Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 6 : Κίνηση του νερού στο έδαφος ΙΙ Δρ.
|
|
- Σωφρονία Αγγελίδου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 6 : Κίνηση του νερού στο έδαφος ΙΙ Δρ. Μενέλαος Θεοχάρης
2 .3.. Μέτρηση της υδραυλικής αγωγιμότητας στον αγρό.3... Μέθοδος του φρεατίου σε ομογενή εδάφη α. Μέτρηση για την περίπτωση ύπαρξης ελεύθερης επιφάνειας Η μέθοδος του φρεατίου (Auge hole mehod) είναι μια απλή, γρήγορη και σχετικά ακριβής μέθοδος μέτρησης του συντελεστή υδραυλικής αγωγιμότητας, Κ, για την περιοχή του εδάφους που βρίσκεται κάτω από τη στάθμη του υπόγειου νερού. Η μέθοδος αυτή είναι η περισσότερο χρησιμοποιούμενη για την εκπόνηση της στραγγιστικής μελέτης μιας περιοχής με υψηλή στάθμη υπογείου νερού. Η γενική αρχή της είναι πολύ απλή. Ανοίγεται ένα φρεάτιο σε βάθος μεγαλύτερο από την υπόγεια στάθμη. Όταν επέλθει ισορροπία στην υπόγεια στάθμη, αντλείται το νερό από το φρεάτιο και μετράται η ταχύτητα ανύψωσης της στάθμης του νερού του φρεατίου. Οι μετρήσεις αυτές, μαζί με τα στοιχεία της διάνοιξης του φρεατίου, οδηγούν στον υπολογισμό της υδραυλικής αγωγιμότητας, Κ, του εδάφους. Η μέθοδος του φρεατίου δίνει τη μέση τιμή της υδραυλικής αγωγιμότητας των στρωμάτων του εδάφους, τα οποία βρίσκονται κάτω από την υπόγεια στάθμη, σε μικρή απόσταση κάτω από τον πυθμένα του φρεατίου και σε μια ακτίνα της τάξεως 3-5 cm. Αν ο πυθμένας του φρεατίου εδράζεται σε αδιαπέρατο υπόστρωμα, η τιμή του Κ αντιπροσωπεύει τα στρώματα που βρίσκονται πάνω από αυτό. Έτσι η εφαρμογή της περιορίζεται σε περιοχές με υψηλή υπόγεια στάθμη, έστω και σε μικρές περιόδους του έτους, καθώς και σε εδάφη όπου είναι δυνατό να διατηρηθεί αδιατάρακτο το φρεάτιο για όλη τη διάρκεια του πειράματος. Αυτός ο τελευταίος περιορισμός όμως μπορεί να ξεπεραστεί πολλές φορές με τη χρήση διάτρητων σωλήνων, διαδικασία που έχει ευρεία εφαρμογή σε αμμώδη εδάφη. Επιφάνεια εδάφους Υπόγεια στάθμη H n h Δ σε Δ D Αδιαπέρατο υπόστρωμα Σχήμα.. Γεωμετρικά μεγέθη της μεθόδου του φρεατίου σε ομογενές έδαφος. Η όλη διαδικασία εφαρμογής της μεθόδου διακρίνεται σε τέσσερες φάσεις, οι οποίες είναι: (α) η διάνοιξη του φρεατίου, (β) η αφαίρεση του νερού από αυτό (γ) η μέτρηση της
3 ταχύτητας ανύψωσης της στάθμης του νερού στο φρεάτιο και (δ) ο υπολογισμός του συντελεστή υδραυλικής αγωγιμότητας από τα δεδομένα των μετρήσεων. Η διάνοιξη του φρεατίου απαιτεί την ελάχιστη δυνατή διαταραχή του εδάφους και γίνεται με ειδικό γεωτρύπανο. Το βάθος διάνοιξής του εξαρτάται από τον τύπο του εδάφους, το πάχος των διαστρώσεων και τη θέση στην οποία πρόκειται να υπολογιστεί η υδραυλική αγωγιμότητα. Έτσι για ένα ομογενές έδαφος μεγάλου πάχους διαστρώσεως, ο πυθμένας του φρεατίου θα πρέπει να βρίσκεται περίπου 6-7 cm κάτω από την υπόγεια στάθμη. Όσον αφορά την πυκνότητα των φρεατίων, για την εκπόνηση της στραγγιστικής μελέτης μιας περιοχής θα πρέπει να αντιστοιχεί ένα φρεάτιο για κάθε δέκα στρέμματα περίπου. Η αφαίρεση του νερού από το φρεάτιο γίνεται με μια ειδική προς τούτο μικρή αντλία. Η εργασία της αφαίρεσης μπορεί να αρχίσει αφού επέλθει ισορροπία μεταξύ της στάθμης του φρεατίου και της υπόγειας στάθμης. Αν το έδαφος έχει μικρή διαπερατότητα, τότε η στάθμη του φρεατίου καλό είναι να κατέβει cm κάτω από την υπόγεια στάθμη, ώστε με τη δημιουργία σχετικά μεγάλης διαφοράς στα δυο αντίστοιχα φορτία, να αυξηθεί η ταχύτητα ανύψωσής της και να ελαττωθεί ο χρόνος που απαιτείται για τη λήψη αξιόπιστων μετρήσεων. Αν το έδαφος είναι πολύ διαπερατό, τότε η άντληση της ποσότητας του νερού που θα έχει μια πτώση της στάθμης του φρεατίου ίση με cm, θεωρείται ικανοποιητική. Η μέτρηση της ταχύτητας ανύψωσης της στάθμης του νερού στο φρεάτιο γίνεται με ειδικά αυτογραφικά σταθμήμετρα. Οι μετρήσεις που παίρνονται ανάγονται είτε σε σταθερά χρονικά βήματα Δ είτε σε ορισμένα σταθερά διαστήματα ανύψωσης της στάθμης Δ. Το μέγεθος των Δ ή Δ εξαρτάται από τη διαπερατότητα του εδάφους. Πάντως λαμβάνεται φροντίδα ώστε κάθε χρονικό βήμα Δ να είναι ίσο με 5,, 5, ή 3 sec και να αντιστοιχεί σε μια τιμή Δ = cm περίπου. Αν είναι το βάθος της πτώσης της στάθμης του φρεατίου, δηλαδή η πρώτη μέτρηση της διαδικασίας των μετρήσεων της ανύψωσης της στάθμης του νερού, τότε η όλη εργασία των μετρήσεων θα πρέπει να συμπληρωθεί πριν γίνει n < 3/ ή πριν Δ > /, όπου n είναι η τελευταία η-οστή μέτρηση και Δ = Σ Δ = - n. Στο σχήμα.., με συμβολίζεται η απόσταση μεταξύ της στάθμης του υπόγειου νερού και του μέσου επιπέδου της στάθμης του φρεατίου κατά τη διάρκεια των μετρήσεων. Έτσι θα είναι : n Για τον υπολογισμό του συντελεστή υδραυλικής αγωγιμότητας χρησιμοποιείται στη μέθοδο αυτή ο τύπος του Hooghoud ή ο αντίστοιχος τύπος του Ens. Ο Hooghoud το 936 ( Luhin, 966) θεώρησε ότι η ανύψωση της στάθμης του νερού στο φρεάτιο οφείλεται τόσο στην πλάγια εισροή που γίνεται από την παράπλευρη επιφάνειά του, όσο και στην κατακόρυφη εισροή που γίνεται από του πυθμένα του. Η ταχύτητα ανύψωσης της στάθμης του νερού που οφείλεται στην πλάγια εισροή παραδέχτηκε ότι είναι: d d οριζ. π Η..Η. Κ (.9) π S.S όπου οι διάφοροι συμβολισμοί φαίνονται στο σχήμα.. και S είναι μια σταθερή που έχει διαστάσεις μήκους [L] και εξαρτάται από τα, Η, D καθώς και το ύψος h του νερού στο φρεάτιο κατά το χρόνο των μετρήσεων. Από πειράματα που έκανε ο Hooghoud βρήκε την εμπειρική σχέση:.h S (.),9
4 Ο αριθμητικός συντελεστής,9 έχει διαστάσεις μήκους [L = m]. Η εξίσωση (.) μπορεί να δώσει ένα μέγιστο σφάλμα της τάξης του 7 %, πράγμα που θεωρείται μη σημαντικό για τον υπολογισμό του συντελεστή υδραυλικής αγωγιμότητας, του οποίου οι τιμές μεταβάλλονται για τους διάφορους τύπους εδαφών από, μέχρι περισσότερο από m/ημέρα. Η ταχύτητα ανύψωσης της στάθμης του νερού του φρεατίου, που οφείλεται στην κατακόρυφη εισροή από τον πυθμένα του, παραδέχτηκε ότι είναι: d d κατ. π Κ π S.. S (.) Αν αθροιστούν οι εξισώσεις (.9) και (.) προκύπτει: d d (H ) S (.) η οποία δίνει τη συνολική ανύψωση της στάθμης του νερού του φρεατίου. Από την ολοκλήρωση της εξίσωσης (.) μεταξύ των ορίων = όταν = και = n όταν = Δ, προκύπτει : ln n.(h ) S η οποία επιλυόμενη ως προς Κ ως προς Κ δίνει : S ln H Δ n Η εξίσωση (.) λόγω της (.) γίνεται:,9 H H ln n στην οποία το Δ είναι σε sec και το Κ σε m/s, όταν τα και Η είναι σε m. ή ακόμη 5,7 x H ln H n (.3) (,) (.5) (.6) στην οποία το Δ είναι σε sec και το Κ σε m/ημέρα, όταν τα και Η είναι σε m. Όταν το φρεάτιο εδράζεται πάνω σε ένα αδιαπέρατο υπόστρωμα, η κάθετη εισροή του νερού από τον πυθμένα του είναι μηδενική, οπότε η συμβολή της εξίσωσης (.) είναι μηδέν και η εξίσωση (.6) γίνεται: 7368, ln n (.7) στην οποία και πάλι το Δ είναι σε sec και το Κ σε m/ημέρα, όταν η ακτίνα είναι σε m. Οι εξισώσεις (.6) και (.7) είναι οι δύο τύποι του Hooghoud οι οποίοι χρησιμοποιούνται για τον υπολογισμό του συντελεστή υδραυλικής αγωγιμότητας Κ του εδάφους, από τα δεδομένα των μετρήσεων της μεθόδου του φρεατίου, όταν το φρεάτιο βρίσκεται υψηλότερα από το αδιαπέρατο υπόστρωμα ή όταν ο πυθμένας του εδράζεται πάνω σ' αυτό, αντίστοιχα.
5 Ο Ens το 95 (Luhin,966) έλυσε το πρόβλημα της ροής προς το φρεάτιο με αριθμητική μέθοδο και κατάληξε ότι ο συντελεστής υδραυλικής αγωγιμότητας Κ δίνεται από την εξίσωση: (.8) όπου είναι μια συνάρτηση των, H, και D. Εργαζόμενοι στην εξίσωση (.8) του Ens οι Maasland and Haskew το 957 παρουσίασαν δυο νομογραφήματα σε αδιάστατη μορφή όπου ο παράγοντας δίνεται ως συνάρτηση των διαφόρων τιμών των H/ και /. Τα δυο αυτά νομογραφήματα παρουσιάζονται στο σχήμα.5α. και στο σχήμα.5β. και αντιστοιχούν στις τιμές D = και D =. Σημειώνεται ότι έχει ληφθεί φροντίδα ώστε όταν το Δ είναι σε sec και το Δ σε m, ο συντελεστής υδραυλικής αγωγιμότητας θα είναι σε m/ ημέρα. (α) Σχήμα.5. Νομογραφήματα των Maasland and Haskew της εξίσωσης του Ens α) για D = και β) για D =. Ακόμα ο Ens έδωσε τις αριθμητικές του λύσεις σε απλές μορφές προσεγγιστικών εξισώσεων, ως εξής : α) Για D >,5Η (.9) β) Για D = H H (β)
6 H 36 H (.3) όπου το Κ είναι σε m/ημέρα όταν τα, Η, και Δ είναι σε m και το Δ σε sec. Σύμφωνα με τον Van Bees, το σφάλμα που δίνουν οι εξισώσεις (.9) και (.3) είναι της τάξης του %, για πεδία τιμών 3 cm < < 7 cm, cm < Η < cm, >, Η, Δ <,5 και για D > θα πρέπει D > Η. Για τις περιπτώσεις < D <,5 Η, οι τιμές του Κ παίρνονται κατ' αναλογία από τις τιμές που υπολογίστηκαν από τα διαγράμματα για D = και D >,5 Η. Η μέθοδος του φρεατίου έχει και ορισμένους περιορισμούς για την εφαρμογή της. Έτσι δε μπορεί να εφαρμοστεί σε περιοχές που επικρατούν αρτεσιανές συνθήκες ή σε περιοχές που υπάρχουν λιμνάζοντα επιφανειακά νερά. Επίσης σε βραχώδεις περιοχές ή περιοχές με πολλά χαλίκια είναι δύσκολο να διανοιχτούν φρεάτια ομοιόμορφης διαμέτρ9υ, ενώ προβλήματα παρουσιάζονται και σε περιοχές που υπάρχουν στενές διαστρώσεις χονδρόκοκκης άμμου, μεταξύ στρωμάτων με μικρή διαπερατότητα. Τέλος, συντελεστές υδραυλικής αγωγιμότητας μεγαλύτεροι από 6 m/ημέρα καθιστούν τη μέθοδο πολύ δύσχρηστη, αφού συνήθως το νερό εισρέει στο φρεάτιο γρηγορότερα από ότι αντλείται, ενώ πολύ μικροί συντελεστές υδραυλικής αγωγιμότητας - τιμές μικρότερες από,6 m/ημέρα - δεν είναι δυνατό να μετρηθούν με ακρίβεια, αφού οι διαδοχικές αναγνώσεις μιας μέτρησης θα παρουσιάζουν μεγάλες διακυμάνσεις. β. Μέτρηση για την περίπτωση που ο υπόγειος ορίζοντας είναι πολύ κατεβασμένος Στην περίπτωση αυτή χρησιμοποιείται η μέθοδος Shallow Well Pump in Tes. Σύμφωνα με τη μέθοδο αυτή ανοίγεται μια οπή στο ακόρεστο έδαφος με διάμετρο. Στη συνέχεια γεμίζεται με νερό η οπή μέχρι ένα ορισμένο ύψος h, το οποίο καταβάλλεται προσπάθεια να διατηρείται σταθερό. Αυτό γίνεται με τη βοήθεια ενός πλωτήρα που ειδοποιεί όταν πέφτει ή ανεβαίνει η στάθμη έτσι ώστε να αυξάνεται ή να ελαττώνεται η παροχή ανάλογα. Ένα από τα μειονεκτήματα της μεθόδου αυτής είναι ότι πρέπει να συνεχίζονται οι μετρήσεις από -6 ημέρες μέχρις ότου να σταθεροποιηθεί η παροχή. Η υδραυλική αγωγιμότητα για τις δύο περιπτώσεις του σχήματος.6. δίνεται σύμφωνα με το U.S. Bueau of Reclamaion από τις σχέσεις : α) Για h Tu 3 h h 7 ln πh Q (.3)
7 β) Για 3 h T u h 7 3 ln Q πh h T u (.3) d h T u h T u Ελεύθερη επιφάνεια ή αδιαπέρατο στρώμα Ελεύθερη επιφάνεια ή αδιαπέρατο στρώμα (α) (β) Σχήμα.6. Σχηματική διάταξη των δύο περιπτώσεων (α) h Tu 3 και (β) 3 h T u.3... Μέθοδος του φρεατίου σε διαστρωμένα εδάφη Σε πολλές περιπτώσεις το έδαφος μιας περιοχής αποτελείται από δυο ή περισσότερα στρώματα, τα οποία έχουν αισθητή διαφορά στη διαπερατότητα τους. Στις περιπτώσεις αυτές επιβάλλεται σχεδόν πάντοτε να γνωρίζουμε τη διαπερατότητα κάθε ιδιαίτερης στρώσης. Πράγματι κατά την εκπόνηση της στραγγιστικής μελέτης μιας περιοχής θα πρέπει να γνωρίζουμε τους συντελεστές υδραυλικής αγωγιμότητας των στρώσεων του εδάφους στις οποίες λαμβάνει χώρα κίνηση του στραγγιζόμενου νερού. Οι στρώσεις αυτές καθορίζονται από τη θέση της στάθμης του υπόγειου νερού και από το βάθος των στραγγιστικών αγωγών, αφού η ροή γίνεται από τις στρώσεις που βρίσκονται πάνω και κάτω από το επίπεδο στο οποίο βρίσκεται ο πυθμένας των στραγγιστικών τάφρων ή στο οποίο τοποθετούνται οι στραγγιστικοί σωλήνες. Όταν η στάθμη του υπόγειου νερού βρίσκεται στο ανώτερο στρώμα ενός εδάφους που αποτελείται από δυο ή περισσότερες στρώσεις, τότε είναι δυνατό να υπολογιστεί η υδραυλική αγωγιμότητα κάθε στρώσης, εφαρμόζοντας τη μέθοδο του φρεατίου, κατάλληλα προσαρμοσμένη για διαστρωμένα εδάφη. Στην περίπτωση αυτή είναι αναγκαίο να εργαστούμε με δυο ή περισσότερα φρεάτια διαφορετικού βάθους. Πρώτα γίνεται η διάνοιξη του βαθιού φρεατίου, οπότε εξετάζονται και καταγράφονται οι διάφορες στρώσεις του εδάφους. Το βάθος αυτού του φρεατίου θα πρέπει κανονικά να είναι γύρω στα m, ώστε να υπολογιστεί ο συντελεστής υδραυλικής αγωγιμότητας σ' αυτό το βάθος, στοιχείο το οποίο παίρνεται υπόψη κατά την εκπόνηση της στραγγιστικής μελέτης μιας περιοχής αφού σ' αυτό το βάθος τοποθετούνται συνήθως οι στραγγιστικοί σωλήνες. Το βάθος του αβαθούς φρεατίου θα καθοριστεί με βάση τη διάστρωση του εδάφους που καταγράφηκε. Πάντως ο πυθμένας του αβαθούς φρεατίου θα πρέπει να βρίσκεται -5 cm πάνω από τη διαχωριστική γραμμή
8 των δυο στρώσεων και για πρακτικούς λόγους cm κάτω από την υπόγεια στάθμη. Στις περισσότερες περιπτώσεις όμως το βάθος του αβαθούς φρεατίου φτάνει μέχρι τη διαχωριστική γραμμή των δυο στρώσεων. Στο σχήμα.7. φαίνονται τα δυο φρεάτια και οι χρησιμοποιούμενοι στη συνέχεια αυτής της παραγράφου συμβολισμοί. Από τα δεδομένα του αβαθούς φρεατίου, με τη βοήθεια του σχήμα.7., έχουμε την τιμή Η και υπολογίζουμε την τιμή και την τιμή της ( ) / n n ανύψωσης της στάθμης του νερού σ' αυτό, η οποία έλαβε χώρα σε χρόνο Δ. Έτσι ο συντελεστής υδραυλικής αγωγιμότητας της ανώτερης στρώσης θα είναι: (.33) στην οποία το παίρνεται από το νομογράφημα του σχήμα.5., χρησιμοποιώντας τις τιμές των, H και και για D =. Η ταχύτητα ανύψωσης της στάθμης στο βαθύ φρεάτιο είναι συνάρτηση της εισροής τόσο από την ανώτερη όσο και από την κατώτερη στρώση του εδάφους. Από τα δεδομένα του βαθιού φρεατίου, με τη βοήθεια του σχήμα.7., έχουμε τις τιμές Η και d και ακόμα υπολογίζεται η τιμή και την τιμή της ανύψωσης της ( ) / n στάθμης του νερού σ' αυτό, η οποία έλαβε χώρα σε χρόνο Δ. n Σχήμα.7. Φρεάτια σε διαστρωμένο έδαφος και συμβολισμοί Στην ανώτερη στρώση θα έχουμε: (.3) όπου ο παράγοντας υπολογίζεται από το νομογράφημα του σχήμα.5 για D =, με τη βοήθεια των τιμών των d, και. Το νομογράφημα D = χρησιμοποιείται σ' αυτή, την περίπτωση, γιατί στο ανώτερο στρώμα του βαθιού φρεατίου λαμβάνει χώρα μόνο οριζόντια ροή. Με ( / ) παριστάνεται η συμβολή της ανύψωσης της στάθμης του νερού του
9 φρεατίου, που είναι αποτέλεσμα της εισροής του υπόγειου νερού από την ανώτερη στρώση μόνο. Η εξίσωση αυτή δίνει: (.35) Αν το έδαφος ήταν ομογενές, με συντελεστή υδραυλικής αγωγιμότητας Κ, τότε για το βαθύ φρεάτιο θα ήτο: (.36) όπου ο παράγοντας υπολογίζεται χρησιμοποιώντας τις τιμές, Η και, από το νομογράφημα του σχήμα.5. για D = ή για D =, ανάλογα με τη θέση του αδιαπέρατου υποστρώματος. Σ' αυτή την περίπτωση ) / ( θα ήταν η ταχύτητα ανύψωσης της στάθμης του νερού στο φρεάτιο, αν η ανώτερη στρώση ήταν συνέχεια της κατώτερης. Αν επιλυθεί η εξίσωση (.36) ως προς ) / ( προκύπτει: (.37) Όμως στην υποθετική αυτή περίπτωση της ομογένειας των δυο στρώσεων, ο συντελεστής υδραυλικής αγωγιμότητας της ανώτερης στρώσης θα ήταν Κ, οπότε για την περιοχή αυτή θα ήταν: (.38) όπου ο παράγοντας υπολογίζεται, όπως λέχτηκε και προηγούμενα στην εξίσωση (.3), από το σχήμα.5. για D =, με τις τιμές των d, και. Επομένως από την εξίσωση (.38) προκύπτει: (.39) Η εξίσωση αυτή δίνει το σφάλμα που εισάγεται στην ταχύτητα ανύψωσης της στάθμης του νερού στο βαθύ φρεάτιο, αν θεωρήσουμε το έδαφος ομογενές και ότι οι δυο στρώσεις έχουν τον ίδιο συντελεστή διαπερατότητας ίσο με Κ. Έτσι από τις εξισώσεις (.37) και (.39), η καθαρή συμβολή της ταχύτητας ανύψωσης της στάθμης του νερού στο βαθύ φρεάτιο, που οφείλεται στην εισροή του υπόγειου νερού από την κατώτερη στρώση του εδάφους, θα είναι: (.) Από την άθροιση των εξισώσεων (.35) και (.) παίρνεται: (.) Η εξίσωση αυτή δίνει την πραγματική ταχύτητα ανύψωσης της στάθμης του νερού του φρεατίου. Καθώς τα Κ,,,Δ και Δ μπορούν να υπολογιστούν, λύνοντας την εξίσωση (.) ως προς Κ παίρνουμε:
10 (.) Η εξίσωση (.) χρησιμοποιείται για τον υπολογισμό της υδραυλικής αγωγιμότητας της κατώτερης στρώσης του εδάφους, με τη μέθοδο του φρεατίου κατάλληλα προσαρμοσμένη για ένα διαστρωμένο έδαφος. Με τον υπολογισμό και του συντελεστή Κ μπορούμε να εξετάσουμε επιπλέον και αν το κατώτερο στρώμα του εδάφους μπορεί να θεωρηθεί αδιαπέρατο. Σύμφωνα με τον Ens το 95 (Luhin,966), η υδραυλική αγωγιμότητα Κ της κατώτερης στρώσης μπορεί να υπολογιστεί και με τη βοήθεια της εξίσωσης: ( ) (.3) όπου Κ είναι η αγωγιμότητα της ανώτερης στρώσης, η οποία μετρήθηκε από τα δεδομένα του αβαθούς φρεατίου και Κ είναι η μέση τιμή της αγωγιμότητας των δυο στρώσεων όπως μπορεί να μετρηθεί στο βαθύ φρεάτιο. Σ' αυτή την περίπτωση τα Δ και Δ είναι ήδη γνωστά. Έτσι είναι: (.) Ο παράγοντας υπολογίζεται με τις τιμές των Η, και, από τα νομογραφήματα του σχήμα.5. για D = ή D =, ανάλογα με τη θέση του αδιαπέρατου υποστρώματος. Με γνωστά τα, Κ, H και Η και με τη βοήθεια της εξίσωσης (.3) προκύπτει: (.5) Η εξίσωση αυτή δίνει την τιμή του συντελεστή υδραυλικής αγωγιμότητας Κ της κατώτερης στρώσης ενός διαστρωμένου εδάφους. Αν το έδαφος αποτελείται από τρεις στρώσεις τότε ο πυθμένας του δεύτερου φρεατίου θα πρέπει να βρίσκεται πάνω από τη διαχωριστική γραμμή της δεύτερης και της τρίτης στρώσης. Στην περίπτωση αυτή ανοίγεται και ένα τρίτο φρεάτιο που διαπερνά, με τα ίδια μεγέθη, και την τρίτη στρώση. Για τον υπολογισμό του συντελεστή Κ 3 της στρώσης αυτής ακολουθείται η ίδια διαδικασία, όπως και στην περίπτωση των δυο στρώσεων Μέθοδος του πιεζομέτρου Η μέθοδος του πιεζομέτρου ( Piezomee Mehod o Pipe- avi Mehod) προτάθηκε από του ikham το 96 (Luhin, 966) και ο τρόπος εφαρμογής της στον αγρό αναπτύχθηκε από τους Luhin και ikham το 99. Αυτή συνίσταται από τη διάνοιξη ενός φρεατίου στο έδαφος, στην τοποθέτηση ενός σωλήνα στο φρεάτιο, στη δημιουργία μιας κοιλότητας ορισμένου μεγέθους κάτω από το διασωληνωμένο τμήμα του φρεατίου και τέλος στη μέτρηση της ταχύτητας ανύψωσης της στάθμης του νερού μέσα στο σωλήνα, μετά την άντλησή του από αυτόν. Στο σχήμα.8. παρουσιάζεται η εγκατάσταση του πιεζομέτρου με τους διάφορους συμβολισμούς. Η μέθοδος αυτή μειονεκτεί ως προς τη μέθοδο του φρεατίου γιατί απαιτεί περισσότερη εργασία και έτσι κοστίζει περισσότερο.
11 Όμως έχει το πλεονέκτημα ότι με αυτή μπορούμε να μετρήσουμε το συντελεστή υδραυλικής αγωγιμότητας Κ ενός πολύ μικρού όγκου εδάφους, γύρω από την κοιλότητα. Αυτό το πλεονέκτημα είναι σοβαρό στις περιπτώσεις που πρέπει να μετρήσουμε τη διαπερατότητα των διαφόρων στρώσεων ενός διαστρωμένου εδάφους. Ο χρησιμοποιούμενος τύπος για τον υπολογισμό της υδραυλικής αγωγιμότητας από τα δεδομένα των μετρήσεων αυτής της μεθόδου είναι: π. ln. n (.6) όπου είναι η εσωτερική διάμετρος του σωλήνα του πιεζομέτρου, που συνήθως είναι ίση με τη διάμετρο της κοιλότητας c, Α είναι ο παράγοντας σχήματος, ο οποίος εξαρτάται από τα γεωμετρικά χαρακτηριστικά του συστήματος και έχει μονάδες μήκους, είναι η απόσταση της υπόγειας στάθμης από τη στάθμη του νερού στο σωλήνα κατά το χρόνο, n είναι η απόσταση της υπόγειας στάθμης από τη στάθμη του νερού του σωλήνα κατά το χρόνο n και Δ = n - Πιεζομετρικός θάλαμος A/ Επιφάνεια Υπόγεια στάθμη εδάφους H/ = Η / = H n Δ σε Δ H/ = h c D θάλαμο ς h c / Σχήμα.8. Εγκατάσταση πιεζομέτρου Σχήμα.9. Διάγραμμα παράγοντα σχήματος της μεθόδου του πιεζομέτρου για τον υπολογισμό της υδραυλικής αγωγιμότητας Κ Ο Youngs εξέφρασε τα αποτελέσματα της ανάλυσής του σε αδιάστατους όρους και συνέταξε τον πίνακα., ο οποίος δίνει τις τιμές του λόγου Α/ για διάφορες τιμές των h c /, Η/ και D/. Από τα δεδομένα του πίνακα αυτού φαίνεται ότι το έδαφος που βρίσκεται σε μια απόσταση κάτω από το θάλαμο μεγαλύτερη από, έχει μικρή επίδραση στον υπολογισμό του Κ.
12 Επίσης η επίδραση του Η στον παράγοντα Α αυξάνεται, καθώς αυξάνεται η τιμή του h c. Τέλος για τιμές Η/ > η επίδραση του Η στον παράγοντα Α είναι μη σημαντική για τις περισσότερες περιπτώσεις στην πράξη. Πίνακας. Τιμές Α/ για τον υπολογισμό του παράγοντα σχήματος Α (Υουngs,968) h c / Η/ D/ για αδιαπέρατο στρώμα D/ για απείρως διαπερατό στρώμα 8,,,,, 8,,,,, 5,6 5,5 5,3 5,, 3,6 5,6 5,6 5,8 6,3 7,, 6 5,6 5,5 5,3 5,, 3,6 5,6 5,6 5,8 6, 7,5,3 5,6 5,5 5, 5,,5 3,7 5,65 5,9 6,5 7,6 7,6, 8 5,7 5,6 5,5 5,,6 3,8 5,7 5,7 5,9 6,6 7,7,5 5,8 5,7 5,6 5,,8 3,9 5,8 5,8 6, 6,7 7,9,7 8,7 8,6 8,3 7,7 7, 6,,8 8,7 8,9 9,,3, 5, 6 8,8 8,7 8, 7,8 7, 6,,8 8,8 9, 9,,3, 5,,5 8,9 8,8 8,5 8, 7, 6,3,8 8,9 9, 9,5,, 5,3 8 9, 9, 8,7 8, 7, 6,,9 9, 9,3 9,6,5,3 5,3 9,5 9, 9, 8,6 7,5 6,5 5, 9,5 9,6 9,8,6, 5,,6,, 9,3 8, 7,6 6,3,6,,6,8,9 9, 6,7,5, 9, 8,5 7,7 6,,7,,6,8,9 9,,,8,6, 9,5 8,6 7,8 6,5,8,,7,8,9 9, 8,,9,5 9,8 8,9 8, 6,7,,,8,9,9 9,,5,,,5 9,7 8,8 7,3,5,6, 3, 5, 9, 3,8 3,5,8,9,9, 9, 3,8, 5, 6,5 9, 3, 6 3,9 3,6 3,,,, 9, 3,9,3 5, 6,6 9, 3,,, 3,7 3,,3,, 9,,, 5, 6,7 9, 3, 8,3, 3,6,7,5,7 9,6,3,8 5,5 7, 9, 3,3 5,,9,5 3,7,6,7,5 5, 5, 6, 7,6, 3,8 8,6 8, 7,3 6,3 5,3,6 3,6 8,6 9,8,8,7 5,5 9,9 6 9, 8, 7,6 6,6 5,6,8 3,8 9,,,9,8 5,6 9,9, 9, 8,8 8, 7, 6, 5,, 9,,3, 3, 5,8 3, 8 9,8 9, 8,7 7,6 6, 5,5,5 9,8,6, 3,3 6, 3,,,5, 9, 7,8 7, 5,8,,5,, 6,8 3,5 6,9 6, 5,5, 3,,, 6,9 9,6 3,6 3,9 36,,6 6 7, 6,3 5,8, 3,,7,9 7, 9,8 3,8 33, 36,,7 8, 8,3 7, 6, 5,, 3,,6 8,3 3, 3, 33,3 36,,8 8 9, 8, 7, 6, 5,, 3, 9, 3,3 3, 33,8 36,9, 3,8 3, 9,6 8, 6,9 5,7,5 3,8 3,5 3,8 35, 38, 3,.3..3 Έμμεσος τρόπος υπολογισμού της υδραυλικής αγωγιμότητας Η ροή μέσα στους πόρους του εδάφους μπορεί να συγκριθεί με την στρωτή ροή ενός ρευστού μέσα σ' ένα σωλήνα κυκλικής διατομής με εσωτερική ακτίνα. Έτσι αν θεωρηθεί η σταθερή στρωτή ροή σ' ένα σωλήνα με σταθερή εσωτερική διάμετρο d = R αποδεικνύεται
13 ότι η παροχή στο σωλήνα αυτόν υπολογίζεται από τη σχέση (.9) η οποία καλείται Νόμος των Hagen Poiseuille. π.ρ.g.d dh π.ρ.g.d Q i 8.μ ds 8.μ (.9) Σχήμα.. Στρωτή ροή σε στοιχειώδη κύλινδρο μήκους dx Απόδειξη. Από την εφαρμογή της εξίσωσης ποσότητας κινήσεως σ' ένα στοιχειώδη κύλινδρο μήκους dx (σχήμα.. ), προκύπτει : ( ποσότητα κίνησης εισερχόμενου ) - ( ποσότητα κίνησης εξερχομένου ) + Σ F =. Η ποσότητα κίνησης που εισέρχεται στη διατομή Α-Α στη μονάδα χρόνου είναι: m Q ρ m ρ.q Επομένως m.u x ρ.q.u x ρ.u.s.u x ρ.u.π. Ομοίως η ποσότητα κίνησης που εξέρχεται από τη διατομή Β-Β στη μονάδα χρόνου είναι: m.u xdx ρ.u.π..u xdx.u x και επειδή η ταχύτητα u είναι σταθερή ( μόνιμη ροή ) έχουμε : Οι δυνάμεις που ενεργούν στο στοιχειώδη κύλινδρο είναι: ρ.u.π..u x ρ.u.π..u xdx
14 - Δύναμη των πιέσεων : - Δύναμη των τριβών : p p F p.π. p dx.π. dx..π. p x x F τ τ.(.π..dx) - Δύναμη που οφείλεται στη βαρύτητα : Επομένως p ΣF dx..π. x F g γ.π. τ.(.π..dx) γ.π. Έτσι από την εξίσωση ποσότητας κινήσεως προκύπτει : ρ.u.π. p x d p ( d x γ.u x.τ p γ.sinφ x z) ρ.u.π..τ γ..u xdx F.τ γ dh τ.. dx.dx.sinφ.dx.sinφ p dx.π x dz d p γ.(- ) dx γ d x Η διατμητική τάση όμως ακολουθεί τό νόμο τού Νεύτωνα : τ du μ d du μ. d d d και η παραπάνω σχέση γίνεται : τ.(.π..dx) γ.π..dx.sinφ.τ dz - γ. dx du d( ) du d d du du μ. μ. μ.. μ. d d d d d d d du γ dh γ dh μ... du...d du d dx.μ dx Αλλά για = είναι u = οπότε γ dh...μ dx Στη συνέχεια υπολογίζεται η μέση ταχύτητα ροής : Q V E π. u.de π. γ dh..(.μ dx γ..μ και ).π..d π. dh..d u dx γ.μ γ dh u..(.μ dx γ..μ..π dh dx dh.. dx ) (. ( = -) )..d γ.μ. dh. dx γ.μ. dh. dx γ 8.μ dh.. dx ρ.g.d 3.μ dh. dx Επομένως : ρ.g.d dh π.d π.ρ.g.d Q E.V...i 3.μ dx 8.μ όπου η οποία είναι η παροχή της σχέσης (.9) : Αν στη σχέση (.9) τεθεί ρ.g.d 3.μ προκύπτει : dh i dx
15 .d Q και αν τεθεί προκύπτει : i Ei V i d k 3 ρ.g k. μ το οποίο είναι η γεωμετρική διαπερατότητα του πορώδους μέσου Αν υποτεθεί ότι το έδαφος αποτελείται από άπειρους τέτοιους σωλήνες με μέση διάμετρο d και ότι σε μία διατομή Ε υπάρχουν Ν σωλήνες με παροχή ο καθένας, τότε η συνολική παροχή είναι : πρgd Q Ν i 8μ και η ειδική παροχή δια μέσω της πορώδους διατομής Ε είναι: q Q E N πρgd i -i E 8.μ Επομένως Nπd E ρgd 3μ Επειδή το πορώδες του εδάφους είναι n κενών εδαφ. υδραυλική αγωγιμότητα του πορώδους μέσου είναι : ρgd nd ρg ρg g Κ n Κ k k. 3μ 3 μ μ ν πd N E x και η γεωμετρική ή εσωτερική διαπερατότητα αυτού είναι : x πd N.E n.d k 3. προκύπτει ότι η Ένα από τα μοντέλα που έγιναν περισσότερο γνωστά και παραδεκτά στα πορώδη μέσα είναι του ozen και στη συνέχεια η τροποποίηση του από τον aman το (937), πού είναι γνωστό σαν μοντέλο των ozen - aman. Αυτοί εισήγαγαν την έννοια της υδραυλικής ακτίνας στα πορώδη μέσα σαν το λόγο του πορώδους n προς την ειδική επιφάνεια των πόρων. Η εξίσωση των ozen - aman είναι: k 8 3 n ( n) d m όπου d m είναι μία κάποια μέση διάμετρος των κόκκων του εδάφους. Φυσικά ή θεώρηση του εδάφους σαν πορώδες μέσο που αποτελείται από άπειρους σωλήνες με διάμετρο d, αποτελεί μία ιδανική περίπτωση. Παρ' όλη την απλότητα αυτού του
16 μοντέλου, αποδεικνύεται ότι η υδραυλική αγωγιμότητα μπορεί να γραφεί με τη μορφή g Κ k ν. Η γεωμετρική ή εσωτερική διαπερατότητα του πορώδους μέσου k [L ] εξαρτιέται από τις ιδιότητες του στερεού μητρώου, δηλαδή την κατανομή των πόρων, την μορφή των πόρων, την ειδική επιφάνεια, τη στρεβλότητα της διαδρομής (ouosi) και το πορώδες. Επίσης διαπιστώνεται ότι η υδραυλική αγωγιμότητα είναι συνάρτηση της εσωτερικής διαπερατότητας του πορώδους μέσου, των ιδιοτήτων του ρευστού που ρέει (πυκνότητα, δυναμική συνεκτικότητα) και της έντασης του πεδίου βαρύτητας.
17 Προτεινόμενη Βιβλιογραφία. Μενέλαος Θεοχάρης, Στραγγίσεις, Τ.Ε.Ι. Ηπείρου, Άρτα,.. Μενέλαος Θεοχάρης, Ασκήσεις Στραγγίσεων, Τ.Ε.Ι. Ηπείρου, Άρτα,. 3. Θεοχάρης Μ.: " Στραγγίσεις ", Άρτα. Θεοχάρης Μ.: " Ασκήσεις Στραγγίσεων ", Άρτα 5 5. Θεοχάρης Μ.: " Αρδεύσεις - Στραγγίσεις ", Άρτα Θεοχάρης Μ.: " Αρδεύσεις - Στραγγίσεις, Εργαστηριακές Ασκήσεις", Άρτα Dauge - Fanzini : "Υδραυλική" Τόμοι Ι, ΙΙ, Εκδόσεις Πλαίσιο, Αθήνα. 8. Davis- Soensen : " Handbook of applied Hdaulics" Thid ediion McGaw-Hill Book ompan, Ηansen V. - Isaelsen : "Αρδεύσεις. Βασικοί Αρχαί και Μέθοδοι. Μετάφραση από τους Α. Νικολαϊδη και Α. Κοκκινίδη ", Αθήνα 96.. Καρακατσούλης Π. : " Αρδεύσεις - Στραγγίσεις και Προστασία των Εδαφών ", Αθήνα Τερζίδης Γ. - Καραμούζης Δ. :"Υδραυλική Υπόγειων Νερών ", Εκδόσεις Ζήτη, Θεσσαλονίκη Τερζίδης Γ. - Καραμούζης Δ. :"Στραγγίσεις Γεωργικών Εδαφών " Εκδόσεις Ζήτη, Θεσσαλονίκη Τερζίδης Γ. : "Μαθήματα Υδραυλικής", Τόμοι Ι,ΙΙ, ΙΙΙ, Θεσσαλονίκη Τερζίδης Γ. - Παπαζαφειρίου Ζ. : "Γεωργική Υδραυλική ", Εκδόσεις Ζήτη, Θεσσαλονίκη Τζιμόπουλος Χ. : " Στραγγίσεις - Υδραυλική Φρεάτων ", Θεσς/νίκη Χαλκιάς Ν. :"Στραγγίσεις γαιών ", Αθήνα 97.
18 Σημείωμα Αναφοράς opigh Τεχνολογικό Ίδρυμα Ηπείρου. Μενέλαος Θεοχάρης. Στραγγίσεις (Θεωρία) hp://eclass.eiep.g/couses/texg7/ Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης eaive ommons Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα. Διεθνές [] ή μεταγενέστερη. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, Διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [] hp://ceaivecommons.og/licenses/b-nc-nd/./deed.el Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Επεξεργασία: Δημήτριος Κατέρης Άρτα, 5
Στραγγίσεις (Θεωρία)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 4 : Μέτρηση της στάθμης του υπόγειου νερού Δρ. Μενέλαος Θεοχάρης 4.1 Εγκατάσταση πιεζομετρικών σωλήνων Η στάθμη
Διαβάστε περισσότεραΣτραγγίσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Εργαστήριο) Ενότητα 0 : Η σταθερή στράγγιση των εδαφών ΙΙΙ Δρ. Μενέλαος Θεοχάρης Άσκηση 3 Στραγγιστικοί σωλήνες διαμέτρου = 0,0
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ Μενέλαος Θεοχάρης 61 Γενικά Η ροή του υπόγειου νερού ονομάζεται ασταθής,
Διαβάστε περισσότεραΣτραγγίσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Εργαστήριο) Ενότητα 9 : Η σταθερή στράγγιση των εδαφών ΙΙ Δρ. Μενέλαος Θεοχάρης Άσκηση Στραγγιστικοί σωλήνες διαμέτρου cm πρόκειται
Διαβάστε περισσότεραΣτραγγίσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Εργαστήριο) Ενότητα 8 : Η σταθερή στράγγιση των εδαφών Ι Δρ. Μενέλαος Θεοχάρης . Η ΣΤΑΘΕΡΗ ΣΤΡΑΓΓΙΣΗ ΤΩΝ ΕΔΑΦΩΝ Άσκηση 9 Στραγγιστικοί
Διαβάστε περισσότεραΣτραγγίσεις (Θεωρία)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 11 : Τα κριτήρια στράγγισης των εδαφών Δρ. Μενέλαος Θεοχάρης 7.1 Γενικά Οι περισσότερες καλλιέργειες των φυτών έχουν
Διαβάστε περισσότεραΑρδεύσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 8 : Κλειστοί Αγωγοί ΙΙ Δρ. Μενέλαος Θεοχάρης 5.4. Λυμένες ασκήσεις Άσκηση 1η Δίνεται ένας σωληνωτός αγωγός από
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 1 : Η έννοια της άρδευσης Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 1 : Η έννοια της άρδευσης Δρ. Μενέλαος Θεοχάρης 1. Η έννοια της άρδευσης 1.1. Γενικά Άρδευση ονομάζεται γενικά η εφαρμογή
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 7 : Η σταθερή στράγγιση των εδαφών Ι Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 7 : Η σταθερή στράγγιση των εδαφών Ι Δρ. Μενέλαος Θεοχάρης 5. Γενικά ΑΠΟ ΕΔΩ Ενα υδροφόρο στρώμα ονομάζεται ελεύθερο
Διαβάστε περισσότεραΑρδεύσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 0 : Ανοικτοί Αγωγοί II Δρ. Μενέλαος Θεοχάρης Μόνιμη ομοιόμορφη ροή σε ανοικτούς αγωγούς 6... Εφαρμογή Για b=0,60
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 11 : H υπόγεια άρδευση Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 11 : H υπόγεια άρδευση Δρ. Μενέλαος Θεοχάρης 11. H υπόγεια άρδευση 11.1. Γενικά. Η υπόγεια άρδευση ή υπάρδευση συνίσταται
Διαβάστε περισσότεραΑρδεύσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 6 : Εκροές Δρ. Μενέλαος Θεοχάρης Εκροές Εκροές από οπές υπερχειλιστές & θυροφράγματα Εισαγωγή Τα προβλήματα εκροής
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 7 : Επιφανειακή άρδευση Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 7 : Επιφανειακή άρδευση Δρ. Μενέλαος Θεοχάρης 7. H επιφανειακή άρδευση Γενικά. Τις μεθόδους επιφανειακής άρδευσης
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 3 : Φυσικές ιδιότητες του εδάφους ΙΙ Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 3 : Φυσικές ιδιότητες του εδάφους ΙΙ Δρ. Μενέλαος Θεοχάρης 2.3.6 Το νερό μέσα στο έδαφος 2.3.6.1 Κατηγορίες του
Διαβάστε περισσότερα. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.
Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή
Διαβάστε περισσότεραΥπολογισμός Διαπερατότητας Εδαφών
ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΔΟΚΙΜΗΣ: Υπολογισμός Διαπερατότητας Εδαφών Επιστημονικός Συνεργάτης: Δρ. Αλέξανδρος Βαλσαμής, Πολιτικός Μηχανικός Εργαστηριακός Υπεύθυνος: Παναγιώτης Καλαντζάκης, Καθηγητής
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 5 : Κίνηση του νερού στο έδαφος Ι Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 5 : Κίνηση του νερού στο έδαφος Ι Δρ. Μενέλαος Θεοχάρης 4.1 Γενικά Όπως προαναφέρθηκε, το νερό που βρίσκεται μέσα
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: ΝΟΜΟΣ ΤΟΥ DARCY Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου ΑΠΘ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΤΕΙ ΗΠΕΙΡΟΥ. Μενέλαος Θεοχάρης Πολιτικός Μηχανικός Ε.Μ.Π. M.Sc. Γεωπονίας Παν. Θεσσαλίας Διδάκτορας Α.Π.Θ. Αναπληρωτής Καθηγητής ΑΣΚΗΣΕΙΣ ΣΤΡΑΓΓΙΣΕΩΝ
ΤΕΙ ΗΠΕΙΡΟΥ Μενέλαος Θεοχάρης Πολιτικός Μηχανικός Ε.Μ.Π. M.Sc. Γεωπονίας Παν. Θεσσαλίας Διδάκτορας Α.Π.Θ. Αναπληρωτής Καθηγητής ΑΣΚΗΣΕΙΣ ΣΤΡΑΓΓΙΣΕΩΝ ΑΡΤΑ ΤΕΙ ΗΠΕΙΡΟΥ Μενέλαος Θεοχάρης Πολιτικός Μηχανικός
Διαβάστε περισσότεραΣτραγγίσεις (Θεωρία)
Ελληνική Δημοκρατία Τεχνολογικό Εκαιδευτικό Ίδρυμα Ηείρου Στραγγίσεις (Θεωρία) Ενότητα 1 : Η ασταθής στράγγιση των εδαφών ΙΙ Δρ. Μενέλαος Θεοχάρης 6... Πρώτος τρόος γραμμικοοίησης Η μη γραμμικότητα της
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού
Διαβάστε περισσότεραΣτραγγίσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιευτικό Ίρυμα Ηπείρου Στραγγίεις (Εργατήριο Ενότητα 6 : Η κίνηη του νερού το έαφος IV Δρ. Μενέλαος Θεοχάρης Άκηη Ένας κλειτός υπό πίεη υροφορέας έχει μεταβλητό πάχος
Διαβάστε περισσότεραΣτο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι
Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 2 : Φυσικές ιδιότητες του εδάφους Ι Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 2 : Φυσικές ιδιότητες του εδάφους Ι Δρ. Μενέλαος Θεοχάρης 2.1 Γενικά Ο όρος έδαφος αναφέρεται βασικά στην εξωτερική
Διαβάστε περισσότεραΕγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον Ενότητα 3 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 1 : Εισαγωγή Δρ. Μενέλαος Θεοχάρης
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 1 : Εισαγωγή Δρ. Μενέλαος Θεοχάρης 1.1 Η υπόγεια στάθμη Στραγγίσεις είναι η επιστήμη που ασχολείται με την απομάκρυνση
Διαβάστε περισσότεραΕργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής
Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σελίδα 1 από 6
ΘΕΜΑ Α Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,, 3, 4 δείχνουν
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη
Διαβάστε περισσότεραΑτομικά Δίκτυα Αρδεύσεων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Μόνιμες ροές προς τάφρους και πηγάδια. Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου ΑΠΘ
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 5 ο : Το οριακό
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πηγαδιών Μέθοδος εικόνων Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου ΑΠΘ Άδειες
Διαβάστε περισσότεραPP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2: ΡΟΗ ΣΕ ΑΓΩΓΟΥΣ 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ Η πειραματική εργασία περιλαμβάνει 4 διαφορετικά πειράματα που σκοπό έχουν: 1. Μέτρηση απωλειών πίεσης σε αγωγό κυκλικής διατομής.
Διαβάστε περισσότεραΟνοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης
Ονοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης ΘΕΜΑ Α Α1. Το ανοιχτό κυλινδρικό δοχείο του σχήματος βρίσκεται εντός πεδίο βαρύτητας με
Διαβάστε περισσότεραwebsite:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 6 Ιουνίου 18 1 Οριακό στρώμα και χαρακτηριστικά μεγέθη Στις αρχές του ου αιώνα ο Prandtl θεμελίωσε τη θεωρία
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΥΔΡΟΛΟΓΙΑ 6. ΥΔΡΟΛΟΓΙΑ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΥΔΡΟΛΟΓΙΑ 6. ΥΔΡΟΛΟΓΙΑ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ 6.1 ΓΕΝΙΚΑ Το νερό που υπάρχει στη φύση και χρησιμοποιείται από τον άνθρωπο: - Επιφανειακό: Το νερό των
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ
ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 25/02/2018 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΑπώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές
Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές Στο σχήμα έχουμε ροή σε ένα ιδεατό ρευστό. Οι σωλήνες πάνω στον αγωγό (μανομετρικοί σωλήνες) μετρούν μόνο το ύψος πίεσης
Διαβάστε περισσότεραΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ
ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για
Διαβάστε περισσότεραΚινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του
301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,
Διαβάστε περισσότεραΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής
Διαβάστε περισσότεραυδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός
Διαβάστε περισσότεραυδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση
υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά. Τετάρτη 12 Απριλίου Θέμα 1ο
Διαγώνισμα Ρευστά Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2 του διπλανού σχήματος, που
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο
Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος Κυριακή 5 Μαρτίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2
Διαβάστε περισσότερα1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ
η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού
Διαβάστε περισσότεραΕργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.
Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Πεπερασμένες διαφορές: Παραδείγματα και ασκήσεις Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου
Διαβάστε περισσότεραΓραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών
Γραπτή εξέταση περιόδου Ιουνίου 011 διάρκειας,0 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική (ΜΕ0011), 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επ.Συν.Τμ.Πολ.Εργ.Υποδ.
Διαβάστε περισσότεραΦυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ηλεκτρικά Κυκλώματα Γ. Βούλγαρης 2 Ασκήσεις κατανομές φορτίου 1) Ένα γραμμικό φορτίο με
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς 9.Μεταφορά Θερμότητας, Αγωγή Αγωγή Αν σε συνεχές μέσο υπάρχει βάθμωση θερμοκρασίας τότε υπάρχει ροή θερμότητας χωρίς ορατή κίνηση της ύλης.
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 8 : Η άρδευση με κατάκλυση Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 8 : Η άρδευση με κατάκλυση Δρ. Μενέλαος Θεοχάρης 8. Η άρδευση με κατάκλυση Γενικά. Κατά τη μέθοδο αυτή η προς άρδευση
Διαβάστε περισσότεραΥδρεύσεις Αποχετεύσεις - Αρδεύσεις
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υδρεύσεις Αποχετεύσεις - Αρδεύσεις Ενότητα 7. ΑΣΚΗΣΗ 1. Διαστασιολόγηση εξωτερικού δικτύου Ζαφειράκου Αντιγόνη Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Γ Λυκείου 5/3/2017
Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν
Διαβάστε περισσότεραΚΙΝΗΣΗ ΤΟΥ Ε ΑΦΙΚΟΥ ΝΕΡΟΥ
ΚΙΝΗΣΗ ΤΟΥ Ε ΑΦΙΚΟΥ ΝΕΡΟΥ Το εδαφικό νερό υπό την επίδραση διαφόρων δυνάµεων βρίσκεται σε συνεχή κίνηση και µπορεί να κινηθεί προς διάφορες κατευθύνσεις. Οι δυνάµεις οφείλονται στη βαρύτητα, Στην πίεση
Διαβάστε περισσότεραΜόνιμη ροή. Τοπικές ανομοιογένειες δεν επηρεάζουν τη ροή, τοπικές απώλειες Συνήθως κυκλικοί αγωγοί γ του εμπορίου
Παραδοχές Μόνιμη ροή Ομοιόμορφη ροή Τοπικές ανομοιογένειες δεν επηρεάζουν τη ροή, τοπικές απώλειες Συνήθως κυκλικοί αγωγοί γ του εμπορίου Ομοιόμορφη ροή Μη ομοιόμορφη ροή Ομοιόμορφη ροή: όταν η μεταβολή
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής
Διαβάστε περισσότεραΓρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.
Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που
Διαβάστε περισσότεραΥπόγεια ροή. Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής
Υπόγεια ροή Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής Ποια προβλήματα λύνονται με ποια εργαλεία; Μονοδιάστατα προβλήματα (ή μονοδιάστατη απλοποίηση -D πεδίων ροής), σταθερή υδραυλική κλίση
Διαβάστε περισσότεραΥδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες
Υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Είδη ροών
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 5/0/018 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραEγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον Ενότητα 4 : Υπολογισμός οικονομικής διαμέτρου σωληνωτών αγωγών Ευαγγελίδης Χρήστος
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ A ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (2016-17) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
Διαβάστε περισσότεραΤεχνική Υδρολογία (Ασκήσεις)
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 6 ο : Υδρολογία
Διαβάστε περισσότεραΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΩΝ ΓΕΩΠΟΝΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΩΝ ΓΕΩΠΟΝΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ CRP5050 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Ε ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ
Διαβάστε περισσότεραΑρδεύσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 9 : Ανοικτοί Αγωγοί I Δρ. Μενέλαος Θεοχάρης Μόνιμη ομοιόμορφη ροή σε ανοικτούς αγωγούς 6.1. Γενικά Ανοικτός αγωγός
Διαβάστε περισσότεραΔιατήρηση της Ενέργειας - Εξίσωση Bernoulli. Α. Ερωτήσεις Πολλαπλής Επιλογής
Διατήρηση της Ενέργειας - Εξίσωση Bernoulli Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ιδανικό ρευστό ρέει σε σωλήνα μεταβλητής διατομής. α. H παροχή του ρευστού μειώνεται όταν η διατομή του σωλήνα αυξάνεται.
Διαβάστε περισσότεραμεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2
ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ 1 Μια κυλινδρική δεξαμενή ακτίνας 6m και ύψους h=5m είναι γεμάτη με νερό, βρίσκεται στην κορυφή ενός πύργου ύψους 45m και χρησιμοποιείται για το πότισμα ενός χωραφιού α Ποια η παροχή
Διαβάστε περισσότεραΔιατήρηση της Ύλης - Εξίσωση Συνέχειας
Διατήρηση της Ύλης - Εξίσωση Συνέχειας Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ρευστό χαρακτηρίζεται ως πραγματικό όταν α. κατά τη ροή του δεν παρουσιάζει εσωτερικές τριβές. β. κατά τη ροή του δεν παρουσιάζονται
Διαβάστε περισσότεραΥδραυλική των Υπόγειων Ροών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Το μαθηματικό πρόβλημα των υπόγειων ροών Καθηγητής Κωνσταντίνος Λ. Κατσιαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου Καθηγητής
Διαβάστε περισσότερα(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η
ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
Διαβάστε περισσότεραΥπόγεια Υδραυλική. 1 η Εργαστηριακή Άσκηση Εφαρμογή Νόμου Darcy
Υπόγεια Υδραυλική 1 η Εργαστηριακή Άσκηση Εφαρμογή Νόμου Darcy Τα υπόγεια υδατικά συστήματα Τα υπόγεια υδατικά συστήματα είναι συγκεντρώσεις υπόγειου νερού, που εμφανίζουν τα χαρακτηριστικά της υπόγειας
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~
Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν
Διαβάστε περισσότεραA3. Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F.
ΘΕΜΑ Α ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ- ΚΕΦΑΛΑΙΟ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ
ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία
ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 13 : Μελέτη συγκροτήματος καταιονισμού Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 13 : Μελέτη συγκροτήματος καταιονισμού Δρ. Μενέλαος Θεοχάρης 13. Μελέτη συγκροτήματος καταιονισμού 13.1. Γενικά. Για
Διαβάστε περισσότεραΠΕΙΡΑΜΑΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΝΕΟΤΕΡΩΝ ΛΥΣΕΩΝ ΑΣΤΑΘΟΥΣ ΣΤΡΑΓΓΙΣΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΝΕΟΤΕΡΩΝ ΛΥΣΕΩΝ ΑΣΤΑΘΟΥΣ ΣΤΡΑΓΓΙΣΗΣ ΙΩΑΝΝΗΣ
Διαβάστε περισσότεραΕργαστηριακή άσκηση: Σωλήνας Venturi
Εργαστήριο Μηχανικών των Ρευστών Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Δυτικής Αττικής Σκοπός της άσκησης Εργαστηριακή άσκηση: Σωλήνας Veturi Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 3: Ο Νόμος του Gauss. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 3: Ο Νόμος του Gauss Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία των δυναμικών γραμμών Παραδείγματα δυναμικών γραμμών σημειακού φορτίου,
Διαβάστε περισσότεραΑνάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών»
Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών» : Στρωτή και τυρβώδης ροή σε λείο σωλήνα Συντάκτες: Α. Φιλιός, Κ. Μουστρής, Κ.-Σ. Νίκας 1 Αντικείμενο της εργαστηριακής άσκησης
Διαβάστε περισσότεραΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ
Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση
Διαβάστε περισσότερα5 Μετρητές παροχής. 5.1Εισαγωγή
5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή
Διαβάστε περισσότεραΦυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του
Διαβάστε περισσότεραΕκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 9: Ζώνες προστασίας γεωτρήσεων Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου
Διαβάστε περισσότεραΕκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 10: Οριοθέτηση ζωνών προστασίας γεωτρήσεων Μέθοδος ιχνηλάτισης σωματιδίων
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2: ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΥΛΗΣ ΚΑΙ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ Ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΥΛΗΣ ΚΑΙ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση 1. ΘΕΜΑ Β Όταν ποτίζουμε τα λουλούδια με το λάστιχο κήπου, για να πάει το νερό μακρύτερα
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 12 : Στραγγιστικά δίκτυα Ι Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 12 : Στραγγιστικά δίκτυα Ι Δρ. Μενέλαος Θεοχάρης 8.1 Τυπικό σχήμα στραγγιστικών δικτύων 8.1.1 Γενικό σχήμα στραγγιστικού
Διαβάστε περισσότεραΝα υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.
1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4
Διαβάστε περισσότεραΤα τρία βασικά προβλήματα της Υδραυλικής
Τα τρία βασικά προβλήματα της Υδραυλικής Α βασικό πρόβλημα,, παροχή γνωστή απλός υπολογισμός απωλειών όχι δοκιμές (1): L1 = 300, d1 = 0.6 m, (): L = 300, d = 0.4 m Q = 0.5m 3 /s, H=?, k=0.6 mm Διατήρηση
Διαβάστε περισσότεραΧειμερινό εξάμηνο 2007 1
Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Σειρές Taylor, Maclaurin Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 8 : Η σταθερή στράγγιση των εδαφών ΙΙ Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκαιδευτικό Ίδρυμα Ηείρου Στραγγίσεις (Θεωρία) Ενότητα 8 : Η σταθερή στράγγιση των εδαφών ΙΙ Δρ. Μενέλαος Θεοχάρης 5.3.. Η Μέθοδος του ikham Ο on ikham το έτος 958 χρησιμοοιώντας
Διαβάστε περισσότερα