= f(x) για κάθε x R.
|
|
- Φωκάς Μακρή
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 4: Συνέχεια και όρια συναρτήσεων Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f : R R είναι συνεχής στο 0 και f( 0 ) = 1, τότε υπάρχει δ > 0 ώστε : για κάθε ( 0 δ, 0 +δ) ισχύει f() > 4 5. (ϐ) Η f : N R µε f() = 1 είναι συνεχής. (γ) Η συνάρτηση f : R R που ορίζεται από τις: f() = 0 αν N και f() = 1 αν / N, είναι συνεχής στο 0 αν και µόνο αν 0 / N. (δ) Υπάρχει f : R R που είναι ασυνεχής στα σηµεία 0, 1, 1 2,..., 1,... και συνεχής σε όλα τα άλλα σηµεία. (ε) Υπάρχει f : R R που είναι ασυνεχής στα σηµεία 1, 1 2,..., 1,... και συνεχής σε όλα τα άλλα σηµεία. (στ) Υπάρχει συνάρτηση f : R R που είναι συνεχής στο 0 και ασυνεχής σε όλα τα άλλα σηµεία. (Ϲ) Αν η f : R R είναι συνεχής σε κάθε άρρητο, τότε είναι συνεχής σε κάθε. (η) Αν η f είναι συνεχής στο (a, b) και f(q) = 0 για κάθε ϱητό q (a, b), τότε f() = 0 για κάθε (a, b). (ϑ) Αν f ( 1 ) = ( 1) για κάθε N, τότε η f είναι ασυνεχής στο σηµείο 0. (ι) Αν η f : R R είναι συνεχής και f(0) = f(1) τότε υπάρχει 0 [0, 1] ώστε f( 0 ) = 0. (ια) Αν η f : (a, b) R είναι συνεχής, τότε η f παίρνει µέγιστη και ελάχιστη τιµή στο (a, b). (ιβ) Αν η f είναι συνεχής στο [a, b] τότε η f είναι ϕραγµένη στο [a, b]. (ιγ) Αν 0 g() = 0 τότε 0 g() si 1 = Εστω N. (α) είξτε ότι η συνάρτηση [ f() = [] ] [ ] [] είναι περιοδική µε περίοδο 1/. ηλαδή, f ( + 1 ) = f() για κάθε R. (ϐ) Υπολογίστε την τιµή f() όταν 0 < 1/. (γ) είξτε την ταυτότητα για κάθε R και κάθε N. [ [] = [] ] [ ] 3. Εστω f : X R συνάρτηση. Υποθέτουµε ότι υπάρχει M 0 ώστε f() f(y) M y, για κάθε X και y X. είξτε ότι η f είναι συνεχής. 4. Εστω f : R R συνάρτηση µε f() για κάθε R. (α) είξτε ότι η f είναι συνεχής στο 0. 1
2 (ϐ) ώστε παράδειγµα µιας τέτοιας f που να είναι ασυνεχής σε κάθε Εστω f : R R συνεχής συνάρτηση και έστω a 1 R. Ορίζουµε a +1 = f(a ) για = 1, 2,.... Αν a a R τότε f(a) = a. 6. Εστω f, g : R R συνεχείς συναρτήσεις. είξτε ότι : (α) Αν f() = 0 για κάθε Q, τότε f(y) = 0 για κάθε y R. (ϐ) Αν f() = g() για κάθε Q, τότε f(y) = g(y) για κάθε y R. (γ) Αν f() g() για κάθε Q, τότε f(y) g(y) για κάθε y R. 7. Εστω α, β, γ > 0 και λ < µ < ν. είξτε ότι η εξίσωση α λ + β µ + γ ν = 0 έχει τουλάχιστον µία ϱίζα σε καθένα από τα διαστήµατα (λ, µ) και (µ, ν). 8. Χρησιµοποιώντας τον ορισµό του ορίου, δείξτε ότι ( ) a = 1 και + a = + 2, a R. 9. Εξετάστε αν υπάρχουν τα παρακάτω όρια και, αν ναι, υπολογίστε τα. (α) , (ϐ) [], (γ) ( []). { αν ϱητός 10. Εστω f : R R µε f() = αν άρρητος υπάρχει το f().. είξτε ότι 0 f() = 0 και ότι αν 0 0 τότε δεν 11. Εξετάστε αν είναι συνεχείς οι ακόλουθες συναρτήσεις: { si (α) f : R R µε f() = αν 0 0 αν = 0 { (ϐ) f k : [ 1, 0] R µε f k () = k si 1 αν 0 (γ) f : R R µε f() = 0 αν = 0 { 1 si 1 2 αν 0 0 αν = 0 (k = 0, 1, 2,...) 12. Εστω f, g : R R δύο συναρτήσεις. Υποθέτουµε ότι υπάρχουν τα f(), g(). (α) είξτε ότι αν f() g() για κάθε R, τότε f() g(). (ϐ) ώστε ένα παράδειγµα όπου f() < g() για κάθε R ενώ f() = g(). 2
3 13. Εστω X R, f, g : X R δύο συναρτήσεις και έστω 0 R ένα σηµείο συσσώρευσης του X. Υποθέτουµε ότι ύπάρχει δ > 0 ώστε η f να είναι ϕραγµένη στο ( 0 δ, 0 + δ) X και ότι g() = 0. είξτε ότι f()g() = Εστω f : [a, b] [a, b] συνεχής συνάρτηση. Να δειχθεί ότι υπάρχει [a, b] µε f() =. 15. Εστω f : (0, 1) R συνεχής συνάρτηση µε την εξής ιδιότητα : f() = 2 για κάθε ϱητό (0, 1). Να ϐρεθεί το f ( 2 ) 2. Αιτιολογήστε πλήρως την απάντησή σας. 16. Εστω f : [0, 2] R συνεχής συνάρτηση µε f(0) = f(2). είξτε ότι υπάρχει [0, 1] µε f( + 1) = f(). 17. Υποθέτουµε ότι η f είναι συνεχής στο [0, 1] και f(0) = f(1). Εστω N. είξτε ότι υπάρχει [ 0, 1 1 ώστε f() = f ( + ) Εστω f : [a, b] R συνεχής συνάρτηση και 1, 2 [a, b]. είξτε ότι για κάθε t [0, 1] υπάρχει y t [a, b] ώστε f(y t ) = tf( 1 ) + (1 t)f( 2 ). 19. Εστω f : [a, b] R συνεχής συνάρτηση, και 1, 2,..., [a, b]. είξτε ότι υπάρχει y [a, b] ώστε f(y) = f( 1) + f( 2 ) + + f( ). ] Β Οµάδα 20. είξτε ότι η συνάρτηση f : R R µε f() = 1, 0, 1. { αν Q 3 αν / Q είναι συνεχής µόνο στα σηµεία 21. Εστω f : [a, b] R συνεχής συνάρτηση µε την εξής ιδιότητα : για κάθε [a, b] ισχύει f() = 1. είξτε ότι η f είναι σταθερή. 22. Εστω f, g : [a, b] R συνεχείς συναρτήσεις που ικανοποιούν την f 2 () = g 2 () για κάθε [a, b]. Υποθέτουµε επίσης ότι f() 0 για κάθε [a, b]. είξτε ότι g f ή g f στο [a, b]. 23. Εστω f : [0, 1] R συνεχής συνάρτηση µε την ιδιότητα f() Q για κάθε [0, 1]. είξτε ότι η f είναι σταθερή συνάρτηση. 24. Εστω f : [a, b] R συνεχής συνάρτηση µε f() > 0 για κάθε [a, b]. είξτε ότι υπάρχει ξ > 0 ώστε f() ξ για κάθε [a, b]. Ισχύει το συµπέρασµα αν αντικαταστήσουµε το διάστηµα [a, b] µε το διάστηµα (a, b]; 25. Εστω f, g : [a, b] R συνεχείς συναρτήσεις που ικανοποιούν την f() > g() για κάθε [a, b]. είξτε ότι υπάρχει ρ > 0 ώστε f() > g() + ρ για κάθε [a, b]. 26. Εστω f : [a, b] R συνεχής σε κάθε σηµείο του [a, b]. Υποθέτουµε ότι για κάθε [a, b] υπάρχει y [a, b] ώστε f(y) 1 2 f(). είξτε ότι υπάρχει 0 [a, b] ώστε f( 0 ) = Εστω f, g : [a, b] R συνεχείς συναρτήσεις µε f() < g() για κάθε [a, b]. είξτε ότι ma(f) < ma(g). 3
4 28. Εστω f, g : [a, b] [c, d] συνεχείς και επί συναρτήσεις. είξτε ότι υπάρχει ξ [a, b] ώστε f(ξ) = g(ξ). 29. είξτε ότι αν a, b > 0 τότε 0 + a [ ] b = b a και b [ ] = a Τι γίνεται όταν 0 ; 30. Εστω f : R R µε f() = 1 αν { 1 : N} και 0 αλλιώς. Εξετάστε αν υπάρχει το 0 f(). 31. Εστω f : R R περιοδική συνάρτηση µε περίοδο T > 0. Υποθέτουµε ότι υπάρχει το f() = b R. + είξτε ότι η f είναι σταθερή. 32. Εστω P () = a m m + + a 1 + a 0 πολυώνυµο µε την ιδιότητα a 0 a m < 0. είξτε ότι η εξίσωση P () = 0 έχει ϑετική πραγµατική ϱίζα. 33. Εστω f : R R συνεχής και ϕθίνουσα συνάρτηση. είξτε ότι η f έχει µοναδικό σταθερό σηµείο : υπάρχει ακριβώς ένας πραγµατικός αριθµός 0 για τον οποίο f( 0 ) = Εστω f : R R συνεχής συνάρτηση µε f() > 0 για κάθε R και f() = f() = 0. + είξτε ότι η f παίρνει µέγιστη τιµή : υπάρχει y R ώστε f(y) f() για κάθε R. 35. (α) Εστω g : [0, + ) R συνεχής συνάρτηση. Αν g() 0 για κάθε 0 δείξτε ότι η g διατηρεί πρόσηµο : ή g() > 0 για κάθε 0 ή g() < 0 για κάθε 0. (ϐ) Εστω f : [0, + ) [0, + ) συνεχής συνάρτηση. Αν f() για κάθε 0, δείξτε ότι 36. Υποθέτουµε ότι η f : [a, + ) R είναι συνεχής και ότι f() = f() = +. είξτε ότι η f παίρνει ελάχιστη τιµή, δηλαδή ότι υπάρχει 0 [a, + ) µε f() f( 0 ) για κάθε [a, + ). 37. Εστω f : R R συνεχής συνάρτηση. Αν f() = α και f() = α, τότε η f παίρνει µέγιστη ή + ελάχιστη τιµή. 38. Εστω f : R R συνεχής συνάρτηση µε f() = και f() = +. είξτε ότι f(r) = R Εστω f : (α, β) R συνάρτηση γνησίως αύξουσα και συνεχής. είξτε ότι f((α, β)) = ( α + f(), β f()). 40. Εστω a [0, π]. Ορίζουµε ακολουθία µε a 1 = a και a +1 = si(a ). είξτε ότι a Εστω f : [0, 1] R συνεχής συνάρτηση. Υποθέτουµε ότι υπάρχουν [0, 1] ώστε f( ) 0. Τότε, υπάρχει 0 [0, 1] ώστε f( 0 ) = 0. 4
5 42. Εστω f, g : I R οµοιόµορφα συνεχείς συναρτήσεις. είξτε ότι (α) η f + g είναι οµοιόµορφα συνεχής στο I. (ϐ) η f g δεν είναι αναγκαστικά οµοιόµορφα συνεχής στο I, αν όµως οι f, g υποτεθούν και ϕραγµένες τότε η f g είναι οµοιόµορφα συνεχής στο I. 43. Εστω f : R R συνεχής συνάρτηση µε την εξής ιδιότητα : για κάθε ε > 0 υπάρχει M = M(ε) > 0 ώστε αν M τότε f() < ε. είξτε ότι η f είναι οµοιόµορφα συνεχής. 44. Εστω a R και f : [a, + ) R συνεχής συνάρτηση µε την εξής ιδιότητα : υπάρχει το f() και + είναι πραγµατικός αριθµός. είξτε ότι η f είναι οµοιόµορφα συνεχής. 45. Εστω f : R R οµοιόµορφα συνεχής συνάρτηση. είξτε ότι υπάρχουν A, B > 0 ώστε f() A + B για κάθε R. 46. Εστω N, > 1. Χρησιµοποιώντας την προηγούµενη Άσκηση δείξτε ότι η συνάρτηση f() =, R δεν είναι οµοιόµορφα συνεχής. 47. (α) Εστω f : [0, + ) R συνεχής συνάρτηση. Υποθέτουµε ότι υπάρχει a > 0 ώστε η f να είναι οµοιόµορφα συνεχής στο [a, + ). είξτε ότι η f είναι οµοιόµορφα συνεχής στο [0, + ). (ϐ) είξτε ότι η f() = είναι οµοιόµορφα συνεχής στο [0, + ). 48. Εξετάστε αν οι παρακάτω συναρτήσεις είναι οµοιόµορφα συνεχείς. (α) f : R R µε f() = (ϐ) f : [2, + ) R µε f() = 1. (γ) f : (0, π] R µε f() = 1 si2. (δ) f : (0, ) R µε f() = si 1. (ε) f : (0, ) R µε f() = si 1. (στ) f : (0, ) R µε f() = si. (Ϲ) f : (1, ) R µε f() = cos(3 ). (η) f : R R µε f() = (ϑ) f : R R µε f() = 1+. (ι) f : [ 2, 0] R µε f() = (ια) f : R R µε f() = si (ιβ) f : [0, + ) R µε f() = cos(2 ) +1. Γ Οµάδα 49. είξτε ότι αν f : R R είναι µια συνεχής συνάρτηση µε f(1) = α, η οποία ικανοποιεί την f( + y) = f() + f(y) για κάθε, y R, τότε : (α) f() = α για κάθε N. (ϐ) f( 1 m ) = α m για κάθε m = 1, 2,.... (γ) f() = α για κάθε R. 5
6 50. Μελετήστε ως προς τη συνέχεια τη συνάρτηση f : [0, 1] R µε { 0 αν / Q ή = 0 f() = 1 q αν = p q, p, q N, ΜΚ (p, q) = Εστω f : R R. Υποθέτουµε ότι η f είναι συνεχής στο 0 και ότι f(/2) = f() για κάθε R. είξτε ότι η f είναι σταθερή. 52. Εστω f : R R συνεχής συνάρτηση µε f( m 2 ) = 0 για κάθε m Z και N. είξτε ότι f() = 0 για κάθε R. 53. Εστω f : R R συνεχής συνάρτηση µε την ιδιότητα f() = f ( + 1 ) για κάθε R και κάθε N. είξτε ότι η f είναι σταθερή. 54. Εστω f : [a, b] R συνεχής συνάρτηση. Ορίζουµε A = { [a, b] : f() = 0}. Αν A, δείξτε ότι sup A A και if A A. 55. Εστω f : R R συνεχής περιοδική συνάρτηση µε περίοδο T > 0: δηλαδή, f( + T ) = f() για κάθε R. είξτε ότι υπάρχει R ώστε f() = f( + 2). 56. Εστω f : [0, + ) R συνεχής συνάρτηση. Υποθέτουµε ότι υπάρχουν a < b και ακολουθίες ( ), (y ) στο [0, + ) µε +, y + και f( ) a, f(y ) b. είξτε ότι : για κάθε c (a, b) υπάρχει ακολουθία (z ) στο [0, + ) µε z + και f(z ) c. 57. Εστω f : (a, b) R και 0 (a, b). είξτε ότι η f είναι συνεχής στο 0 αν και µόνο αν για κάθε µονότονη ακολουθία ( ) σηµείων του (a, b) µε 0 ισχύει f( ) f( 0 ). 58. (α) Εστω f : (a, + ) R. Αν f (a + t ) = L για κάθε γνησίως ϕθίνουσα ακολουθία (t ) µε t 0, τότε f() = L. a + (ϐ) Σωστό ή λάθος ; Εστω f : (a, + ) R. Αν f ( a + 1 ) = L τότε f() = L. a Εστω f : [a, b] R γνησίως αύξουσα συνάρτηση. Υποθέτουµε ότι η f είναι συνεχής σε κάποιο 0 (a, b). είξτε ότι το f( 0 ) είναι σηµείο συσσώρευσης του f([a, b]). 60. Εστω f : R R συνεχής συνάρτηση µε την ιδιότητα f() f(y) y για κάθε, y R. είξτε ότι η f είναι επί. 61. Εστω f, g : [0, 1] [0, 1] συνεχείς συναρτήσεις. Υποθέτουµε ότι η f είναι αύξουσα και g f = f g. είξτε ότι οι f και g έχουν κοινό σταθερό σηµείο : υπάρχει y [0, 1] ώστε f(y) = y και g(y) = y. [Υπόδειξη : Ξέρουµε ότι υπάρχει 1 [0, 1] µε g( 1 ) = 1. Αν ισχύει και η f( 1 ) = 1, έχουµε τελειώσει. Αν όχι, ϑεωρήστε την ακολουθία +1 = f( ), δείξτε ότι είναι µονότονη και ότι όλοι οι όροι της είναι σταθερά σηµεία της g. Το όριό της ϑα είναι κοινό σταθερό σηµείο των f και g (γιατί ;).] 62. Εστω f : [a, b] R µε την εξής ιδιότητα : για κάθε 0 [a, b] υπάρχει το f(). Τότε, η f είναι ϕραγµένη. 6
n a n = 2. Θεωρούµε τα σύνολα a n = n2 n n 2 + n 1. n a n = a > 0, δείξτε ότι a n > 0 τελικά.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α) Κάθε
Διαβάστε περισσότεραf (x) = l R, τότε f (x 0 ) = l.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη
Διαβάστε περισσότεραf (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη
Διαβάστε περισσότεραΑσκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε
Διαβάστε περισσότεραlim (f(x + 1) f(x)) = 0.
Ανάλυση Ι και Εφαρμογές 4ο Τεστ (Σειρά Α) 17-19 Δεκεμβρίου 2018 Ονοματεπώνυμο:.................................................................. Αριθμός Μητρώου:...............................................................
Διαβάστε περισσότεραf(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2].
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riem Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).
Διαβάστε περισσότεραsin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0.
ΑΣΚΗΣΕΙΣ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ι, Φυλλάδιο 3 Λύσεις Ασκήσεων. Να υπολογίσετε τα παρακάτω όρια. sia) i) ποιες συνθήκες πρέπει να ισχύουν για τα a, β ώστε να έχει νόημα το όριο;) 0 siβ) si5 ) si4) cos cos
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι Γιάννης Σαραντόπουλος Αθήνα 7 Οκτωβρίου 5 Περιεχόµενα Συµβολισµός
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x
Διαβάστε περισσότερα< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε
Διαβάστε περισσότεραΣυνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 )
Συνέχεια Συνάρτησης Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 1 εκεµβρίου 013 1 Ορισµός Ορισµός 1.1 Μια πραγµατική συνάρτηση f : A R λέµε ότι είναι συνεχής στο x 0 A αν και µόνο αν : x x 0 fx
Διαβάστε περισσότεραΛύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010
Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι
Διαβάστε περισσότεραf(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemnn Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).
Διαβάστε περισσότεραsup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ 1β. 2n + 1 n(n + 1) xn. n=1. 2n + 1 ln(1 x)(1 + x) + x. a n = 2n + 1 n(n + 1) = 1 n + 1. a n+1 x n+1 a n x n.
ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ β 4 Ιανουαρίου 005 Τα ϑέµατα,, και 4 είναι υποχρεωτικά. Από τα ϑέµατα 5 και 6 ϑα επίλέξετε ϑέµα. ηλαδή ϑα γράψετε ΜΟΝΟ 5 ϑέµατα. ΘΕΜΑ o.5 + 0.5 = ϐ.) α) Να αποδειχθεί ότι η δυναµοσειρά
Διαβάστε περισσότερα4.3 Παραδείγµατα στην συνέχεια συναρτήσεων
5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι
Διαβάστε περισσότεραsup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.
Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων
Διαβάστε περισσότερα4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Διαβάστε περισσότεραlim f ( x ) 0 gof x x για κάθε x., τότε
Μαθηματικά Προσανατολισμού Γ Λυκείου, ο Κεφάλαιο-Συναρτήσεις ΓΕΝΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΚΕΦΑΛΑΙΟ ο ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση f είναι «-» στο πεδίο ορισμού της Α (Μονάδες7)
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z
Διαβάστε περισσότεραΚεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση
Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση
Διαβάστε περισσότεραΑσκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)
Διαβάστε περισσότεραΠραγµατική Ανάλυση ( ) Ασκήσεις - Κεφάλαιο 3
Πραγµατική Ανάλυση (2015-16) Ασκήσεις - Κεφάλαιο 3 Οµάδα Α 1. Εστω (X, ρ) µετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το
Διαβάστε περισσότερα7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 7 η ΕΚΑ Α 6. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε t (e + )dt για κάθε R Για δυνατούς παίκτες i) είξτε ότι e f() + f() ii) είξτε ότι η f αντιστρέφεται και βρείτε την f iii)
Διαβάστε περισσότεραΥπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.
Κεφάλαιο 2 Ολοκλήρωµα Lebesgue 2.1 Οµάδα Α 1. Αν η f : (a, b) R είναι παραγωγίσιµη, τότε η f είναι µετρήσιµη. Υπόδειξη. Θεωρούµε την ακολουθία f : (a, b) R µε f (x) = [f(x + 1/) f(x)]. Εφόσον, η f είναι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως
Διαβάστε περισσότεραΑσκήσεις Απειροστικού Λογισμού ΙΙ Πρόχειρες Σημειώσεις Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Περιεχόμενα Υπακολουθίες και ακολουθίες Cuchy Σειρές πραγματικών αριθμών 3 3 Ομοιόμορφη συνέχεια 3 4 Ολοκλήρωμα
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (
ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ 0 ΘΕΜΑ Α Α. Θεωρία : Σχολικό βιβλίο σελίδα 53 Α. Θεωρία : Σχολικό βιβλίο σελίδα 9 Α3. Θεωρία : Σχολικό βιβλίο σελίδα 58 Α4.. α.σ, β.σ, γ.λ, δ.λ, ε.λ ΘΕΜΑ Β Β. Έστω yi 4 ( ) yi ( ) yi 4 (
Διαβάστε περισσότεραΑπειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,
Διαβάστε περισσότεραΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy
ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy Augustin- Louis Cauchy 1789-1857 ΠΛΕΥΡΙΚΑ ΟΡΙΑ Ορισμός σύγκλισης Cauchy συγκλίνει για x ξ Η συνάρτηση f(x) ɛ > 0 δ (ɛ, ξ) : x ξ < δ f(x) l < ɛ f(x) = l + f(x) = l +
Διαβάστε περισσότερα1 ο Τεστ προετοιμασίας Θέμα 1 ο
ο Τεστ προετοιμασίας Θέμα ο Σε κάθε μια από τις ακόλουθες προτάσεις αφού πρώτα σημειώσετε το Σ (σωστή) ή το Λ (λανθασμένη), στη συνέχεια να δώσετε μια σύντομη τεκμηρίωση της όποιας απάντησή σας Αν για
Διαβάστε περισσότερα6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 6 η ΕΚΑ Α 5. ίνεται η συνάρτηση ln, αν > 0 f () 0, αν 0 Να αποδείξετε ότι η f είναι συνεχής στο 0 i Να µελετήσετε την f ως προς την µονοτονία και τα ακρότατα και να βρείτε το σύνολο τιµών
Διαβάστε περισσότεραn 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1
Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 8 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A Να αποδειχθεί ότι η συνάρτηση f ln, * είναι παραγωγίσιµη στο * και ισχύει: ln Μονάδες Α Πότε µια συνάρτηση f λέµε ότι είναι συνεχής σε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Διαβάστε περισσότεραΑσκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και
Ασκήσεις στη συνέχεια συναρτήσεων Άσκηση η Να βρεθούν τα ολικά ακρότατα των συναρτήσεων ) x, 0, ) x x a x x x, x x x x Άσκηση η Αν : a, συνεχής στο, τέτοια ώστε x x και x x Να αποδείξετε ότι η συνάρτηση
Διαβάστε περισσότεραf(x) = 2x+ 3 / Α f Α.
ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»
Διαβάστε περισσότεραÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ. x 0 για κάθε xεr και για την συνάρτηση g ισχύει i. Να βρείτε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΤΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΚΑΙ ΤΑ ΘΕΩΡΗΜΑΤΑ ΑΥΤΗΣ Δίνεται η συνεχής συνάρτηση f : IR IR τέτοια ώστε f ( ) 1 για κάθε IR (1) και η γραφική της παράσταση διέρχεται από το σημείο i Να βρείτε τα κ και λ
Διαβάστε περισσότερα1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0
ΣΩΣΤΑ ΛΑΘΟΣ. Για οποιουσδήποτε μιγαδικούς z, z με Re (z + z ) = 0, ισχύει: Re (z ) + Re (z ) = 0. Ισχύει η ισοδυναμία : i κ = i λ κ = λ για κάθε κ., λ ακεραίους αριθμούς. 3. Για κάθε μιγαδικό αριθμό z
Διαβάστε περισσότερα1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. 2. Να βρεθεί ο λ R ώστε f(x) = ln ( x 2 +2λx+9) να έχει πεδίο ορισμού Α = R
Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = 4 6 6 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) v) 5 f() log vi) f() = 4 4 vii) f() 5 4 viii) f() ημ.
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ: 15 MAΪOY 14 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ
Διαβάστε περισσότερα[ α π ο δ ε ί ξ ε ι ς ]
Γ' Λυκείου Κατεύθυνση [ α π ο δ ε ί ξ ε ι ς ] ε ξ ε τ α σ τ έ α ς ύ λ η ς 7-8 Επιμέλεια Κόλλας Αντώνης Όριο πολυωνυμικής στο Αν P( = αν ν + αν ν +... + α + α είναι πολυώνυμο του και, τότε: P( P( P( =...
Διαβάστε περισσότεραΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R.
ΜΑΘΗΜΑ.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος ΑΣΚΗΣΕΙΣ. Να λύσετε την εξίσωση Η εξίσωση γράφεται e + e e 0 Προφανής ρίζα Θεωρούµε τη συνάρτηση f()
Διαβάστε περισσότεραΣυνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).
Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε
Διαβάστε περισσότεραΠολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο
Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο ΕΚΦΩΝΗΣΕΙΣ Οι απαντήσεις βρίσκονται μετά τις εκφωνήσεις Εξετάστε αν είναι αληθείς ή ψευδείς οι παρακάτω προτάσεις και αιτιολογήστε.
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.
Διαβάστε περισσότεραΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.
ΘΕΜΑ 5 ο Έστω συνάρτηση f :[0, + ) παραγωγίσιμη στο διάστημα [0, + ) για την οποία ισχύει : 2 -f(t) 2f()+f ()= 2 e dt και f(0) = 0. i) Να δείξετε ότι + f() 0 για κάθε є [0, + ). ii) Να δείξετε ότι η f
Διαβάστε περισσότεραΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί Μία συνάρτηση f λέγεται: 1 γνησίως αύξουσα σ' ένα υποσύνολο Β του πεδίου ορισμού της όταν για κάθε 1, Β με 1 < ισχύει ότι f( 1 ) < f( ) γνησίως φθίνουσα σ' ένα υποσύνολο Β
Διαβάστε περισσότεραΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α
ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α Όχι βιαστικά, όχι αργά. Στο ρυθµό σου.. Έστω συνάρτηση f ορισµένη στο R µε συνεχή δεύτερη παράγωγο που ικανοποιεί τις σχέσεις f() f () και f ()f() + (f ()) f()f ()
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Τετάρτη 4 Μαΐου 06 ιάρκεια Εξέτασης: 3 ώρες Α. Σχολικό βιβλίο σελίδα 5. Α.
Διαβάστε περισσότεραx 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)
Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = v) f() 4 6 6 5 log 4 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) vi) f() = 4 vii) f() 5 4 viii) f() ημ.
Διαβάστε περισσότεραΠρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής.
f(x) ομοιόμορφα συνεχής στο I ɛ > 0, δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ f(x) ΜΗ ομοιόμορφα συνεχής ɛ > 0, δ > 0 : x, ξ I, x ξ < δ f(x) f(ξ) ɛ f(x) συνεχής στο [a, b] f(x) ομοιόμορφα συνεχής
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Riemann και ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Ολοκλήρωµα Riemnn και ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραα β. M x f x. f x x x = = =.
Κυρτές συναρτήσεις σηµεία καµπής, Έστω συνάρτηση f συνεχής στο [ α β ] και παραγωγίσιµη στο ( α, β ) (α) Αν η f είναι γνησίως αύξουσα στο ( α, β ), τότε η fείναι κυρτή ή στρέφει τα κοίλα πάνω στο [ α,
Διαβάστε περισσότεραΜέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],
Θωμάς Ραϊκόφτσαλης ΣΥΝΕΧΕΙΑ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Μέθοδος Α Αν μας ζητείτε να αποδείξουμε ότι ισχύει ένα από τα εξής: Α. Η εξίσωση f() έχει μια τουλάχιστον ρίζα ξ (α,β), Α. Υπάρχει ξ (α,β) έτσι ώστε f(ξ),
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Η ύλη της εργασίας είναι οι ενότητες 5, 6 και 7 από τον Λογισµό µιας Μεταβλητής Η άσκηση αφορά στην έννοια
Διαβάστε περισσότερα( ) 0, x 0. x 1, x Να μελετήσετε ως προς τη συνέχεια τη συνάρτηση f( x ) = x. 3. Να προσδιορίσετε το α R, ώστε η συνάρτηση f μεf(x)= π
Α. ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΥΝΕΧΕΙΑ I. ΣΥΝΕΧΕΙΑ ΣΤΟ χ. Να μελετηθούν ως προς την συνέχεια στο χ= οι συναρτήσεις: i) f()= ( ),, = ii)f()= -συνχ ημχ +, ημχ, = iii) f()= χ-- χ+, χ -, = iv) f()= ηµ 9χ ηµ 5 χ, χ 4, =
Διαβάστε περισσότερα( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.
. Έστω συνάρτηση f, δύο φορές παραγωγίσιµη στο R, µε συνεχή δεύτερη παράγωγο και σύνολο τιµών το διάστηµα [, ] a β, όπου a< < β. Να αποδείξετε ότι: i) υπάρχουν δύο τουλάχιστον σηµεία,, µε, ώστε f ( ) =
Διαβάστε περισσότεραe 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)()=- για κάθε χє R. Να δείξετε ότι: α) f()=, β) η f αντιστρέφεται, γ) f - ()=-f(), є R., δ ) να λύσετε
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΙΑΓΩΝΙΣΜΑ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ A Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα και δυο φορές παραγωγίσιµη σε κάθε εσωτερικό
Διαβάστε περισσότερα4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1]
ΜΑΘΗΜΑ 48 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 η ΕΚΑ Α 3. Έστω f συνεχής και γνησίως αύξουσα συνάρτηση στο [, ], µε f() >. ίνεται επίσης συνάρτηση g συνεχής στο [, ], για την οποία ισχύει g() > για κάθε [, ] Ορίζουµε τις
Διαβάστε περισσότεραx R, να δείξετε ότι: i)
ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 0 ΕΚΦΩΝΗΣΕΙΣ A. Έστω µια συνάρτηση f η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > 0 σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο
Διαβάστε περισσότεραΑρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3
Αρµονική Ανάλυση (2017 2018) Φυλλάδιο Ασκήσεων 3 0. (α) Εστω f L (T). είξτε ότι σ n ( f ) f n N. (ϐ) Εστω f L (T). είξτε ότι (γ) είξτε ότι S n ( f ) f + n k=1 sin(kt) k n k= n [Υπόδειξη: Για το (γ) ϑεωρήστε
Διαβάστε περισσότεραThanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ
thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >
Διαβάστε περισσότεραΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και 1. και. με λ Z,είναι γνησίως αύξουσα στο R. f x και g x. 2 f x y f x f y g x g y.
ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Η γραφική παράσταση της συνάρτησης f (),. α) Να βρείτε την τιμή του λ R 5 β) Να βρείτε τις τιμές f και f γ) Να σχεδιάσετε τη γραφική παράσταση της f διέρχεται
Διαβάστε περισσότεραα) είξτε ότι f(0) 4 και g(0) 4. β) Na δειχθεί ότι: f() > g() για κάθε R. Μονάδες 6 Β. Έστω f:r R άρτια για την οποία ισχύουν ότι f ()5 και η γραφική π
ΤΡΙΩΡΟ ΙΑΓΩΝΙΣΜΑ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ :Ανάλυση:.8,. έως και.3 (Σχολικό) ΘΕΜΑ o Α. Έστω η συνάρτηση f() ν, ν Ν{0,}. Να δείξετε ότι η f είναι παραγωγίσιµη στο R και ισχύει
Διαβάστε περισσότεραx x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f() ( )ln, >. Γ. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο διάστημα Δ (, ] και γνησίως αύξουσα στο διάστημα Δ [, ). Στη συνέχεια να βρείτε το σύνολο
Διαβάστε περισσότεραΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton
Διαβάστε περισσότεραx x = ( x) = 0, = = f x x x = συν x e e = ;
Θεώρηµα του Pierre Fermat Αν µία συνάρτηση f : ορίζεται σε ένα ανοικτό διάστηµα παρουσιάζει τοπικό ακρότατο στο είναι παραγωγίσιµη στο τότε f ( ) = Σχόλια Μία συνάρτηση µπορεί να έχει ακρότατο σε σηµείο
Διαβάστε περισσότερα5.1.1 Η θεωρία και τι προσέχουμε
Κεφάλαιο 5 Συνέχεια συνάρτησης σε διάστημα Συνέπειες του Θεωρήματος Bolzano 5.. Η θεωρία και τι προσέχουμε Τα κύρια χαρακτηριστικά μιας συνεχούς συνάρτησης f ορισμένης σε ένα διάστημα Δ, είναι: i. Η γραφική
Διαβάστε περισσότερα( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x
ΕΞΕΤΑΣΕΩΝ 05 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα. Αν η F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις
Διαβάστε περισσότεραΑπειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9. Λύσεις έκτου φυλλαδίου ασκήσεων.. Παρατηρήστε ότι ο πρώτος κανόνας αλλαγής μεταβλητής εφαρμόζεται μόνο στα εφτά πρώτα όρια ενώ ο δεύτερος κανόνας εφαρμόζεται
Διαβάστε περισσότερα( x) ( ) ( ) ( ) ( ) Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ. f x+ h f x. 5x 3 2. x x 2x. 3 x 2. x 2x. f x = log x. f x = ln x 4. log 9. 2x 7x 15. x x.
Κεφάλαιο - Συναρτήσεις I Πεδίο ορισµού συνάρτησης Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ίνονται οι συναρτήσεις: f( ) = +, (ii) f( ) = Να βρεθούν τα f( 0 ), f( ), f( ), f( α ), f( α+ β), f( α 5) ( ) ( ) f + h f, h Να
Διαβάστε περισσότεραΤΟΜΟΣ 2ος ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΤΟΜΟΣ 2ος ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ Γιώργος Αποστόλου apgeorge2004@yahoo.com Μαθηµατικός Εκπαιδευτικό
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ-ΠΑΡΑΓΩΓΟΣ. ηµ x συν. f(x) = xe, x < 0 είναι παραγωγίσιµη στο
- 33 - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ-ΠΑΡΑΓΩΓΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ-ΠΑΡΑΓΩΓΟΣ Να εξετάσετε αν η συνάρτηση στο o = Να εξετάσετε αν η συνάρτηση o = ηµ συν, f() = είναι παραγωγίσιµη, = f() = e, < είναι παραγωγίσιµη
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ
Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ
Διαβάστε περισσότεραΠανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων
Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Άσκηση i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε ότι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 6 Μαρτίου 2013 Ασκηση 1. Βρείτε όλους τους
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
Διαβάστε περισσότερα( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)
Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές
Διαβάστε περισσότεραProapaitoÔmenec gn seic.
ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία
Διαβάστε περισσότερα= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και ένα εσωτερικό σημείο
Διαβάστε περισσότεραΑκουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου
Ακουλουθίες ρ. Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Εισαγωγικά Βασικοί Ορισµοί Μονοτονία Ακολουθίας Φραγµένη Ακολουθία Υπακολουθίες Σύγκλιση - Απόκλιση Ακολουθιών N = {1, 2,
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Β4 Έστω η συνάρτηση f ( ) = A( ) B( ) Βρείτε τη µέγιστη
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Μ Τετάρτη 7 Απριλίου 06 ιάρκεια Εξέτασης:
Διαβάστε περισσότεραn = r J n,r J n,s = J
Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ (IMF: 4o µεσοπρόθεσµο.) ( WWF:.εξοικονόµηση πόρων.) MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 5 ΣΕΠΤΕΜΒΡΙΟΥ... ΜΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 7 ΣΕΠΤΕΜΒΡΙΟΥ...
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ ΣΥΝΕΧΕΙΑ Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο τουr Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα)
Διαβάστε περισσότερα8 Ακρότατα και µονοτονία
8 Ακρότατα και µονοτονία Πρόταση 8.1. Εστω ότι η y = f (x) είναι συνεχής σε κάποιο διάστηµα I και έχει παράγωγο σε κάθε εσωτερικό σηµείο του I. 1. Η y = f (x) είναι σταθερή στο I αν και µόνο να είναι f
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να μπορεί να βρίσκει απο τη γραφική παράσταση μιας συνάρτησης το πεδίο ορισμού της το σύνολο τιμών της την τιμή της σε ένα σημείο..
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε
Διαβάστε περισσότερα