ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ"

Transcript

1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1

2 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί 0, 1, 2, 3, 4, 5, 6,, που δηλώνουν πλήθος ή σειρά ονομάζονται φυσικοί αριθμοί. Κάθε φυσικός αριθμός έχει έναν επόμενο και ένα προηγούμενο φυσικό αριθμό, εκτός από το 0 που έχει μόνο επόμενο, το 1. Οι φυσικοί αριθμοί χωρίζονται σε δύο κατηγορίες: τους άρτιους ή ζυγούς και τους περιττούς ή μονούς. Άρτιοι λέγονται οι φυσικοί αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται με το Ποια είναι τα σύμβολα της διάταξης και πως διατάσσονται οι φυσικοί αριθμοί; Τα σύμβολα της διάταξης είναι : το = που σημαίνει ίσος με, το < που σημαίνει μικρότερος από και το > που σημαίνει μεγαλύτερος από. Μπορούμε πάντα να συγκρίνουμε δύο φυσικούς αριθμούς μεταξύ τους. Επομένως έχουμε τη δυνατότητα να διατάξουμε τους φυσικούς αριθμούς από το μικρότερο προς το μεγαλύτερο, δηλαδή με αύξουσα σειρά μεγέθους. Για παράδειγμα: 0<1<2<3<... <10<11<12< 3. Πώς παριστάνονται οι φυσικοί αριθμοί σε μία ευθεία; Η δυνατότητα αυτή, της διάταξης των φυσικών αριθμών, επιτρέπει να τους τοποθετήσουμε πάνω σε μια ευθεία γραμμή με τον παρακάτω τρόπο: Διαλέγουμε αυθαίρετα ένα σημείο Ο της ευθείας, που το λέμε αρχή, για να παραστήσουμε τον αριθμό 0. Μετά, δεξιά από το σημείο Ο διαλέγουμε ένα άλλο 2

3 σημείο Α, που παριστάνει τον αριθμό 1. Τότε, με μονάδα μέτρησης το ΟΑ, βρίσκουμε τα σημεία που παριστάνουν τους αριθμούς: 2, 3, 4, 5, Ο Α Β 4. Τι ονομάζουμε στρογγυλοποίηση και πως γίνεται αυτή ; Πολλές φορές αντικαθιστούμε ένα φυσικό αριθμό με μια προσέγγιση του, δηλαδή κάποιο άλλο λίγο μικρότερο ή λίγο μεγαλύτερό του. Τη διαδικασία αυτή την ονομάζουμε στρογγυλοποίηση. Για να στρογγυλοποιήσουμε ένα φυσικό αριθμό: - Προσδιορίζουμε τη τάξη στην οποία θα γίνει η στρογγυλοποίηση. - Εξετάζουμε το ψηφίο της αμέσως μικρότερης τάξης. - Αν αυτό είναι μικρότερο του 5 (δηλαδή 0, 1, 2, 3 ή 4), το ψηφίο αυτό και όλα τα ψηφία των μικρότερων τάξεων μηδενίζονται. - Αν είναι μεγαλύτερο ή ίσο του 5 (δηλαδή 5, 6, 7, 8 ή 9), το ψηφίο αυτό και όλα τα ψηφία των μικρότερων τάξεων μηδενίζονται και το ψηφίο της τάξης στρογγυλοποίησης αυξάνεται κατά Τι ονομάζουμε πρόσθεση και ποιες οι ιδιότητες αυτής; Πρόσθεση είναι η πράξη με την οποία από δύο φυσικούς αριθμούς α και β, τους προσθετέους, βρίσκουμε ένα τρίτο φυσικό αριθμό γ, που είναι το άθροισμά τους και γράφουμε: α + β = γ Ιδιότητες της πρόσθεσης: Το 0 όταν προστεθεί σε ένα φυσικό αριθμό δεν τον μεταβάλλει. (Ουδέτερο στοιχείο) α + 0 = 0 + α = α Μπορούμε να αλλάζουμε τη σειρά των δύο προσθετέων ενός αθροίσματος (Αντιμεταθετική ιδιότητα). α + β = β + α Μπορούμε να αντικαθιστούμε προσθετέους με το άθροισμά τους ή να αναλύουμε ένα προσθετέο σε άθροισμα (Προσεταιριστική ιδιότητα). α + (β + γ) = (α + β) + γ 6. Τι ονομάζουμε αφαίρεση και πότε γίνεται αυτή ; Αφαίρεση είναι η πράξη με την οποία, όταν δίνονται δύο αριθμοί, Μ (μειωτέος) και Α (αφαιρετέος) βρίσκουμε έναν αριθμό Δ (διαφορά), ο οποίος όταν προστεθεί στο Α δίνει το Μ. Μ = Α + Δ και γράφουμε Δ = Μ - Α 3

4 Στους φυσικούς αριθμούς ο αφαιρετέος Α πρέπει να είναι πάντα μικρότερος ή ίσος του μειωτέου Μ. Σε αντίθετη περίπτωση η πράξη της αφαίρεσης δεν είναι δυνατόν να εκτελεστεί. 7. Τι ονομάζουμε πολλαπλασιασμός και ποιες οι ιδιότητες αυτού; Πολλαπλασιασμός είναι η πράξη με την οποία από δύο φυσικούς αριθμούς α και β, τους παράγοντες, βρίσκουμε ένα τρίτο φυσικό αριθμό γ, που είναι το γινόμενο τους: α β = γ Ιδιότητες του πολλαπλασιασμού: Το 1 όταν πολλαπλασιαστεί με ένα φυσικό αριθμό δεν τον μεταβάλλει. (Ουδέτερο στοιχείο) α 1 = 1 α = α Μπορούμε να αλλάζουμε τη σειρά των παραγόντων ενός γινομένου (Αντιμεταθετική ιδιότητα) α β = β α Μπορούμε να αντικαθιστούμε παράγοντες με το γινόμενό τους ή να αναλύουμε ένα παράγοντα σε γινόμενο (Προσεταιριστική ιδιότητα) α (β γ) = (α β) γ Επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση: α (β + γ) = α β + α γ Επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την αφαίρεση: α (β - γ) = α β - α γ 8. Τι ονομάζουμε νιοστή δύναμη αριθμού, τι βάση,τι εκθέτη,τι τετράγωνο, τι κύβο,τι πρώτη δύναμη και με τι είναι ίσες οι δυνάμεις του 1; Το γινόμενο α α α α, που έχει ν παράγοντες ίσους με το α, λέγεται δύναμη του α στη ν ή νιοστή δύναμη του α και συμβολίζεται με α ν. Ο αριθμός α λέγεται βάση της δύναμης και ο ν λέγεται εκθέτης. Η δύναμη του αριθμού στη δευτέρα, δηλαδή το α 2, λέγεται και τετράγωνο του α. Η δύναμη του αριθμού στην τρίτη, δηλαδή το α 3, λέγεται και κύβος του α. Το α 1, δηλαδή η πρώτη δύναμη ενός αριθμού α είναι ο ίδιος ο αριθμός α. α ν = α α α α ν παράγοντες α 2 α 3 α 1 = α 1 ν = 1 Οι δυνάμεις του 1 δηλαδή το 1 ν, είναι όλες ίσες με 1. 4

5 9. Τι ονομάζουμε αριθμητική παράσταση και ποια είναι η προτεραιότητα πράξεων σε μια τέτοια παράσταση; Αριθμητική παράσταση λέγεται κάθε σειρά αριθμών που συνδέονται μεταξύ τους με τα σύμβολα των πράξεων. Η σειρά με την οποία πρέπει να κάνουμε τις πράξεις σε μία αριθμητική παράσταση (προτεραιότητα των πράξεων) είναι η ακόλουθη: 1. Υπολογισμός δυνάμεων. 2. Εκτέλεση πολλαπλασιασμών και διαιρέσεων 3. Εκτέλεση προσθέσεων και αφαιρέσεων. Αν υπάρχουν παρενθέσεις, εκτελούμε πρώτα τις πράξεις μέσα στις παρενθέσεις με την παραπάνω σειρά. 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται διαιρετέος, ο δ λέγεται διαιρέτης, ο αριθμός π ονομάζεται πηλίκο και το υ υπόλοιπο της διαίρεσης. Το υπόλοιπο είναι αριθμός πάντα μικρότερος του διαιρέτη: υ < δ. Η διαίρεση της παραπάνω μορφής λέγεται Ευκλείδεια Διαίρεση. Αν το υπόλοιπο υ είναι 0, τότε λέμε ότι έχουμε μία Τέλεια διαίρεση: Δ = δ π. Στους φυσικούς αριθμούς η τέλεια διαίρεση είναι πράξη αντίστροφη του πολλαπλασιασμού, όπως είναι και η αφαίρεση πράξη αντίστροφη της πρόσθεσης. 11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; Ο διαιρέτης δ μιας διαίρεσηςδεν μπορεί να είναι 0. δ 0 Όταν Δ = δ, τότε το πηλίκο π = 1 α : α = 1 Όταν ο διαιρέτης δ = 1, τότε το πηλίκο π = Δ α : 1 = α Όταν ο διαιρετέος Δ = 0, τότε το πηλίκο π = 0 0 : α = Τι ονομάζουμε πολλαπλάσια ενός φυσικού αριθμού α, ποιες οι ιδιότητες των πολλαπλάσιών και τι ονομάζουμε Ελάχιστο κοινό πολλαπλάσιο; Πολλαπλάσια ενός φυσικού αριθμού α είναι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς. 0, α, 2α, 3α, 4α, Κάθε φυσικός αριθμός διαιρεί τα πολλαπλάσιά του. Κάθε φυσικός που διαιρείται από έναν άλλο είναι πολλαπλάσιό του. 5

6 Αν ένας φυσικός διαιρεί έναν άλλον θα διαιρεί και τα πολλαπλάσιά του. Το μικρότερο μη μηδενικό από τα κοινά πολλαπλάσια δύο ή περισσότερων αριθμών που δεν είναι μηδέν το ονομάζουμε Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) των αριθμών αυτών 13. Τι ονομάζουμε διαιρέτες ενός φυσικού αριθμού α, ποιοι είναι οι διαιρέτες του α, τι ονομάζουμε πρώτους και τι σύνθετους αριθμούς; Διαιρέτες ενός φυσικού αριθμού α λέγονται όλοι οι αριθμοί που τον διαιρούν. Κάθε αριθμός α έχει διαιρέτες τους αριθμούς 1 και α. Ένας αριθμός που έχει διαιρέτες μόνο τον εαυτό του και το 1 λέγεται πρώτος αριθμός, διαφορετικά λέγεται σύνθετος. 14. Τι ονομάζουμε Μέγιστος κοινός διαιρέτης και ποιοι αριθμοί ονομάζονται πρώτοι μεταξύ τους; Δύο φυσικοί αριθμοί α και β μπορεί να έχουν κοινούς διαιρέτες. Ο μεγαλύτερος από αυτούς ονομάζεται Μέγιστος Κοινός Διαιρέτης (ΜΚΔ) των α και β και συμβολίζεται ΜΚΔ (α, β). Δύο αριθμοί α και β λέγονται πρώτοι μεταξύ τους αν είναι ΜΚΔ (α, β) = Ποια είναι τα κριτήρια Διαιρετότητας Κριτήρια Διαιρετότητας με 2, 3, 4, 5, 9, 10 ή 25 λέγονται οι κανόνες με τους οποίους μπορούμε να συμπεραίνουμε, χωρίς να κάνουμε τη διαίρεση, αν ένας φυσικός αριθμός διαιρείται με τους αριθμούς αυτούς. Ένας φυσικός αριθμός διαιρείται με 10, αν λήγει σε ένα μηδενικό. Ένας φυσικός αριθμός διαιρείται με το 2, αν το τελευταίο ψηφίο είναι 0, 2, 4,6, 8. Ένας φυσικός αριθμός διαιρείται με το 5, αν λήγει σε 0 ή 5. Ένας φυσικός αριθμός διαιρείται με το 3 ή το 9, αν το άθροισμα των ψηφίων του διαιρείται με το 3 ή το 9 αντίστοιχα. Ένας φυσικός αριθμός διαιρείται με το 4 ή το 25, αν τα δύο τελευταία ψηφία του σχηματίζουν αριθμό που διαιρείται με το 4 ή το 25 αντίστοιχα 6

7 ΚΕΦΑΛΑΙΟ 2ο ΚΛΑΣΜΑΤΑ 1. Τι καλείται νιοστό, τι κλάσμα (κάπα νιοστά); Πότε ένα κλάσμα είναι μεγαλύτερο του 1; Μπορεί ένας φυσικός να γραφεί ως κλάσμα; Όταν ένα μέγεθος ή ένα σύνολο ομοειδών αντικειμένων χωρισθεί σε ν ίσα μέρη, το κάθε ένα από αυτά ονομάζεται νιοστό και συμβολίζεται με το 1. αριθμητής παρονομαστής κλασματική γραμμή 2. 3 όροι του κλάσματος Κάθε τμήμα του μεγέθους ή του συνόλου αντικειμένων, που αποτελείται από κ τέτοια ίσα μέρη, συμβολίζεται με το κλάσμα και διαβάζεται «κάπα νιοστά». 1 1 με 0 Η έννοια του κλάσματος επεκτείνεται και στην περίπτωση που ο αριθμητής είναι μεγαλύτερος από τον παρονομαστή. Τότε το κλάσμα είναι μεγαλύτερο από το 1. Κάθε φυσικός αριθμός μπορεί να έχει τη μορφή κλάσματος με παρονομαστή το Τι καλούμαι ισοδύναμα κλάσματα, τι εκφράζουν, τι ισχύει γι αυτά και πως μπορούμε να τα κατασκευάσουμε; Δύο κλάσματα και λέγονται ισοδύναμα όταν εκφράζουν το ίδιο τμήμα ενός μεγέθους ή ίσων μεγεθών. Επειδή ακριβώς εκφράζουν το ίδιο τμήμα ενός μεγέθους είναι και ίσα και γράφουμε: Αν δύο κλάσματα και είναι ισοδύναμα τότε τα χιαστί γινόμενα α δ και β γ είναι ίσα. Δηλαδή: αν τότε α δ = β γ Για να κατασκευάσουμε ισοδύναμα κλάσματα ή για να διαπιστώσουμε ότι δύο κλάσματα είναι ισοδύναμα, μπορούμε να εφαρμόζουμε τους παρακάτω κανόνες: Όταν πολλαπλασιαστούν οι όροι ενός κλάσματος με τον ίδιο φυσικό αριθμό ( 0) προκύπτει κλάσμα ισοδύναμο. Όταν οι όροι ενός κλάσματος διαιρεθούν με τον ίδιο φυσικό αριθμό ( 0) προκύπτει κλάσμα ισοδύναμο. 7

8 3. Τι καλούμαι απλοποίηση και πότε ένα κλάσμα λέγεται ανάγωγο; Όταν πολλαπλασιαστούν οι όροι ενός κλάσματος με τον ίδιο φυσικό αριθμό ( 0) προκύπτει κλάσμα ισοδύναμο. Όταν οι όροι ενός κλάσματος διαιρεθούν με τον ίδιο φυσικό αριθμό ( 0) προκύπτει κλάσμα ισοδύναμο. Η διαδικασία αυτή λέγεται απλοποίηση του κλάσματος και έχει ως αποτέλεσμα ένα κλάσμα ισοδύναμο με το αρχικό με μικρότερους όρους. Το κλάσμα εκείνο που δεν μπορεί να απλοποιηθεί (δεν υπάρχει κοινός διαιρέτης αριθμητή και παρονομαστή) λέγεται ανάγωγο. 4. Ποια κλάσματα ονομάζονται ομώνυμα και ποια ετερώνυμα; Όταν δύο ή περισσότερα κλάσματα έχουν τον ίδιο παρονομαστή λέγονται ομώνυμα και όταν έχουν διαφορετικούς παρονομαστές ονομάζονται ετερώνυμα. 5. Πως συγκρίνουμε κλάσματα; Γενικά, για τη σύγκριση κλασμάτων ισχύουν τα εξής: Από δύο ομώνυμα κλάσματα, εκείνο που έχει τον μεγαλύτερο αριθμητή είναι 9 5 μεγαλύτερο. π.χ Για να συγκρίνουμε ετερώνυμα κλάσματα τα μετατρέπουμε σε ομώνυμα και συγκρίνουμε τους αριθμητές τους. Από δύο κλάσματα με τον ίδιο αριθμητή μεγαλύτερο είναι εκείνο με τον μικρότερο παρονομαστή. π.χ Πως προσθέτουμε και πως αφαιρούμε κλάσματα; Γενικά, για την πρόσθεση και την αφαίρεση κλασμάτων ισχύουν τα εξής: Προσθέτουμε δύο ή περισσότερα ομώνυμα κλάσματα προσθέτοντας τους αριθμητές τους Προσθέτουμε ετερώνυμα κλάσματα αφού πρώτα τα μετατρέψουμε σε ομώνυμα. Αφαιρούμε δύο ομώνυμα κλάσματα αφαιρώντας τους αριθμητές τους Αφαιρούμε δύο ετερώνυμα κλάσματα αφού τα μετατρέψουμε πρώτα σε ομώνυμα. 8

9 7. Τι καλείται μεικτός αριθμός; Μερικές φορές αντί να γράφουμε, γράφουμε πιο απλά. Ο συμβολισμός αυτός, που παριστάνει το άθροισμα ενός ακέραιου με ένα κλάσμα μικρότερο της μονάδας, ονομάζεται μεικτός αριθμός. 8. Πως πολλαπλασιάζουμε κλάσματα και ποια κλάσματα ονομάζονται αντίστροφα; Το γινόμενο δύο κλασμάτων είναι το κλάσμα που έχει αριθμητή το γινόμενο των a αριθμητών και παρονομαστή το γινόμενο των παρονομαστών. Το γινόμενο ενός φυσικού αριθμού επί ένα κλάσμα είναι το κλάσμα με αριθμητή το γινόμενο του αριθμητή επί τον φυσικό αριθμό και με τον ίδιο παρονομαστή. a a a Τα κλάσματα που έχουν γινόμενο 1 λέγονται αντίστροφα. Επειδή 1 τα κλάσματα και είναι αντίστροφα. 9. Ποιες ιδιότητες ισχύουν στα κλάσματα; Ισχύουν όλες οι ιδιότητες των πράξεων των φυσικών αριθμών στα κλάσματα. Το 1 δε μεταβάλλει το γινόμενο 1 1 a Αντιμεταθετική a Προσεταιριστική ( ) ( ) a Επιμεριστική ( ) ) a ( ) ) 9

10 10. Πως διαιρούμε φυσικούς αριθμούς, πως διαιρούμε κλάσματα, τι ονομάζουμε σύνθετο κλάσμα και πως αυτό μετατρέπεται σε απλό; Για να διαιρέσουμε δύο φυσικούς αριθμούς αρκεί να πολλαπλασιάσουμε το διαιρετέο με τον αντίστροφο του διαιρέτη. a : a 1 Για να διαιρέσουμε δύο κλάσματα αρκεί να πολλαπλασιάσουμε το διαιρετέο με τον a αντίστροφο του διαιρέτη. : Ένα κλάσμα, του οποίου ένας τουλάχιστον όρος του είναι κλάσμα, ονομάζεται σύνθετο κλάσμα. a ad Μετατροπή σύνθετου σε απλό: b c bc d 10

11 ΚΕΦΑΛΑΙΟ 3ο ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ 11. Για ποιο λόγο χρησιμοποιούμε τους δεκαδικούς αριθμούς και τι ονομάζουμε δεκαδικό κλάσμα; Σε πολλές περιπτώσεις μετρήσεων οι φυσικοί αριθμοί δεν επαρκούν να εκφράσουν τα αποτελέσματα αυτών των μετρήσεων με ακρίβεια. Για αυτό το λόγο χρησιμοποιούμε τους δεκαδικούς αριθμούς. Δεκαδικό κλάσμα λέγεται το κλάσμα που έχει παρονομαστή μια δύναμη του 10. Τα κλάσματα που έχουν παρονομαστές τους φυσικούς αριθμούς 10,100,1000 και 10000, που είναι δυνάμεις του 10: 10 1, 10 2, 10 3 και Πως γράφεται ένας δεκαδικός αριθμός, σε τι μέρη διακρίνεται πως χωρίζονται αυτά και πως συγκρίνουμε δεκαδικούς; Στο δεκαδικό μέρος οι τάξεις είναι τα δέκατα, τα εκατοστά, τα χιλιοστά, τα δεκάκις χιλιοστά, τα εκατοντάκις χιλιοστά, τα εκατομμυριοστά κ.λπ. Στο ακέραιο μέρος οι τάξεις είναι σε μονάδες, δεκάδες κ.λπ. Δέκα μονάδες μίας τάξης είναι μια μονάδα μεγαλύτερης τάξης. Σε κάθε δεκαδικό αριθμό διακρίνουμε το ακέραιο μέρος και το δεκαδικό μέρος του. Αυτά διαχωρίζονται από την υποδιαστολή. Αν δύο δεκαδικοί αριθμοί αρχίζουν από ψηφίο της ίδιας τάξης, μεγαλύτερος είναι αυτός που έχει το μεγαλύτερο ψηφίο στην αρχική τάξη. 8,97453 < 9,432 Αν δύο δεκαδικοί αριθμοί αρχίζουν από ψηφίο της ίδιας τάξης, μεγαλύτερος είναι εκείνος που έχει το αμέσως επόμενο ψηφίο μεγαλύτερο. 105,3842 > 105, Πως στρογγυλοποιούμαι έναν δεκαδικό αριθμό; Για να στρογγυλοποιήσουμε ένα δεκαδικό αριθμό: Προσδιορίζουμε τη δεκαδική τάξη στην οποία θα γίνει η στρογγυλοποίηση. Εξετάζουμε το ψηφίο της αμέσως μικρότερης τάξης. Αν αυτό είναι μικρότερο του 5, το ψηφίο αυτό και όλα τα ψηφία των μικρότερων τάξεων μηδενίζονται. Αν είναι μεγαλύτερο ή ίσο του 5, το ψηφίο αυτό και όλα τα ψηφία των μικρότερων τάξεων μηδενίζονται και το ψηφίο της τάξης στρογγυλοποίησης αυξάνεται κατά 1. π.χ α) β) γ) δ) ε) στ) 11

12 14. Πως προσθέτουμε και πως αφαιρούμε δεκαδικούς αριθμούς; Η Πρόσθεση και η Αφαίρεση δεκαδικών αριθμών γίνεται, όπως και στους φυσικούς αριθμούς. Προσθέτουμε ή αφαιρούμε τα ψηφία της ίδιας τάξης, τοποθετώντας τους αριθμούς τον ένα κάτω από τον άλλο έτσι, ώστε οι υποδιαστολές να γράφονται στην ίδια στήλη. π.χ. 86, , , ,667 46, Πως πολλαπλασιάζουμε δεκαδικούς αριθμούς; Ο Πολλαπλασιασμός δεκαδικών αριθμών γίνεται, όπως και των φυσικών αριθμών. Τοποθετούμε στο αποτέλεσμα της πράξης την υποδιαστολή τόσες θέσεις από τα δεξιά προς τα αριστερά, όσα είναι συνολικά τα ψηφία στα δεκαδικά μέρη και των δύο παραγόντων. 15,82 2 δεκαδικά ψηφία x 2,3 1 δεκαδικό ψηφίο ,386 3 δεκαδικά ψηφία 16. Πως πολλαπλασιάζουμε δεκαδικούς αριθμούς; Η Διαίρεση δεκαδικού αριθμού με δεκαδικό αριθμό γίνεται, όπως και η ευκλείδεια διαίρεση. Πολλαπλασιάζουμε το διαιρέτη και το διαιρετέο με την κατάλληλη δύναμη του 10 έτσι, ώστε ο διαιρέτης να γίνει φυσικός αριθμός. Όταν εξαντληθεί το ακέραιο μέρος του διαιρετέου, κατεβάζουμε το μηδέν, ως πρώτο δεκαδικό ψηφίο από τον διαιρετέο και τοποθετούμε στο πηλίκο υποδιαστολή. Η διαίρεση 534,28: 3,178 γίνεται : 3178 (πολλαπλασιάσαμε διαιρετέο και διαιρέτη με το 1000 για να απαλείψουμε τα δεκαδικά ψηφία από το διαιρέτη) Όταν πολλαπλασιάζουμε με 0,1, 0,01, 0,001 ή όταν διαιρούμε ένα δεκαδικό αριθμό με 10, 100, 1000, μεταφέρουμε την υποδιαστολή προς τα αριστερά μια, δυο, τρεις, αντίστοιχα θέσεις ,1 = 258 : 10 = 25,8 8,45 0,01 = 8,45 : 100 = 0, ,45 0,001 = 12,45 : 1000 =,01245 Όταν πολλαπλασιάζουμε ένα δεκαδικό αριθμό με 10, 100, 1000 μεταφέρουμε την υποδιαστολή του αριθμού προς τα δεξιά μία, δύο, τρεις, θέσεις αντίστοιχα. 28,34 10 = 283,4 38, = 3809,45 1, = 1324,5 0, = 9 12

13 17. Τι γνωρίζετε για τις δυνάμεις δεκαδικών αριθμών; Οι Δυνάμεις των δεκαδικών αριθμών έχουν τις ιδιότητες των δυνάμεων των φυσικών αριθμών. Το πλήθος των δεκαδικών ψηφίων, που έχει το αποτέλεσμα, προκύπτει από το πλήθος των δεκαδικών ψηφίων της βάσης επί τον εκθέτη της δύναμης. (2,5) 2 =2,5 2 =6,25 1 x 2 = 2 (1,25) 2 =1,25 2 =1, x 2 = Τι ονομάζουμε τυποποιημένη μορφή αριθμού; Ένας μεγάλος αριθμός μπορεί να γραφεί στη μορφή α 10 ν, δηλαδή ως γινόμενο ενός αριθμού α επί μια δύναμη του 10. Τη μορφή αυτή την ονομάζουμε τυποποιημένη. Ο αριθμός α είναι ένας δεκαδικός αριθμός με ακέραιο ψηφίο μεγαλύτερο ή ίσο του 1 και μικρότερο του Ποια είναι η μονάδα μέτρησης μήκους,ποιες οι υποδιαιρέσεις του, ποια τα πολλαπλάσιά του και ποια άλλη μονάδα γνωρίζετε; Η βασική μονάδα μήκους είναι το μέτρο (συμβολίζεται με m) Υποδιαιρέσεις του μέτρου: 1 δεκατόμετρο ή παλάμη (dm) 1dm =1/10 m = 0,1m 1 εκατοστόμετρο ή πόντος (cm) 1cm = 1/100 m = 0,01m 1 χιλιοστόμετρο ή χιλιοστό (mm) 1mm = 1/1000 m = 0,001 m Πολλαπλάσια του μέτρου 1 χιλιόμετρο (Km) 1 Km = 1000 m Στη ναυσιπλοία, ως μονάδα μέτρησης μήκους, χρησιμοποιούμε το ναυτικό μίλι. 1 ναυτικό μίλι = m m dm. : cm. : mm. 20. Ποια είναι η μονάδα μέτρησης εμβαδού,ποιες οι υποδιαιρέσεις του, ποια τα πολλαπλάσιά του και ποιες άλλες μονάδες γνωρίζετε; 13

14 Η βασική μονάδα μέτρησης εμβαδού είναι τo τετραγωνικό μέτρο (συμβολίζεται με m 2 ) που είναι η επιφάνεια ενός τετραγώνου με πλευρά ένα μέτρο. Υποδιαιρέσεις του τετραγωνικού μέτρου: 1 τετραγωνικό δεκατόμετρο (dm 2 ) 1 dm 2 = 1/100 m 2 = 0,01 m 2 1 τετραγωνικό εκατοστόμετρο (cm 2 ) 1 cm 2 = 1/10000 m 2 = 0,0001 m 2 1 τετραγωνικό χιλιοστόμετρο (mm 2 ) 1 mm 2 = 1/ m 2 = 0, m 2 Στην Ελλάδα ως μονάδα επιφανείας χρησιμοποιούμε το στρέμμα. 1 στρέμμα= 1000 m 2 1 Km 2 = m 2 = 10 6 m 2 \ 21. Ποια είναι η μονάδα μέτρησης όγκου,ποιες οι υποδιαιρέσεις του, και ποιες άλλες μονάδες γνωρίζετε; Η βασική μονάδα μέτρησης όγκου είναι τo κυβικό μέτρο (συμβολίζεται με m 3 ) που είναι ο όγκος ενός κύβου ακμής ενός μέτρου. Υποδιαιρέσεις του κυβικού μέτρου: 1 κυβικό δεκατόμετρο (dm 3 ) 1 dm 3 = 1/1000 m 3 = 0,001 m 3 1 κυβικό εκατοστόμετρο (cm 3 ) 1 cm 3 = 1/ m 3 = 0, m 3 1 κυβικό χιλιοστόμετρο (mm 3 ) 1 mm 3 = m 3 = 0, m 3 Για τη μέτρηση του όγκου χρησιμοποιούμε και το dm 3 που ονομάζεται και λίτρο (lt). 1 lt = 1 dm 3 = 0,001 m 3 To cm 3 λέγεται χιλιοστόλιτρο (ml) 1 ml = 0,001 lt = 1cm 3 = 0, m Ποια είναι η μονάδα μέτρησης χρόνου ποια η μονάδα μέτρησης μάζας και τι άλλο γνωρίζετε γι αυτά; Η μονάδα μέτρησης του χρόνου είναι το δευτερόλεπτο (συμβολίζεται με s) Πολλαπλάσια: - 1 λεπτό (min)= 60 s - 1 ώρα (h) = 60 min= s - 1 ημέρα = 24 h =1.440 min= s Η βασική μονάδα μέτρησης μάζας είναι το χιλιόγραμμο ή κιλό (συμβολίζεται με Κg) Υποδιαιρέσεις του κιλού: - 1 γραμμάριο (g) 1 g = 0,001 Kg - 1 χιλιοστόγραμμο (mg) 1 mg = 0,001 g= 0, Kg Πολλαπλάσιο του κιλού: 1 τόνος (t) 1 t = 1000 Kg ΚΕΦΑΛΑΙΟ 4ο 14

15 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ 1. Τι ονομάζεται εξίσωση και τι λύση ή ρίζα της εξίσωσης; Μπορούμε να διατυπώσουμε μια πρόταση με τη βοήθεια αριθμών και γραμμάτων, ενώ για να λύσουμε ένα πρόβλημα μπορούμε να δημιουργήσουμε μια ισότητα με γράμματα και αριθμούς. Τέτοιες ισότητες τις λέμε εξισώσεις. Εξίσωση με έναν άγνωστο είναι μία ισότητα, που περιέχει αριθμούς και ένα γράμμα (άγνωστος). Οι ισότητες: x + 5 = 12, y 2 = 3, 10 z = 1 ω : 5 = 4, 7 φ =12, 24 : ψ = 6 είναι εξισώσεις Λύση ή ρίζα της εξίσωσης είναι ο αριθμός που, όταν αντικαταστήσει τον άγνωστο, επαληθεύει την ισότητα. Λύση ή ρίζα της εξίσωσης x 7 = 5 είναι ο αριθμός 12 διότι 12 7 = 5 Τη λύση τη γράφουμε: x = Τι ονομάζεται εξίσωση και τι λύση ή ρίζα της εξίσωσης; Η διαδικασία, μέσω της οποίας, βρίσκουμε τη λύση της εξίσωσης, λέγεται επίλυση της εξίσωσης. Τον άγνωστο μιας εξίσωσης τον συμβολίζουμε με ένα γράμμα π.χ. χ, y, z, ω, φ, ψ κ.λπ. Μια εξίσωση λέγεται ταυτότητα ή αόριστη, όταν όλοι οι αριθμοί είναι λύσεις της. Οι εξισώσεις x = x ή 0 2 = 0 είναι αόριστες ή ταυτότητες. Μια εξίσωση λέγεται αδύνατη, όταν κανένας αριθμός δεν την επαληθεύει Οι εξισώσεις x + 2 = x + 6 ή 0 ω = 5 είναι αδύνατες. 3. Ποιες είναι οι βασικές εξισώσεις και πως λύνονται αυτές; Βάσει των ορισμών των πράξεων οι λύσεις των παρακάτω εξισώσεων είναι: α + x = β x = β α, x α = β x = β + α, α x = β x = α β, α x = β x = β : α, x : α = β x = β α και α : x = β x = α : β. 4. Τι καλούμαι πρόβλημα, τι λύση και τι επίλυση ; 15

16 Πρόβλημα ονομάζουμε την κατάσταση, που δημιουργείται, όταν αντιμετωπίζουμε εμπόδια και δυσκολίες στην προσπάθειά μας να φτάσουμε σε ένα συγκεκριμένο στόχο. Λύση ενός προβλήματος είναι η επίτευξη του στόχου. Επίλυση ενός προβλήματος ονομάζεται η διαδικασία, με την οποία επιτυγχάνεται η λύση του. 5. Πως λύνουμε προβλήματα με την βοήθεια εξισώσεων ; Για τη λύση των προβλημάτων, με τη βοήθεια των εξισώσεων, ακολουθούμε τα εξής βήματα: Προσδιορίζουμε το άγνωστο στοιχείο του προβλήματος και το εκφράζουμε με ένα γράμμα (x ή ν ή ζ ή ω κ.τ.λ.), που είναι ο άγνωστος του προβλήματος. Εκφράζουμε στοιχεία του προβλήματος με τη βοήθεια του αγνώστου. Περιγράφουμε με μία εξίσωση το πρόβλημα. Επιλύουμε την εξίσωση του προβλήματος. Επαληθεύουμε τη λύση που βρήκαμε. Όμως, πρέπει να λάβουμε υπόψη ότι: υπάρχουν και προβλήματα που δεν λύνονται με εξισώσεις και υπάρχουν και άλυτα προβλήματα ή προβλήματα των οποίων δεν μπορούμε να βρούμε τη λύση. 16

17 ΚΕΦΑΛΑΙΟ 5ο ΠΟΣΟΣΤΑ 1. Τι ονομάζεται ποσοστό επί τοις εκατό,τι ποσοστό επί τοις χιλίοις τι άλλο γνωρίζετε για τα ποσοστά; Το σύμβολο α% ονομάζεται ποσοστό επί τοις εκατό ή απλούστερα ποσοστό και είναι ίσο με το α/100. Χρησιμοποιούμε ακόμη το ποσοστό α που διαβάζεται ποσοστό επί τοις χιλίοις και είναι ίσο με το α/1000. Το ποσοστό α% του β είναι (α/100) β Τα κλάσματα μπορούν να γράφονται και ως ποσοστά. 17

18 ΚΕΦΑΛΑΙΟ 6ο ΠΟΣΑ ΑΝΑΛΟΓΑ ΚΑΙ ΑΝΤΙΣΤΡΟΦΩΣ ΑΝΑΛΟΓΑ 1. Πως προσδιορίζεται η θέση ενός σημείου στο επίπεδο,τι καλούμαι σύστημα ημιαξόνων τι ημιάξονα τετμημένων,τι ημιάξονα των τεταγμένων, τι αρχή των ημιαξόνων τι τετμημένη,τι τεταγμένη τι συντεταγμένες, τι διατεταγμένο ζεύγος και τι ορθοκανονικό σύστημα ημιαξόνων ; Προκειμένου να προσδιορίσουμε τη θέση ενός σημείου στο επίπεδο: Σχεδιάζουμε δύο κάθετες μεταξύ τους ημιευθείες Οx και Οy. Πάνω σε κάθε μια απ αυτές ορίζουμε την ίδια μονάδα μέτρησης. Αυτές οι ημιευθείες αποτελούν ένα σύστημα ημιαξόνων. Ο ημιάξονας Οx λέγεται ημιάξονας των τετμημένων ή ημιάξονας των x. Ο ημιάξονας Οy λέγεται ημιάξονας των τεταγμένων ή ημιάξονας των y. Το σημείο Ο ονομάζεται αρχή των ημιαξόνων To 3 είναι η τετμημένη του σημείου Α To 1 είναι η τεταγμένη του σημείου Α y Μ(2,4) Α(3,1) x Η τετμημένη και η τεταγμένη του σημείου Α ονομάζονται συντεταγμένες του Α και συνήθως όταν θέλουμε να αναφερθούμε στο σημείο Α, γράφουμε Α(3,1). Το ζεύγος (3,1) του οποίου ο πρώτος αριθμός 3 είναι η τετμημένη του σημείου Α και ο δεύτερος αριθμός 1 είναι η τεταγμένη του σημείου Α, λέγεται διατεταγμένο ζεύγος, επειδή έχει σημασία η διάταξη, δηλαδή η σειρά, με την οποία γράφονται οι αριθμοί που το αποτελούν. Με το σύστημα αυτό αντιστοιχούμε σε κάθε σημείο Α ένα ζεύγος αριθμών (3,1), δηλαδή ένα διατεταγμένο ζεύγος, οι αριθμοί του οποίου ονομάζονται συντεταγμένες του σημείου. Αντίστροφα, κάθε διατεταγμένο ζεύγος θετικών αριθμών π.χ. το (2,4) αντιστοιχεί σε ένα σημείο Μ του επιπέδου. 18

19 Το σύστημα ημιαξόνων που χρησιμοποιήσαμε λέγεται ορθοκανονικό, γιατί οι ημιάξονες τέμνονται κάθετα (ορθο-) και έχουμε ορίσει πάνω τους την ίδια μονάδα μέτρησης (-κανονικό). 2. Τι καλούμε λόγο, τι αναλογία,ποια σχήματα καλούνται όμοια,τι κλίμακα, τι ισχύει για τα όμοια παραλληλόγραμμα και ποια η ισοδύναμη σχέση με την σχέση αναλογίας ; Λόγος δύο ομοειδών μεγεθών, που εκφράζονται με την ίδια μονάδα μέτρησης, είναι το πηλίκο των μέτρων τους. Η ισότητα λόγων ονομάζεται αναλογία. Δύο σχήματα λέγονται όμοια όταν το ένα αποτελεί σμίκρυνση ή μεγέθυνση του άλλου. Ο λόγος της απόστασης δύο σημείων μιας εικόνας ενός αντικειμένου προς την πραγματική απόσταση των δύο αντίστοιχων σημείων του αντικειμένου, ονομάζεται κλίμακα. Αν οι λόγοι των αντιστοίχων πλευρών δύο παραλληλογράμμων είναι ίσοι, τότε αυτοί θα είναι ίσοι και με το λόγο των περιμέτρων τους. Κάθε σχέση αναλογίας α. γ. β = δ είναι ισοδύναμη με τη σχέση α δ = β γ 3. Πότε δύο ποσά λέγονται ανάλογα, τι καλείται συντελεστής αναλογίας και πως παριστάνονται τα ανάλογα ποσά σε σύστημα ημιαξόνων ; Δύο ποσά λέγονται ανάλογα, εάν μεταβάλλονται με τέτοιο τρόπο, που όταν οι τιμές του ενός πολλαπλασιάζονται με έναν αριθμό, τότε και οι αντίστοιχες τιμές του άλλου να πολλαπλασιάζονται με τον ίδιο αριθμό. Δύο ποσά x και y είναι ανάλογα, όταν οι αντίστοιχες τιμές τους δίνουν πάντα ίδιο πηλίκο: ψ/χ = α. Το πηλίκο α λέγεται συντελεστής αναλογίας. Τα ανάλογα ποσά x και y συνδέονται με τη σχέση: y = α x όπου α ο συντελεστής αναλογίας. Όταν το ποσό y είναι ποσοστό του ποσού x, τα δύο ποσά συνδέονται με τη σχέση y = (α/100) x και είναι ανάλογα, με συντελεστή αναλογίας το α/100 ή α%. Η σχέση y = α x εκφράζει μια αλληλεπίδραση των ποσών x και y. Συγκεκριμένα, ο διπλασιασμός, τριπλασιασμός κ.ο.κ. του ενός ποσού επιφέρει διπλασιασμό, τριπλασιασμό κ.ο.κ. του άλλου ποσού. Τα σημεία που αντιστοιχούν στα ζεύγη τιμών (x, y) δύο ανάλογων ποσών βρίσκονται πάνω σε μία ημιευθεία με αρχή την αρχή Ο (0,0) των ημιαξόνων 19

20 4. Πως διαπιστώνουμε, εάν δυο ποσά είναι ανάλογα; Για να διαπιστώσουμε, εάν δυο ποσά είναι ανάλογα, χρησιμοποιούμε τα παρακάτω: x y / /2 2,5 3,5 1. Τον ορισμό των ανάλογων ποσών Εξετάζουμε αν τα ποσά που μεταβάλλονται είναι τέτοια ώστε: όταν οι τιμές του ενός ποσού πολλαπλασιάζονται, με έναν αριθμό, τότε και οι αντίστοιχες τιμές του άλλου πολλαπλασιάζονται με τον ίδιο αριθμό. Για παράδειγμα: Αν 15 = 5 3 πρέπει 21 = 7 3 και αν 2,5 = 5 1/2 πρέπει 3,5 = 7 1/2 2. Τη σχέση y = α x Εξετάζουμε αν τα ποσά συνδέονται με μια σχέση αναλογίας. Για παράδειγμα: Κόστος ανθοδέσμης = = 0,5 αριθμός τριαντάφυλλων 3. Τη σχέση ψ/χ = α Εξετάζουμε αν όλες οι αντίστοιχες τιμές των δύο ποσών έχουν σταθερό λόγο. x ψ ψ/χ = /3= 2 5, /5.5 = 2 5. Πότε δύο ποσά λέγονται αντιστρόφως ανάλογα, ποιοι αριθμοί ονομάζονται αντίστροφοι και τι είναι υπερβολή; Δύο μεγέθη είναι αντιστρόφως ανάλογα, στην περίπτωση, που η μεταβολή τους είναι τέτοια, ώστε: όταν το ένα μέγεθος πολλαπλασιάζεται επί έναν αριθμό, το άλλο διαιρείται με τον ίδιο αριθμό. Όταν δύο ποσά χ και γ είναι αντιστρόφως ανάλογα, το γινόμενο των αντίστοιχων τιμών τους παραμένει σταθερό: y x = α, α 0 20

21 x y 3 1/ ,5 12 : 3 : 1/2 x y y x = = = 30 Στην περίπτωση που α = 1, τα x και y είναι αντίστροφοι αριθμοί. Τα σημεία που παριστούν τα ζεύγη (x, y) βρίσκονται σε μία καμπύλη γραμμή. Η καμπύλη αυτή ονομάζεται υπερβολή. Η υπερβολή δεν τέμνει ποτέ τους ημιάξονες Οx και Οy, διότι οι συντεταγμένες των σημείων της δεν παίρνουν ποτέ την τιμή 0. 21

22 ΚΕΦΑΛΑΙΟ 7ο ΘΕΤΙΚΟΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ 1. Τι είναι τα πρόσημα και γιατί τα χρησιμοποιούμε ; Ποιοι αριθμοί καλούνται θετικοί ; Ποιοι αρνητικοί και τι είναι το μηδέν ; Τα σύμβολα «+» και «-» λέγονται πρόσημα. Γράφονται πριν από τους αριθμούς και τους χαρακτηρίζουν, αντίστοιχα, ως θετικούς ή αρνητικούς. Οι αριθμοί που συναντήσαμε μέχρι τώρα ήταν μόνο θετικοί και επομένως δεν υπήρχε ανάγκη να χρησιμοποιούμε πρόσημο. Η εισαγωγή των αρνητικών αριθμών δημιουργεί την ανάγκη της τοποθέτησης πρόσημου μπροστά από όλους τους αριθμούς. Έτσι γίνεται φανερό ποιοι αριθμοί είναι οι θετικοί και ποιοι οι αρνητικοί Το μηδέν δεν είναι ούτε θετικός ούτε αρνητικός αριθμός 2. Ποιοι αριθμοί καλούνται ομόσημοι και ποιο ετρόσημοι ; Ποιοι αριθμοί ονομάζονται ακέραιοι και ποιοι ρητοί; Ομόσημοι λέγονται οι αριθμοί που έχουν το ίδιο πρόσημο. Ετερόσημοι λέγονται οι αριθμοί που έχουν διαφορετικό πρόσημο Ακέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Ρητοί αριθμοί είναι όλοι οι γνωστοί μας έως τώρα αριθμοί: φυσικοί, κλάσματα και δεκαδικοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. 3. Πως παριστάνονται οι ρητοί αριθμοί σε άξονα; Αν θεωρήσουμε αριστερά της αρχής Ο του ημιάξονα Οx των αριθμών, τον αντικείμενο αυτού ημιάξονα Οx', θα έχουμε τη δυνατότητα, με αυτόν τον τρόπο, να παραστήσουμε όλους τους ρητούς αριθμούς. Ο άξονας x'οx περιλαμβάνει όλους τους ρητούς αριθμούς (αρνητικούς, θετικούς και το μηδέν). Οι αριθμοί που συναντήσαμε μέχρι τώρα ήταν μόνο θετικοί και επομένως δεν υπήρχε ανάγκη να χρησιμοποιούμε πρόσημο. Η εισαγωγή των αρνητικών αριθμών δημιουργεί την ανάγκη της τοποθέτησης πρόσημου μπροστά από όλους τους αριθμούς. Έτσι γίνεται φανερό ποιοι αριθμοί είναι οι θετικοί και ποιοι οι αρνητικοί. Το σημείο Α έχει τετμημένη 4 και το σημείο Β έχει τετμημένη

23 4. Τι καλείται απόλυτη τιμή ενός ρητού αριθμού ; Ποιοι αριθμοί ονομάζονται αντίθετοι ; Ποιες είναι οι άμεσες συνέπειες των δύο αυτών ορισμών ; Η απόλυτη τιμή ενός ρητού αριθμού α εκφράζει την απόσταση του σημείου μετετμημένη α από την αρχή Ο του άξονα και συμβολίζεται με α. Αντίθετοι ονομάζονται δύο αριθμοί που είναι ετερόσημοι και έχουν την ίδια απόλυτη τιμή. Ο αντίθετος του x είναι ο -x. (προσοχή αντίθετος του 0 είναι ο 0) H απόλυτη τιμή ενός θετικού αριθμού είναι ο ίδιος ο αριθμός. H απόλυτη τιμή ενός αρνητικού αριθμού είναι ο αντίθετός του. H απόλυτη τιμή του μηδενός είναι το μηδέν. Δύο σημεία που βρίσκονται σε ίση απόσταση, δεξιά και αριστερά από την αρχή των αξόνων, έχουν τετμημένες, αντίθετους αριθμούς. 5. Πως συγκρίνουμε ρητούς αριθμούς ; Ο μεγαλύτερος από δύο ρητούς αριθμούς είναι εκείνος που βρίσκεται δεξιότερα από τον άλλο πάνω στον άξονα. Κάθε θετικός ρητός είναι μεγαλύτερος από κάθε αρνητικό ρητό αριθμό. Ο μεγαλύτερος από δύο θετικούς ρητούς είναι εκείνος που έχει την μεγαλύτερη απόλυτη τιμή, δηλαδή αυτός που βρίσκεται δεξιότερα από τον άλλο πάνω στον άξονα. Ο μεγαλύτερος από δύο αρνητικούς ρητούς είναι εκείνος που έχει την μικρότερη απόλυτη τιμή, δηλαδή αυτός που βρίσκεται δεξιότερα από τον άλλο πάνω στον άξονα. 23

24 6. Πως προσθέτουμε ρητούς αριθμούς ; Για να προσθέσουμε δύο ομόσημους ρητούς αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμα βάζουμε το πρόσημό τους. Για να προσθέσουμε δύο ετερόσημους ρητούς αριθμούς, αφαιρούμε από τη μεγαλύτερη τη μικρότερη απόλυτη τιμή και στη διαφορά βάζουμε το πρόσημο του ρητού με τη μεγαλύτερη απόλυτη τιμή. 7. Ποιες είναι οι ιδιότητες της πρόσθεσης ; Ιδιότητες της πρόσθεσης Μπορούμε να αλλάζουμε τη σειρά των δύο προσθετέων ενός αθροίσματος. Αντιμεταθετική ιδιότητα α+β=β+α Μπορούμε να αντικαθιστούμε προσθετέους με το άθροισμά τους ή να αναλύουμε ένα προσθετέο σε άθροισμα. Προσεταιριστική ιδιότητα α+(β+γ) = (α+β)+γ Το 0 όταν προστεθεί σε ένα ρητό δεν τον μεταβάλλει. Ουδέτερο στοιχείο α+0 = 0+α = α Το άθροισμα δύο αντιθέτων αριθμών είναι μηδέν. α+(-α) = (-α)+α = 0 8. Πως ορίζεται η αφαίρεση ; Για να αφαιρέσουμε από τον αριθμό α τον αριθμό β, προσθέτουμε στον α τον αντίθετο του β. α-β = α+(-β) Στους ρητούς αριθμούς η αφαίρεση μετατρέπεται σε πρόσθεση και επομένως είναι πάντα δυνατή (δηλαδή, δεν απαιτείται να είναι ο μειωτέος πάντα μεγαλύτερος από τον αφαιρετέο, όπως ίσχυε μέχρι τώρα). 9. Πως γίνεται η απαλοιφή παρενθέσεων ; Σε αρκετές περιπτώσεις αριθμητικών παραστάσεων εμφανίζονται περισσότεροι του ενός αριθμοί με τα πρόσημά τους μέσα σε παρενθέσεις, μπροστά από τις οποίες μπορεί να υπάρχουν τα πρόσημα + ή -. Για να απαλείψουμε τις παρενθέσεις εργαζόμαστε ως εξής: 24

25 Όταν μια παρένθεση έχει μπροστά της το + (ή δεν έχει πρόσημο), μπορούμε να την απαλείψουμε μαζί με το + (αν έχει) και να γράψουμε τους όρους που περιέχει με τα πρόσημά τους. (+5) + (-7) = +5-7 = -2 (9,1-6,2+3,4) + (-7,5+10-8,3) = = 9,1-6,2 + 3,4-7, ,3 Όταν μια παρένθεση έχει μπροστά της το -, μπορούμε να την απαλείψουμε μαζί με το - και να γράψουμε τους όρους που περιέχει με αντίθετα πρόσημα (-5) - (-7) = = +2 -(9,1-6,2+3,4) - (-7,5+10-8,3) = = -9,1+6,2-3,4+7,5-10+8,3 10. Τι ισχύει για το γινόμενο δύο ρητών και πως πολλαπλασιάζουμε ρητούς ; Το γινόμενο δύο αρνητικών ακεραίων είναι θετικός ακέραιος Το γινόμενο δύο αρνητικών ρητών είναι θετικός ρητός. Για να πολλαπλασιάσουμε δύο ομόσημους ρητούς αριθμούς, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε το πρόσημο «+». Δηλαδή: (+) (+)=(+) και (-) (-)=(+) Για να πολλαπλασιάσουμε δύο ετερόσημους ρητούς αριθμούς, πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε το πρόσημο «-». Δηλαδή: (+) (-)=(-) και (-) (+)=(-) 11. Ποιες είναι οι ιδιότητες του πολλαπλασιασμού και ποιοι αριθμοί ονομάζονται αντίστροφοι ; Μπορούμε να αλλάζουμε τη σειρά δύο παραγόντων ενός γινομένου Αντιμεταθετική ιδιότητα. α β = β α Μπορούμε να αντικαθιστούμε παράγοντες με το γινόμενό τους ή να αναλύουμε ένα παράγοντα σε γινόμενο Προσεταιριστική ιδιότητα. α (β γ) = (α β) γ Όταν ένας ρητός πολλαπλασιάζεται με τον αριθμό 1 δεν μεταβάλλεται. 1 α = α 1 = α Επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση και την αφαίρεση: α (β + γ) = α β + α γ και α (β - γ) = α β - α γ Οι ρητοί αριθμοί α και β λέγονται αντίστροφοι, όταν είναι διάφοροι του μηδενός και το γινόμενό τους είναι ίσο με τη μονάδα: α β = 1 Ο καθένας από τους α και β είναι αντίστροφος του άλλου. (προσοχή ο 0 δεν έχει αντίστροφο) Όταν ένας ρητός πολλαπλασιάζεται με το 0 μηδενίζεται. 0 α = α 0 = 0 25

26 12. Πώς εργαζόμαστε όταν έχουμε να υπολογίσουμε ένα γινόμενο με περισσότερους από δύο παράγοντες; Γνωρίζουμε ότι το γινόμενο θετικών ρητών είναι πάντα θετικό. Αν υπάρχει ένας παράγοντας που είναι αρνητικός μετατρέπει το γινόμενο σε αρνητικό. Στην περίπτωση που υπάρχει και δεύτερος αρνητικός παράγοντας ξαναμετατρέπει το γινόμενο σε θετικό κ.ο.κ. Άρα: Για να υπολογίσουμε ένα γινόμενο πολλών παραγόντων (που κανένας δεν είναι μηδέν), πολλαπλασιάζουμε τις απόλυτες τιμές τους και στο γινόμενο βάζουμε: Το πρόσημο +, αν το πλήθος των αρνητικών παραγόντων είναι άρτιο (ζυγό). Το πρόσημο -, αν το πλήθος των αρνητικών παραγόντων είναι περιττό (μονό). Αν τουλάχιστον ένας παράγοντας είναι μηδέν, τότε και το γινόμενο είναι ίσο με μηδέν Το σημείο του πολλαπλασιασμού «.» μεταξύ των γραμμάτων και των παρενθέσεων παραλείπεται. 13. Πως διαρούμε δύο ρητούς ; Για να διαιρέσουμε δύο ρητούς αριθμούς, διαιρούμε τις απόλυτες τιμές τους και στο πηλίκο βάζουμε: το πρόσημο +, αν είναι ομόσημοι. Δηλαδή: (+):(+)=(+) και (-):(-)=(+) το πρόσημο -, αν είναι ετερόσημοι. Δηλαδή: (+):(-)=(-) και (-):(+)=(-) Το πηλίκο της διαίρεσης α:β ή μοναδική λύση της εξίσωσης β x = α λέγεται λόγος του α προς το β και ορίζεται ως η Η διαίρεση μπορεί να γραφτεί, επομένως για να διαιρέσουμε δύο ρητούς αριθμούς, αρκεί να πολλαπλασιάσουμε το διαιρετέο με τον αντίστροφο του διαιρέτη. Διαίρεση με διαιρέτη το μηδέν δεν ορίζεται. 26

27 14. Ποιοι αριθμοί καλούνται περιοδικοί και τι καλείται περίοδος ; Η διαίρεση : 7 δεν είναι τέλεια. Δίνει πηλίκο και υπόλοιπο1. Αν συνεχίσουμε τη διαίρεση θα βρούμε το δεκαδικό αριθμό , με άπειρα δεκαδικά ψηφία, τέτοια ώστε, να επαναλαμβάνονται συνεχώς τα ίδια έξι ψηφία Τους αριθμούς που βρήκαμε παραπάνω τους ονομάζουμε περιοδικούς δεκαδικούς αριθμούς. Το πλήθος των επαναλαμβανομένων δεκαδικών ψηφίων κάθε περιοδικού αριθμού ονομάζεται περίοδος. Γενικότερα, λοιπόν, μπορούμε να πούμε ότι: Κάθε ρητός αριθμός μπορεί να έχει τη μορφή δεκαδικού ή περιοδικού δεκαδικού αριθμού και συμβολίζεται όπως φαίνεται στα παραδείγματα. 15. Πως ορίζεται η δύναμη ενός ρητού αριθμού ;Τι καλείται εκθέτης ; Τι βάση; Πως διαβάζεται η δύναμη; Τι είναι το τετράγωνο και τι ο κύβος ; Για ν = 1, γράφουμε α 1 = α Η δύναμη αν διαβάζεται και νιοστή δύναμη του α. Η δύναμη α 2 λέγεται και τετράγωνο του α ή α στο τετράγωνο. Η δύναμη α 3 λέγεται κύβος του α ή α στον κύβο. 16. Πως βρίσκουμε το πρόσημο της δύναμης στις διάφορες περιπτώσεις ; Δύναμη με βάση θετικό αριθμό είναι θετικός αριθμός. Αν α > 0, τότε α ν > 0 Δύναμη με βάση αρνητικό αριθμό και εκθέτη άρτιο είναι θετικός αριθμός. Αν α < 0 και ν άρτιος, τότε α ν > 0 Δύναμη με βάση αρνητικό αριθμό και εκθέτη περιττό είναι αρνητικός αριθμός. Αν α < 0και ν περιττός, τότε α ν < Ποιες οι ιδιότητες δυνάμεων ρητών με εκθέτη φυσικό ; Για να πολλαπλασιάσουμε δυνάμεις με την ίδια βάση, αφήνουμε την ίδια βάση και βάζουμε εκθέτη το άθροισμα των εκθετών. α μ α ν = α μ+ν Για να διαιρέσουμε δυνάμεις με την ίδια βάση, αφήνουμε την ίδια βάση και βάζουμε εκθέτη τη διαφορά του εκθέτη του διαιρέτη από τον εκθέτη του διαιρετέου. α μ : α ν = α μ-ν 27

28 Για να υψώσουμε ένα γινόμενο σε εκθέτη, υψώνουμε κάθε παράγοντα του γινομένου στον εκθέτη αυτό. (α β) ν = α ν β ν Για να υψώσουμε ένα πηλίκο σε έναν εκθέτη, υψώνουμε καθένα από τους όρους του πηλίκου στον εκθέτη αυτό. ν = Για να υψώσουμε μία δύναμη σε έναν εκθέτη, υψώνουμε τη βάση της δύναμης στο γινόμενο των εκθετών. (α μ ) ν = α μ ν Η δύναμη κάθε αριθμού, διάφορου του μηδενός με εκθέτη το μηδέν είναι ίση με μονάδα α 0 =1 18. Πως ορίζεται η δύναμη ρητού αριθμού με εκθέτη αρνητικό και ποια είναι η άμεση συνέπεια του ορισμού αυτού ; Η δύναμη κάθε αριθμού, διάφορου του μηδενός, με εκθέτη αρνητικό είναι ίση με κλάσμα που έχει αριθμητή τη μονάδα και παρονομαστή τη δύναμη του αριθμού αυτού με αντίθετο εκθέτη. Επειδή τα και είναι αντίστροφοι αριθμοί, όπως και τα α και στην προηγούμενη σχέση, εξάγουμε το συμπέρασμα ότι ισχύει: Οι ιδιότητες των δυνάμεων με εκθέτη φυσικό, που μάθαμε στην προηγούμενη παράγραφο, ισχύουν και για τις δυνάμεις με εκθέτη ακέραιο. 19. Ποια η τυποποιημένη μορφή μεγάλων και μικρών αριθμών ; Όπως οι πολύ μεγάλοι, έτσι και οι πολύ μικροί αριθμοί μπορούν να γραφούν σε τυποποιημένη μορφή και συγκεκριμένα στη μορφή: α 10 -ν, όπου α είναι ένας δεκαδικός αριθμός με ακέραιο μέρος μεγαλύτερο ή ίσο του 1 και μικρότερο του 10 και ν φυσικό αριθμό. 28

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών

Οι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών

Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα

Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 2 Α. 2.1. Όταν ένα μέγεθο ή ένα σύνολο ομοειδών αντικειμένων χωρισθεί σε ν ίσα μέρη, το κάθε ένα

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ... ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2

Διαβάστε περισσότερα

Αριθμητής = Παρονομαστής

Αριθμητής = Παρονομαστής Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα

Διαβάστε περισσότερα

Μαθημαηικά Α Γσμμαζίοσ

Μαθημαηικά Α Γσμμαζίοσ Μαθημαηικά Α Γσμμαζίοσ Μεθοδική Επαμάληυη Σηέλιος Μιταήλογλοσ www.askisopolis.gr 2017-18 Η επαμάληυη βήμα βήμα με ερφηήζεις και απαμηήζεις ζε κάθε παράγραθο καθώς και ηις βαζικές αζκήζεις. ΚΕΦΑΛΑΙΟ 1ο

Διαβάστε περισσότερα

Μαθημαηικά Α Γσμμαζίοσ

Μαθημαηικά Α Γσμμαζίοσ Μαθημαηικά Α Γσμμαζίοσ Μεθοδική Επαμάληυη Σηέλιος Μιταήλογλοσ www.askisopolis.gr 2017-18 Η επαμάληυη βήμα βήμα με ερφηήζεις και απαμηήζεις ζε κάθε παράγραθο καθώς και ηις βαζικές αζκήζεις. ΚΕΦΑΛΑΙΟ 1ο

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α! ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική

Διαβάστε περισσότερα

Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Ενδεικτική Οργάνωση Ενοτήτων E Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1 000 000 000 8 Επανάληψη

Διαβάστε περισσότερα

Η κλασματική γραμμή είναι η πράξη της διαίρεσης.

Η κλασματική γραμμή είναι η πράξη της διαίρεσης. όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Τα κόκκινα κομμάτια αποτελούν

Διαβάστε περισσότερα

1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών

1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών κέραιοι ριθμοί -Η ευθεία των αριθμών κέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Τα σύμβολα «+» και «-» που γράφονται μπροστά από τους αριθμούς λέγονται πρόσημα.

Διαβάστε περισσότερα

Δοκιμασίες πολλαπλών επιλογών

Δοκιμασίες πολλαπλών επιλογών Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 1: Βασικές Γνώσεις Άλγεβρας Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Ανακεφαλαίωση ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ: 1, 2,,, Άρτιοι αριθμοί είναι οι φυσικοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι

Διαβάστε περισσότερα

Αλγεβρικές Παραστάσεις

Αλγεβρικές Παραστάσεις Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος

Διαβάστε περισσότερα

Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ

Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ίου σεις Θεωρίας Ερωτήσ Επιµέλεια

ίου σεις Θεωρίας Ερωτήσ Επιµέλεια ΜΑΘΗΜΑΤΙΚΑ Α Γυµνασί ίου Ερωτήσ σεις ς Επιµέλεια Θ Ε Μ Ε Λ Η Σ Ε Υ Ρ Ι Π Ι Η Σ 1 ο Κεφάλαιο Φυσικοί Αριθµοί 1.1 Φυσικοί αριθµοί ιάταξη φυσικών Στρογγυλοποίηση 1. Ποιοι φυσικοί αριθµοί ονοµάζονται άρτιοι

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μαθηματικά A Γυμνασίου Περιεχόμενα ΚΕΦΑΛΑΙΟ : Φυσικοί & Δεκαδικοί Αριθμοί Η θεωρία με Ερωτήσεις Ασκήσεις & Προβλήματα ΚΕΦΑΛΑΙΟ : Μετρήσεις Μεγεθών Η

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί 1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.

Διαβάστε περισσότερα

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή ΤΑΞΗ: ΣΤ ΔΙΑΘΕΣΙΜΟ ΣΤΗ: http //blogs.sch.gr/anianiouris ΥΠΕΥΘΥΝΟΣ: Νιανιούρης Αντώνης (email: anianiouris@sch.gr) «Η έννοια του Κλάσματος και οι πράξεις του» Κλασματικός είναι ένας αριθμός ο οποίος εκφράζει

Διαβάστε περισσότερα

Eλευθέριος Πρωτοπαπάς ΜΑΘΗΜΑΤΙΚΑ. Β Γυμνασίου

Eλευθέριος Πρωτοπαπάς ΜΑΘΗΜΑΤΙΚΑ. Β Γυμνασίου Eλευθέριος Πρωτοπαπάς ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ 5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο

Διαβάστε περισσότερα