΚΕΦΑΛΑΙΟ 0 Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση 0. ) Γενικά για την Ηµιτονική Μόνιµη Κατάσταση ( Η.Μ.Κ.) Η µελέτη ενός ηλεκτρικού δικτύου γίνεται πρώτιστα στο στο πεδίο του χρόνου.
ιέγερση από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργαρη
Προτεινόµενες Ασκήσεις στα Κυκλώµατα µε Ηµιτονοειδή ιέγερση από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργαρη Πρόβληµα Το κύκλωµα δύο ακροδεκτών του Σχ. διεγείρεται από ηµιτονοειδή πηγή τάσης µε
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1.1 Εισαγωγή 1.1 1.2 Συμβολισμοί και μονάδες 1.3 1.3 Φορτίο, τάση και ενέργεια 1.5 Φορτίο και ρεύμα 1.5 Τάση 1.6 Ισχύς και Ενέργεια 1.6 1.4 Γραμμικότητα 1.7 Πρόσθεση
1. Μεταβατικά φαινόμενα Κύκλωμα RC
. Μεταβατικά φαινόμενα.. Κύκλωμα RC Το κύκλωμα του Σχήματος είναι το απλούστερο κύκλωμα Α τάξης και αποτελείται από μια πηγή συνεχούς τάσης, που είναι η διέγερσή του, εν σειρά με μια αντίσταση και έναν
Προτεινόμενες Ασκήσεις στις Γενικές Μεθόδους Ανάλυσης Κυκλωμάτων
Προτεινόμενες Ασκήσεις στις Γενικές Μεθόδους Ανάλυσης Κυκλωμάτων από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωμάτων», Ν. Μάργαρη Πρόβλημα Να βρεθεί η ισοδύναμη αντίσταση του κυκλώματος δύο ακροδεκτών του Σχ..
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 5: Εναλλασσόμενα κυκλώματα μόνιμης κατάστασης Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΟΜΑ Α ΠΡΩΤΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 Παρασκευή, 6 Ιουνίου 04 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ Α. Για τις ημιτελείς προτάσεις Α. και Α.
ΑΠΑΝΤΗΣΕΙΣ. Α2. Η σχέση που συνδέει την πραγματική ισχύ P,την άεργη ισχύ Q και την φαινόμενη ισχύ S είναι:
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 03//03 Σελίδα από 6 ΑΠΑΝΤΗΣΕΙΣ A ΟΜΑΔΑ Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό κάθε μιας από τις παρακάτω
Μάθηµα ευτέρας 20 / 11 / 17
90 Μάθηµα ευτέρας 20 / / 7 5) ιανυσµατικά διαγράµµατα στην Η.Μ.Κ. Κατά την µελέτη ηλεκτρικών δικτύων στην Η.Μ.Κ. χρησιµοποιούνται πολύ συχνά τα λεγόµενα διανυσµατικά διαγράµµατα. Οι στρεφόµενοι µε την
Α.3. Στην παρακάτω συνδεσμολογία οι τέσσερις αντιστάσεις R 1, R 2, R 3 και R 4 είναι διαφορετικές μεταξύ τους. Το ρεύμα Ι 3 δίνεται από τη σχέση:
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΟΜΑΔΑ Α Για τις παρακάτω προτάσεις,
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ.
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
Εργαστήριο Κυκλωμάτων και Μετρήσεων
ΗΜΥ203 Εργαστήριο Κυκλωμάτων και Μετρήσεων Εκθετικά κύματα και Σύνθετη Αντίσταση Κυκλώματα RLC Σειράς, Συχνότητα Συντονισμούκαι Διόρθωση Συντελεστή Ισχύος Διδάσκων: Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου
Φυσικά μεγέθη στα 3 ανάλογα συστήματα
Φυσικά μεγέθη στα 3 ανάλογα συστήματα ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΗΛΕΚΤΡΙΚΟ ΜΗΧΑΝΙΚΟ ΑΚΟΥΣΤΙΚΟ ΚΙΝΗΤΗΡΙΑ ΔΥΝΑΜΗ V, ηλ. ΤΑΣΗ (=ηλεκτρεγερτική δύναμη) F, μηχ. ΔΥΝΑΜΗ p, ακ. ΠΙΕΣΗ ΡΟΗ I, ηλ. ρεύμα v, μηχ. ταχύτητα Uακ.,
v(t) = Ri(t). (1) website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 10 Μαρτίου 2017 1 Βασικά μεγέθη ηλεκτρικών
Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)
Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Ενότητα 5: Η Ομοιογενής Γραμμή Μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Τμήμα Ηλεκτρολόγων Μηχανικών
3. Κεφάλαιο Μετασχηματισμός Fourier
3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια
3 η ενότητα ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ
ρ. Λάμπρος Μπισδούνης Καθηγητής 3 η ενότητα ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ T.E.I. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Περιεχόμενα 3 ης ενότητας Στην τρίτη ενότητα θα μελετήσουμε την απόκριση
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 01 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φυσικών της Ώθησης 1 ΟΜΑ Α ΠΡΩΤΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 01 Τετάρτη, 9 Μαίου 01 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1.
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 9 ΜΑΪΟΥ 013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕ ΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ 2006
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕ ΙΑΣΜΟΣ Ι, 005006 ΦΕΒΡΟΥΑΡΙΟΣ 006 ΘΕΜΑ. [5%] Στο κύκλωµα αυτό: (Α) Προσδιορίστε την τάση όταν R = 00 Ω. (Β) Τι συµβαίνει όταν R = 00 Ω; Πως εξηγείται αυτό; v 00 Ω 9 V
Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των
ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,
Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ.1) με τα εξής χαρακτηριστικά: R 2.3 k,
Να σχεδιαστεί ένας ενισχυτής κοινού εκπομπού (σχ) με τα εξής χαρακτηριστικά: 3 k, 50, k, S k και V 5 α) Nα υπολογιστούν οι τιμές των αντιστάσεων β) Να επιλεγούν οι χωρητικότητες C, CC έτσι ώστε ο ενισχυτής
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
1.5 1 Ο νόμος των ρευμάτων του Kirchhoff 11 1.5 2 Ο νόμος των τάσεων του Kirchhoff 12 1.5 3 Το θεώρημα του Tellegen 13
Μέρος Α 1. Εισαγωγικές Έννοιες 3 1.1 Το αντικείμενο της θεωρίας των ηλεκτρικών κυκλωμάτων 4 1.2 Φυσικά και μαθηματικά μοντέλα 5 1.3 Συγκεντρωμένα και κατανεμημένα κυκλώματα 6 1.4 Ορισμοί Φορές αναφοράς
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΗΛΕΚΤΡΟΛΟΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΥΝΣΗΣ ΕΜΤ ΟΜ. ια τις ημιτελείς προτάσεις. και. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στο σωστό συμπλήρωμά της...
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β ) ΠΕΜΠΤΗ 30 ΙΟΥΝΙΟΥ
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς
και ότι όλες οι τάσεις ή ρεύματα που αναπτύσσονται σε ένα κύκλωμα έχουν την ίδια συχνότητα ω. Οπότε για τον πυκνωτή
1 130306 Πρώτο μάθημα. Επανάληψη μιγαδικών. Παράδειγμα με z 1 = 5 j3. Μέτρο z 1 = 5 2 3 2 = 5.83, φάση /z 1 = tan 1 (3/5) = 30.96. Τι γίνεται με τα τεταρτημόρια όταν z 2 = 5 j3, z 3 = 5 j3, z 4 = 5 j3.
ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ & ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ & ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE έκδοση DΥΝI-TFLT_016b
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr
ΟΜΑΔΑ Α. Α.3. Η λογική συνάρτηση x + x y ισούται με α. x β. y γ. x+y δ. x
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γʹ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΟΜΑΔΑ Α Στις ερωτήσεις Α. - Α.6 να γράψετε
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ-ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Ι, ΦΕΒΡΟΥΑΡΙΟΣ V 20 Ω. 4 v 0 V
ΘΕΜ 1. [5%] Στο πιο κάτω κύκλωμα προσδιορίστε τo ρεύμα i και την τάση v. i 1 1 Ω v 1 v 1 1 4 v 3 i A 8 Ω v ΠΝΤΗΣΗ: ME ΚΟΜΙΚΕΣ ΤΣΕΙΣ (v 1,v ): Η τάση στον δεξιό κόμβο (με τον κάτω σαν κόμβο αναφοράς) ταυτίζεται
Εργαστήριο Κυκλωμάτων και Συστημάτων Ενότητα 3: Κυκλώματα με στοιχεία αποθήκευσης ενέργειας
Εργαστήριο Κυκλωμάτων και Συστημάτων Ενότητα 3: Κυκλώματα με στοιχεία αποθήκευσης ενέργειας Αραπογιάννη Αγγελική Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Σκοποί ενότητας... 3 2. Περιεχόμενα
Μ ά θ η μ α «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Μ ά θ η μ α «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» (Ανάλυση Μονοφασικών Κυκλωμάτων) Γεώργιος Περαντζάκης Δρ. Ηλεκτρολόγος Μηχανικός ΕΜΠ
Κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ)
Κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ) Οι ηλεκτρικές συσκευές των κατοικιών χρησιμοποιούν κυκλώματα εναλλασσόμενου ρεύματος (ΕΡ). Κάθε κύκλωμα ΕΡ αποτελείται από επιμέρους ηλεκτρικά στοιχεία (αντιστάτες,
ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3)
ΑΣΚΗΣΗ 8 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ Αντικείμενο της άσκησης είναι να πραγματοποιήσετε μετρήσεις σε ένα L κύκλωμα σειράς έτσι ώστε α) να σχεδιάσετε την καμπύλη συντονισμού β) να προσδιορίσετε τις χαρακτηριστικές
Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα
ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΗΛΕΚΤΡΟΛΟΙΑ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α. ια τις ημιτελείς προτάσεις Α. έως Α.4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα σε κάθε αριθμό,
2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
Προτεινόµενες Ασκήσεις στα Κυκλώµατα δύο ακροδεκτών στο Πεδίο της Συχνότητας
Προτεινόµενες Ασκήσεις στα Κυκλώµατα δύο ακροδεκτών στο Πεδίο της Συχνότητας από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργαρη Πρόβληµα Ένα κύκλωµα δύο ακροδεκτών αποτελείται από δύο στοιχεία δύο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ
ΟΜΑ Α Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 1 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ) : ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ
- Η ισοδύναμη πηγή τάσης Thevenin (V ή VT) είναι ίση με τη τάση ανοικτού κυκλώματος VAB.
ΘΕΩΡΗΜΑ THEVENIN Κάθε γραμμικό ενεργό κύκλωμα με εξωτερικούς ακροδέκτες Α, Β μπορεί να αντικατασταθεί από μια πηγή τάση V (ή VT) σε σειρά με μια σύνθετη αντίσταση Z (ή ZT), όπως φαίνεται στο παρακάτω σχήμα.
Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Σεπτεμβρίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2013/2014, Ημερομηνία: 16/09/2014
Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Σεπτεμβρίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 3/4, Ημερομηνία: 6/9/4 Θέμα ο Δίνονται οι εξής παράμετροι για το κύκλωμα ΕΡ του παρακάτω
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ- ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ
Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 1 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 2 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 3 Επιμέλεια Π.Π.Λ. ΕΥΑΓΓΕΛΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Σελ. 4 Επιμέλεια
Άσκηση 13. Θεωρήματα Δικτύων
Άσκηση Θεωρήματα Δικτύων. Θεώρημα Βρόχων ΣΚΟΠΟΣ Πειραματική επαλήθευση της μεθόδου των βρογχικών ρευμάτων. ΘΕΩΡΙΑ Με τη μέθοδο των βρογχικών ρευμάτων, η επίλυση ενός κυκλώματος στηρίζεται στον υπολογισμό
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α