θηλείηαη ρωξίο ηξηβέο. Τν αέξην εθηνλώλεηαη ώζηε ηειηθά λα θαηαιάβεη όγθν V2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "θηλείηαη ρωξίο ηξηβέο. Τν αέξην εθηνλώλεηαη ώζηε ηειηθά λα θαηαιάβεη όγθν V2"

Transcript

1 ΘΕΜΑ Β Β.1 Οξηζκέλε πνζόηεηα ηδαληθνύ αεξίνπ βξίζθεηαη ζε θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο θαηαιακβάλνληαο όγθν V 1. Τν δνρείν πνπ πεξηέρεη ην αέξην θξάζζεηαη από έκβνιν πνπ κπνξεί λα θηλείηαη ρωξίο ηξηβέο. Τν αέξην εθηνλώλεηαη ώζηε ηειηθά λα θαηαιάβεη όγθν V κε δύν ηξόπνπο. Είηε κε ηζόζεξκε αληηζηξεπηή κεηαβνιή είηε κε αδηαβαηηθή αληηζηξεπηή κεηαβνιή. Τν έξγν πνπ παξάγεη ην αέξην είλαη: α. κεγαιύηεξν ζηελ ηζόζεξκε κεηαβνιή β. κεγαιύηεξν ζηελ αδηαβαηηθή κεηαβνιή γ. ίζν θαη ζηηο δύν κεηαβνιέο Β. Η νξκή ελόο ζώκαηνο ζε ζπλάξηεζε κε ην ρξόλν κεηαβάιιεηαη όπωο ζην απεηθνλίδεηαη ζην δηάγξακκα. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Η γξαθηθή παξάζηαζε ηεο ζπληζηακέλεο δύλακεο πνπ αζθείηαη ζην ζώκα ζπλαξηήζεη ηνπ ρξόλνπ είλαη: F α. β. γ. t F t F p t t

2 ΘΕΜΑ B Β.1 Βιήκα θηλείηαη θαηαθόξπθα πξνο ηα πάλω θαη ηε ρξνληθή ζηηγκή πνπ ε ηαρύηεηά ηνπ έρεη κέηξν υ, ζπάεη από αθαξηαία εζωηεξηθή έθξεμε, ζε δύν θνκκάηηα ίζωλ καδώλ. Τν έλα θνκκάηη ακέζωο κεηά ηελ έθξεμε θηλείηαη πξνο ηελ ίδηα θαηεύζπλζε, δειαδή θαηαθόξπθα πξνο ηα πάλω, κε ηαρύηεηα κέηξνπ υ 1 = υ. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Η ηαρύηεηα ηνπ άιινπ θνκκαηηνύ ακέζωο κεηά ηελ έθξεμε: α. έρεη κέηξν υ θαη δηεύζπλζε θαηαθόξπθε κε θνξά πξνο ηα πάλω β. έρεη κέηξν υ θαη δηεύζπλζε θαηαθόξπθε κε θνξά πξνο ηα θάηω γ. είλαη κεδέλ Β. Πνζόηεηα ηδαληθνύ αεξίνπ βξίζθεηαη ζε θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Α. Mπνξνύκε λα δηπιαζηάζνπκε ηνλ όγθν ηνπ αεξίνπ ππνβάιινληαο ην ζε κηα ηζόζεξκε αληηζηξεπηή κεηαβνιή Α Β ή κηα ηζνβαξή αληηζηξεπηή κεηαβνιή Α Γ. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Τν έξγν ηνπ αεξίνπ ζα είλαη α. κεγαιύηεξν θαηά ηε κεηαβνιή Α Β β. κεγαιύηεξν θαηά ηε κεηαβνιή Α Γ γ. ην ίδην όπνηα από ηηο δύν κεηαβνιέο θαη αλ εθηειέζεη. Β) Να ζρεδηάζεηε πνηνηηθά ζην ίδην ζύζηεκα αμόλωλ πίεζεο-όγθνπ ηηο δύν αλαθεξόκελεο κεηαβνιέο θαη κε ηε βνήζεηα απηνύ ηνπ δηαγξάκκαηνο λα αηηηνινγήζεηε ηελ επηινγή ζαο.

3 ΘΕΜΑ B Β.1 Μηα πνζόηεηα ηδαληθνύ αεξίνπ βξίζθεηαη ζε θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο. Τξηπιαζηάδνπκε ηελ πίεζε ηνπ αεξίνπ, δηαηεξώληαο ηνλ όγθν ηνπ ζηαζεξό.. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Γηα λα επαλαθέξνπκε ην αέξην ζηελ αξρηθή ηνπ πίεζε, δηαηεξώληαο ζηαζεξή ηε ζεξκνθξαζία ηνπ, πξέπεη ν όγθνο ηνπ λα: α. ηξηπιαζηαζηεί β. ππνηξηπιαζηαζηεί γ. εμαπιαζηαζηεί. Β. Σην νξηδόληην ηξαπέδη ηνπ εξγαζηεξίνπ θπζηθήο νη καζεηέο ηνπνζεηνύλ δύν εξγαζηεξηαθά θαξνηζάθηα Κ1, Κ, όπωο θαίλεηαη ζην ζρήκα. Σην Κ1 έρνπλ ηνπνζεηήζεη έλα βαξίδη Β ώζηε λα απμεζεί ε κάδα ηνπ. Οη καζεηέο δπγίδνπλ ην θαξόηζη Κ1 καδί κε ην βαξίδη, θαη κεηξνύλ ηελ νιηθή ηνπ κάδα m 1, θαζώο θαη ην Κ θαη κεηξνύλ ηε κάδα ηνπ m. Σηα άθξα ηνπ ηξαπεδηνύ έρνπλ ζηεξεώζεη δύν ζαλίδηα Σ1, Σ, ώζηε ηα θαξνηζάθηα λα κελ πέθηνπλ θάηω από ην ηξαπέδη. Αλάκεζα ζηα θαξνηζάθηα ππάξρεη ζπζπεηξωκέλν ειαηήξην Ε ώζηε κε θαηάιιειν ρηύπεκα ζε έλα κνριό λα ειεπζεξώλεηαη θαη λα απνζπκπηέδεηαη αθαξηαία, νπόηε ηα θαξνηζάθηα λα θηλνύληαη πξαθηηθά κε ζηαζεξή ηαρύηεηα πξνο ηα ζαλίδηα Σ1, Σ, δηαλύνληαο απνζηάζεηο x 1 θαη x αληίζηνηρα. Τν ρηύπεκα θάζε θαξνηζηνύ ζην ζαλίδη πξνθαιεί έλα ήρν. Οη καζεηέο κε δνθηκέο θξνληίδνπλ ε αξρηθή ζέζε ηωλ θαξνηζηώλ λα είλαη ηέηνηα ώζηε λα αθνπζηεί έλα ήρνο από ηηο ζπγθξνύζεηο ηωλ θαξνηζηώλ κε ηα ζαλίδηα, δειαδή ηα θαξόηζηα λα θηάζνπλ ηαπηόρξνλα ζηα ζαλίδηα. Τόηε νη καζεηέο κε κεηξνηαηλία κεηξνύλ ηηο απνζηάζεηο x 1, x. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Η ζρέζε πνπ ζπλδέεη ηα κεγέζε πνπ κέηξεζαλ νη καζεηέο ζα πξέπεη λα είλαη: α. m1 m β. m1 x 1 = m x γ. m 1 x 1 = m x x x 1 Σ x x 1 Κ Ε Κ1 Β Σ1

4

5 ΘΕΜΑ B Β.1 Από ηα παξαθάηω ηξία δηαγξάκκαηα απηό πνπ παξηζηάλεη ζωζηά ηε ζρέζε ηνπ ηεηξαγώλνπ ηεο ελεξγνύ ηαρύηεηαο ηωλ κνξίωλ κηαο πνζόηεηαο ηδαληθνύ αεξίνπ (υ ελ ), ζε ζπλάξηεζε κε ηελ απόιπηε ζεξκνθξαζία ηνπ αεξίνπ (Τ ), είλαη ην: (1) Τ () Τ (3) α. δηάγξακκα (1) β. δηάγξακκα () γ. δηάγξακκα (3) Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Β. Πεξίπηωζε 1 Πεξίπηωζε B B Μία ζθαίξα Σ είλαη δεκέλε ζηo άθξo αβαξνύο, κε εθηαηνύ λήκαηνο θαη βξίζθεηαη πάλω ζε ιείν νξηδόληην ηξαπέδη. Τν λήκα πεξλά από κηα ηξύπα, πνπ βξίζθεηαη ζην θέληξν ηνπ ηξαπεδηνύ, θαη ζηελ άιιε άθξε ηνπ ππάξρεη δεκέλν έλα βαξίδη Β. Η ζθαίξα εθηειεί νκαιή θπθιηθή θίλεζε πάλω ζην ηξαπέδη θαη ην βαξίδη ηζνξξνπεί. Σηα παξαπάλω ζρήκαηα παξηζηάλεηαη ε δηάηαμε ζε δύν πεξηπηώζεηο ζηηο νπνίεο ε ζπρλόηεηα πεξηζηξνθήο ηεο ζθαίξαο είλαη f 1 (ζηελ πεξίπηωζε 1) θαη f (ζηελ πεξίπηωζε ). Σηε δεύηεξε πεξίπηωζε, ε αθηίλα πεξηζηξνθήο είλαη κεγαιύηεξε. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Η ζρέζε κεηαμύ ηωλ ζπρλνηήηωλ f 1 θαη f είλαη: Σ Τ Σ Σ α. f 1 > f β. f 1 < f γ. f 1 = f

6 ΘΕΜΑ B Β.1 Σην ζρήκα παξηζηάλεηαη ζε άμνλεο πίεζεο - εζωηεξηθήο ελέξγεηαο ε αληηζηξεπηή κεηαβνιή πνζόηεηαο ηδαληθνύ αεξίνπ από ηελ θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Α ζηελ θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Β. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Η αληηζηξεπηή κεηαβνιή ΑΒ είλαη: α. ηζόζεξκε β. ηζνβαξήο γ. ηζόρωξε Β. Σ B Μία ζθαίξα Σ ζπλδέεηαη κε έλα αβαξέο κε εθηαηό ζρνηλί, ην νπνίν πεξλά από κηα ηξύπα ελόο ιείνπ νξηδόληηνπ ηξαπεδηνύ όπωο θαίλεηαη ζην παξαπάλω ζρήκα. Σηελ άιιε άθξε ηνπ ζρνηληνύ ππάξρεη δεκέλν έλα βαξίδη Β. Η ζθαίξα εθηειεί νκαιή θπθιηθή θίλεζε πάλω ζην ηξαπέδη κε ζπρλόηεηα f 1 θαη ην βαξίδη ηζνξξνπεί. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Γηα λα επηηεπρζεί ζε έλα δεύηεξν πείξακα, ε ζθαίξα λα ζηξέθεηαη ζε ηξνρηά ίδηαο αθηίλαο, κε έλα βαξίδη κηθξόηεξεο κάδαο ζε ζρέζε κε απηό ηνπ πξνεγνύκελνπ πεηξάκαηνο ζε ηζνξξνπία, πξέπεη ε ζπρλόηεηα ηεο νκαιήο θπθιηθήο θίλεζεο f λα είλαη: α. f > f 1 β. f < f 1 γ. f = f 1 p B A U

7 ΘΕΜΑ B Β.1 Οβίδα αξρηθά αθίλεηε ζπάεη αθαξηαία ιόγω έθξεμεο ζε δύν θνκκάηηα Α θαη Β. Η κάδα ηνπ θνκκαηηνύ Β είλαη δηπιάζηα από ηε κάδα ηνπ Α. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Ο ιόγνο ηωλ θηλεηηθώλ ελεξγεηώλ Κ Α /Κ Β ηωλ δύν θνκκαηηώλ ακέζωο κεηά ηελ έθξεμε είλαη α. 1 β. γ. 1/ Β. Πνζόηεηα κνλαηνκηθνύ ηδαληθνύ αεξίνπ (κε γξακκνκνξηαθή εηδηθή ζεξκόηεηα ππό ζηαζεξό όγθν C V = 3 R/), πνπ βξίζθεηαη ζε θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Α, πξόθεηηαη λα κεηαβεί ζηελ θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Β, ζηελ νπνία ε πίεζε θαη o όγθνο έρνπλ δηπιάζηα ηηκή από όηη ζηελ Α. Η κεηαβνιή ηνπ αεξίνπ από ηελ θαηάζηαζε Α ζηελ Β κπνξεί λα γίλεη κε δύν δηαθνξεηηθνύο ηξόπνπο, εθηειώληαο ζε θάζε πεξίπηωζε δύν δηαδνρηθέο αληηζηξεπηέο κεηαβνιέο. Με ηνλ πξώην ηξόπν νη δηαδνρηθέο κεηαβνιέο είλαη ηζόρωξε ηζνβαξήο, ελώ κε ην δεύηεξν ηζνβαξήο ηζόρωξε. Τν ζπλνιηθό πνζό ζεξκόηεηαο πνπ απνξξνθά ην αέξην ζηελ πξώηε πεξίπηωζε είλαη Q 1 θαη ζηελ δεύηεξε Q. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Ο ιόγνο ηωλ παξαπάλω αλαθεξόκελωλ ζεξκνηήηωλ Q 1 / Q είλαη: α. 1/ β. γ. 13/11

8 ΘΕΜΑ B Β.1 Σώκα κάδαο m, πνπ θηλείηαη επζύγξακκα, έρεη ηηο ρξνληθέο ζηηγκέο t 1 θαη t (t 1 <t ) ηαρύηεηεο υ1 θαη υ αληηζηνίρωο. Μεηαμύ ηωλ ρξνληθώλ ζηηγκώλ t 1 θαη t ην ζώκα δέρεηαη ζπληζηακέλε δύλακε F ίδηαο δηεύζπλζεο κε ηελ ηαρύηεηα. Ξεθηλώληαο από ην ν λόκν ηνπ Νεύηωλα ζηελ κνξθή F m λα απνδείμεηε ηε ζρέζε p F. t Μονάδες 1 Β. Πνζόηεηα κνλoαηνκηθνύ ηδαληθνύ αεξίνπ, πνπ βξίζθεηαη ζε θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Α, πξόθεηηαη λα κεηαβεί ζηελ θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Β, ζηελ νπνία ε πίεζε θαη ν όγθνο έρνπλ δηπιάζηα ηηκή από όηη ζηελ Α. Η κεηαβνιή ηνπ αεξίνπ από ηελ θαηάζηαζε Α ζηε Β κπνξεί λα γίλεη κε δύν δηαθνξεηηθνύο ηξόπνπο, εθηειώληαο ζε θάζε πεξίπηωζε δύν δηαδνρηθέο αληηζηξεπηέο κεηαβνιέο. Με ηνλ πξώην ηξόπν νη δηαδνρηθέο κεηαβνιέο είλαη ηζόρωξε ηζνβαξήο, ελώ κε ην δεύηεξν ηζνβαξήο ηζόρωξε. Η ελέξγεηα πνπ κεηαθέξεηαη από ην αέξην ζην πεξηβάιινλ κέζω ηνπ έξγνπ πνπ παξάγεη είλαη W 1 ζηελ πξώηε πεξίπηωζε θαη W ζηε δεύηεξε. Α) Να επηιέμεηε ηε ζωζηή πξόηαζε. Ο ιόγνο ηωλ παξαπάλω αλαθεξόκελωλ έξγωλ W 1 / W είλαη: α. 1/ β. γ. 3

9 ΘΕΜΑ Β Β.1 Οξηζκέλε πνζόηεηα ηδαληθνύ αεξίνπ βξίζθεηαη κέζα ζε δνρείν ζηαζεξνύ όγθνπ ζε θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο, κε απόιπηε ζεξκνθξαζία Τ 1 θαη πίεζε p 1. Τξηπιαζηάδνπκε ηελ απόιπηε ζεξκνθξαζία Τ ηνπ αεξίνπ. Σηε λέα θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο ηνπ αεξίνπ, γηα ηε πίεζή ηνπ p, ζα ηζρύεη: p1 α. p β. p p1 γ. p 3p1 3 Β. Έλα απηνθίλεην κε κάδα Μ θηλείηαη κε ζηαζεξή ηαρύηεηα υ πάλω ζε νξηδόληην δξόκν. Σηε M πνξεία ηνπ ζπλαληά αθίλεην θηβώηην πνύ έρεη κάδα m 1 = θαη ζπγθξνύεηαη κε απηό πιαζηηθά 0 δεκηνπξγώληαο ζπζζωκάηωκα. Τν ζπζζωκάηωκα απηνθίλεην-θηβώηην, απνθηά ηαρύηεηα V, ακέζωο κεηά ηελ θξνύζε. Τν κέηξν ηεο κεηαβνιήο ηεο νξκήο ηνπ απηνθηλήηνπ θαηά ηελ θξνύζε είλαη ίζν κε: α. 5Mυ 1 β. 4Mυ Mυ γ. 1 1

10 ΘΕΜΑ Β Β.1 Δύν βνκβαξδηζηηθά αεξνπιάλα (1) θαη () θηλνύληαη κε ηαρύηεηεο νξηδόληηαο δηεύζπλζεο, ζε 5H ύςε H 1 = H θαη H αληίζηνηρα, πάλσ από ην έδαθνο. Κάπνηα ρξνληθή ζηηγκή t 0 = 0, αθήλεηαη λα πέζεη από θάζε αεξνπιάλν κία βόκβα. Οη βόκβεο θηάλνπλ ζην έδαθνο ηηο ρξνληθέο ζηηγκέο t 1 θαη t, όπνπ ε ρξνληθή ζηηγκή t 1 αληηζηνηρεί ζηε βόκβα πνπ έπεζε από ην αεξνπιάλν (1), ελώ ε ρξνληθή ζηηγκή t αληηζηνηρεί ζηε βόκβα πνπ έπεζε από ην αεξνπιάλν (). Α) Να επηιέμεηε ηε ζσζηή απάληεζε. t Αλ ζεσξήζνπκε κεδεληθή ηελ αληίζηαζε ηνπ αέξα, γηα ην ιόγν, ηζρύεη: t t α. t 1 t β. 5 t 1 5 t γ. t Β. Έλα δνρείν ζηαζεξνύ όγθνπ πεξηέρεη νξηζκέλε πνζόηεηα αεξίνπ πδξνγόλνπ (ην νπνίν ζεσξείηαη ηδαληθό), ην νπνίν βξίζθεηαη ζηελ θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο (1), κε απόιπηε ζεξκνθξαζία Τ 1, πίεζε p 1 θαη ελεξγό ηαρύηεηα ησλ κνξίσλ ηνπ υ ελ,1. Η πνζόηεηα ηνπ πδξνγόλνπ παξακέλεη ζην δνρείν ζηαζεξνύ όγθνπ θαη κεηαβαίλεη αληηζηξεπηά ζηελ θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο () κε ηνλ εμήο ηξόπν: απμάλνπκε ηελ απόιπηε ζεξκνθξαζία ηνπ αεξίνπ ζηελ ηηκή Τ, έηζη ώζηε ε πίεζή ηνπ λα ηεηξαπιαζηαζηεί θαη ε ελεξγόο ηαρύηεηα ησλ κνξίσλ ηνπ λα γίλεη υ ελ,. Α) Να επηιέμεηε ηε ζσζηή απάληεζε. Ο ιόγνο υ υ,1, 1 ησλ ελεξγώλ ηαρπηήησλ ησλ κνξίσλ ηνπ πδξνγόλνπ ζηηο θαηαζηάζεηο ζεξκνδπλακηθήο ηζνξξνπίαο (1) θαη (), είλαη ίζνο κε: α. β γ.

11 ΘΕΜΑ Β Β.1 Έλαο δίζθνο CD πεξηζηξέθεηαη γύξω από άμνλα πνπ δηέξρεηαη από ην θέληξν ηνπ θαη είλαη θάζεηνο ζην επίπεδν ηνπ, εθηειώληαο ζηαζεξό αξηζκό πεξηζηξνθώλ αλά δεπηεξόιεπην. Τν δηάγξακκα πνπ απεηθνλίδεη ζωζηά ηε γξακκηθή ηαρύηεηα ελόο ζεκείνπ ηνπ δίζθνπ ζε ζπλάξηεζε κε ηελ απόζηαζε ηνπ ζεκείνπ από ην θέληξν ηνπ δίζθνπ είλαη: υ (1) r () r (3) α. Τν δηάγξακκα (1) β. Τν δηάγξακκα () γ. Τν δηάγξακκα (3) Β. Έλα ηδαληθό αέξην εθηειεί ηελ θπθιηθή αληηζηξεπηή κεηαβνιή ΑΒΓΓΑ, πνπ απεηθνλίδεηαη ζην παξαθάηω δηάγξακκα p - V. p Τν πνζό Q ηεο ζεξκόηεηαο πνπ αληάιιαμε ην αέξην κε ην πεξηβάιινλ ηνπ θαηά ηε κεηαβνιή ΑΒΓΓΑ, είλαη ίζν κε: pv 1 1 pv β. pv 1 1 γ. α. 1 1 p 1 p 1 0 B υ A V 1 3V 1 υ Γ Γ V r

12 ΘΕΜΑ Β Β.1 Μηα πνζόηεηα ηδαληθνύ αεξίνπ βξίζθεηαη ζε θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο, θαηαιακβάλεη όγθν V, έρεη απόιπηε ζεξκνθξαζία Τ, ελώ βξίζθεηαη ππό πίεζε p. Δηπιαζηάδνπκε ηνλ όγθν ηεο πνζόηεηαο απηήο ελώ ηαπηόρξνλα ηεηξαπιαζηάδνπκε ηελ πίεζε ηεο. Σηελ λέα θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο ην αέξην ζα έρεη απόιπηε ζεξκνθξαζία α. Τ = 4Τ β. Τ = 8Τ γ. Τ = Τ M Β. Έλα θνξηεγό κε κάδα Μ θαη ηαρύηεηα υ θαη έλα επηβαηεγό απηνθίλεην κε κάδα m 1 = θαη 4 ηαρύηεηα υ = υ θηλνύληαη ζε αληίζεηεο θαηεπζύλζεηο πάλω ζε νξηδόληην κνλόδξνκν, 1 πιεζηάδνληαο ην έλα ην άιιν. Τα νρήκαηα ζπγθξνύνληαη κεηωπηθά θαη πιαζηηθά δεκηνπξγώληαο ζπζζωκάηωκα. Η ζπλνιηθή νξκή p ηνπ ζπζζωκαηώκαηνο ακέζωο κεηά ηελ θξνύζε, έρεη κέηξν Μυ α. Mυ β. γ. Μυ

13 ΘΕΜΑ Β Β.1 Έλα βνκβαξδηζηηθό αεξνπιάλν θηλείηαη νξηδόληηα ζε ύςνο h πάλσ από ην έδαθνο κε ζηαζεξή ηαρύηεηα υ 0. Κάπνηα ρξνληθή ζηηγκή t = 0 αθήλεηαη λα πέζεη από ην αεξνπιάλν κία βόκβα. Η βόκβα θηάλεη ζην έδαθνο κεηά από ρξόλν t = 4 s. Τν βνκβαξδηζηηθό αεξνπιάλν εμαθνινπζώληαο ηελ νξηδόληηα θίλεζή ηνπ ζην ίδην ύςνο h, απμάλεη ηελ ηαρύηεηά ηνπ ζε υ 0 θαη ζηε ζπλέρεηα θηλείηαη κε απηή ηελ ηαρύηεηα. Κάπνηα ρξνληθή ζηηγκή t = 0 αθήλεηαη λα πέζεη από ην αεξνπιάλν κία δεύηεξε βόκβα. Α) Να επηιέμεηε ηε ζσζηή απάληεζε. Η βόκβα θηάλεη ζην έδαθνο κεηά από ρξόλν: α. t 1 = s β. t 1 = 8 s γ. t 1 = 4 s Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Θεσξνύκε όηη δελ ππάξρεη αληίζηαζε ηνπ αέξα θαη όηη ε επηηάρπλζε ηεο βαξύηεηαο είλαη g. Β. Δύν πνζόηεηεο ηδαληθώλ αεξίσλ κε αξηζκό γξακκνκνξίσλ n 1 θαη n αληίζηνηρα βξίζθνληαη ζε p n 1 (1) n () Α) Να επηιέμεηε ηε ζσζηή απάληεζε. δύν δνρεία ίδηνπ όγθνπ V 1 =V =V. Τα δύν αέξηα εθηεινύλ ηηο αληηζηξεπηέο ηζόρσξεο κεηαβνιέο (1) θαη () πνπ θαίλνληαη ζην δηάγξακκα. Γηα ηνλ αξηζκό γξακκνκνξίσλ ησλ δύν αεξίσλ ηζρύεη: T α. n 1 > n β. n 1 < n γ. n 1 = n Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο.

14 ΘΕΜΑ Β Β.1 Σην δηπιαλό δηάγξακκα αλαπαξηζηάηαη ε γξαθηθή παξάζηαζε ηεο νξκήο ελόο απηνθηλήηνπ ζε ζπλάξηεζε κε ην ρξόλν, θαηά ηε δηάξθεηα ηεο θίλεζήο ηνπ πάλω ζε νξηδόληην επζύγξακκν δξόκν. Αο νλνκάζνπκε F ην κέηξν ηεο ζπληζηακέλεο ηωλ δπλάκεωλ πνπ δέρεηαη ην ζώκα θαηά ην ρξνληθό δηάζηεκα 0-s θαη F ην κέηξν ηεο ζπληζηακέλεο ηωλ δπλάκεωλ πνπ δέρεηαη ην ζώκα θαηά ην ρξνληθό δηάζηεκα s -4s. Γηα ηα κέηξα ηωλ δπλάκεωλ F θαη F ηζρύεη: α. F > F β. F < F γ. F = F Β. Έλα δνρείν ζηαζεξνύ όγθνπ V πεξηέρεη πνζόηεηα ηδαληθνύ αεξίνπ. Η πίεζε ηνπ ηδαληθνύ αεξίνπ είλαη p 1 θαη ε απόιπηε ζεξκνθξαζία ηνπ είλαη Τ 1. Αο νλνκάζνπκε Ε κ,1 ηε κέζε θηλεηηθή ελέξγεηα ηωλ κνξίωλ ηνπ αεξίνπ απηνύ. Δηπιαζηάδνπκε ηελ πίεζε ηνπ ηδαληθνύ αεξίνπ. Τόηε ε κέζε θηλεηηθή ελέξγεηα ηωλ κνξίωλ ηνπ αεξίνπ γίλεηαη Ε κ,. Ο ιόγνο Ε Ε κ, κ,1 είλαη ίζνο κε: p (kg m s -1 ) 0 4 t (s) α. 4 β. γ. 1

15 ΘΕΜΑ Β Β.1 m 1 m d d Δύν εξγαζηεξηαθά ακαμάθηα κε κάδεο m 1 θαη m βξίζθνληαη αθίλεηα ζην κέζν νξηδόληηνπ εξγαζηεξηαθνύ πάγθνπ απέρνληαο απόζηαζε d ην θαζέλα από ην άθξν ηνπ πάγθνπ. Τα ακαμάθηα είλαη ζπλδεδεκέλα κε αβαξέο λήκα θαη αλάκεζα ηνπο ππάξρεη ζπζπεηξωκέλν ειαηήξην κε ακειεηέα κάδα. Κόβνπκε ην λήκα θαη ηα δύν ακαμάθηα εθηηλάζζνληαη θαη θηλνύληαη ειεύζεξα, ρωξίο λα είλαη πηα ζπλδεδεκέλα ζην ειαηήξην θαη ρωξίο ηξηβέο. Οη ρξόλνη γηα λα θηάζνπλ ηα ακαμάθηα κε κάδεο m 1 θαη m ζην αληίζηνηρν άθξν ηνπ πάγθνπ είλαη t 1 θαη t αληίζηνηρα. Γηα ηνπο δύν ρξόλνπο ηζρύεη t 1 = t. Γηα ηνλ ιόγν ηωλ δύν καδώλ ηζρύεη: m1 1 α. m β. m1 1 m γ. m1 m Β)Να αηηηνινγήζεηε ηελ επηινγή ζαο. Β. Πνζόηεηα ηδαληθνύ αεξίνπ βξίζθεηαη ζηελ θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Α. Τν αέξην κπνξεί λα εθηειέζεη δύν θπθιηθέο αληηζηξεπηέο κεηαβνιέο (Ι) θαη (ΙΙ) όπωο θαίλεηαη ζην ζρήκα. Έζηω όηη Q 1 θαη Q είλαη νη ζεξκόηεηεο πνπ αληαιιάζεη ην αέξην κε ην πεξηβάιινλ θαηά ηηο κεηαβνιέο (Ι) θαη (ΙΙ) αληίζηνηρα. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Γηα ηηο ζεξκόηεηεο Q 1 θαη Q ηζρύεη: α. Q 1 < Q θαη ε Q 1 απνξξνθάηαη από ην αέξην ελώ ε Q εθιύεηαη β. Q 1 > Q θαη ε Q 1 απνξξνθάηαη από ην αέξην ελώ ε Q εθιύεηαη γ. Q 1 < Q θαη ε Q 1 εθιύεηαη από ην αέξην ελώ ε Q απνξξνθάηαη p (Ι) A (ΙΙ) V

16 ΘΕΜΑ B B.1 Σώκα εθηειεί νκαιή θπθιηθή θίλεζε ζε ιείν νξηδόληην επίπεδν δεκέλν ζε έλα ζρνηλί. R Τν ζρνηλί ζπάεη όηαλ ε δύλακε πνπ ζα ηνπ αζθεζεί είλαη κεγαιύηεξε ή ίζε κε Τ Θ (όξην ζξαύζεο). Όηαλ ην ζώκα θηλείηαη ζε θύθιν αθηίλαο R ην ζρνηλί ζπάεη όηαλ ε γωληαθή ηαρύηεηα είλαη ω 1. Όηαλ ην ζώκα θηλείηαη ζε θύθιν αθηίλαο R ην ζρνηλί ζπάεη όηαλ ε γωληαθή ηαρύηεηα είλαη ω. Γηα ην ιόγν ηωλ δύν γωληαθώλ ηαρπηήηωλ ηζρύεη: 1 α. β. 1 γ. 1 1 Β. Κάπνηα εκέξα ε απόιπηε ζεξκνθξαζία ηνπ αέξα είλαη T 1 θαη ε αηκνζθαηξηθή πίεζε p 1. Έλα δωκάηην έρεη αξρηθά έλα ηδάκη ηνπ αλνηρηό θαη επηθνηλωλεί κε ην πεξηβάιινλ. Τν ηδάκη έρεη εκβαδόλ Α. Κιείλνπκε ην ηδάκη θαη ην δωκάηην είλαη πιένλ αεξνζηεγώο θιεηζκέλν. Θεξκαίλνπκε κε ειεθηξηθή ζεξκάζηξα ην δωκάηην θαη ε ζεξκνθξαζία ηνπ γίλεηαη Τ =1,5 Τ 1. Θεωξνύκε όηη ν αέξαο είλαη ηδαληθό αέξην. Α) Να επηιέμεηε ηε ζωζηή απάληεζε Πεξηβάιινλ Τν κέηξν ηεο ζπληζηακέλεο δύλακεο, ζηελ νξηδόληηα δηεύζπλζε, πνπ αζθείηαη ηόηε ζην ηδάκη από ηνλ αέξα ζην πεξηβάιινλ θαη ηνλ αέξα κέζα ζην δωκάηην είλαη: Τδάκη Δωκάηην α. ΣF = 0,5p 1 A β. ΣF = p 1 A γ. ΣF = 1,5p 1 A

17 ΘΕΜΑ B Β.1 Πάλω ζε έλα παιηό πηθάπ βξίζθεηαη έλαο δίζθνο βηλπιίνπ θαη πάλω ζηνλ δίζθν βηλπιίνπ έλα δάξη. Μπνξνύκε λα κεηαβάιινπκε ηελ ζπρλόηεηα πεξηζηξνθήο ηνπ πηθάπ. Όηαλ ην δάξη βξίζθεηαη ζε απόζηαζε R 1 θαη ν δίζθνο πεξηζηξέθεηαη κε ζπρλόηεηα f 1 ε θεληξνκόινο δύλακε πνπ αζθείηαη ζην δάξη έρεη κέηξν F 1. Όηαλ ην δάξη βξεζεί ζε απόζηαζε R θαη ν δίζθνο πεξηζηξέθεηαη κε ζπρλόηεηα f ε θεληξνκόινο δύλακε πνπ αζθείηαη ζην δάξη έρεη κέηξν F. Γηα ηνλ ιόγν ηωλ κέηξωλ ηωλ θεληξνκόιωλ δπλάκεωλ ζηηο δύν πεξηπηώζεηο ηζρύεη : F1 f1 R1 F1 f1 R F1 f1 R1 α. β. γ. F f R F f R F f R 1 Β. Έλαο πύξαπινο απνηειείηαη από δύν ηκήκαηα ίζεο κάδαο m. Κάπνηα ζηηγκή ελώ ν πύξαπινο θηλείηαη θαηαθόξπθα πξνο ηα πάλω κε ζηαζεξή ηαρύηεηα v, κε εηδηθό κεραληζκό ην έλα ηκήκα απνθνιιάηαη από ην άιιν. Η ρξνληθή δηάξθεηα ηεο απνθόιιεζεο ζεωξείηαη ακειεηέα. Μεηά ηελ απνθόιιεζε ην πάλω ηκήκα ζπλερίδεη λα θηλείηαη θαηαθόξπθα πξνο ηα πάλω κε ηαρύηεηα κέηξνπ. Τν θάηω ηκήκα ζα ζηακαηήζεη ζηηγκηαία γηα πξώηε θνξά κεηά από ρξόλν Δt όπνπ: α. Δt είλαη ν ρξόλνο πνπ ρξεηάδεηαη γηα λα θηάζεη ζην έδαθνο ην άιιν ηκήκα. β. v t g v γ. t 4 g Η επηηάρπλζε ηεο βαξύηεηαο ζεωξείηαη ζηαζεξή θαη ίζε κε g. R

18 ΘΕΜΑ B B.1 Οξηζκέλε πνζόηεηα ηδαληθνύ αεξίνπ πθίζηαηαη ηζνβαξή ζέξκαλζε από ηελ θαηάζηαζε Α ζηελ θαηάζηαζε Β. ρ ρ ρ Α) Να επηιέμεηε ηε ζωζηή απάληεζε Η γξαθηθή παξάζηαζε ηεο ππθλόηεηαο ρ ηνπ ηδαληθνύ αεξίνπ ζε ζπλάξηεζε κε ηελ ζεξκνθξαζία Τ γηα απηή ηελ κεηαβνιή απεηθνλίδεηαη, α. ζην ζρ.1 β. ζην ζρ. γ. ζην ζρ.3 B. Ιδαληθό αέξην πθίζηαηαη δύν αληηζηξεπηέο θπθιηθέο κεηαβνιέο. Τελ ΚΛΒΑΚ (κεηαβνιή Ι) θαη ηελ ΑΒΓΓΑ (κεηαβνιή ΙΙ). Κάζε θύθινο απνηειείηαη από δύν ηζόζεξκεο θαη δύν ηζόρωξεο κεηαβνιέο. Γηα ηηο ζεξκνθξαζίεο ηωλ ηζόζεξκωλ κεηαβνιώλ ηζρύεη όηη: Τ ΚΛ = 3Τ 1, Τ ΑΒ = Τ 1, Τ ΓΓ = Τ 1. Α σχ.1 Γηα ηνλ όγθν πνπ θαηαιακβάλεη ην ηδαληθό αέξην ζηηο θαηαζηάζεηο ζεξκνδπλακηθήο ηζνξξνπίαο πνπ πεξηγξάθνληαη ζην δηάγξακκα κε ηα ζεκεία Κ, Α, Γ, Λ, Β θαη Γ ηζρύεη V K = V A = V Γ = V 1 θαη V Λ = V Β = V Γ = V 1. Β Αλ Q 1 θαη Q είλαη νη ζεξκόηεηεο πνπ αληαιιάζζνληαη κε ην πεξηβάιινλ ζηηο κεηαβνιέο Ι θαη ΙΙ αληίζηνηρα ηόηε ηζρύεη T A σχ. α. Q 1 < Q β. Q 1 = Q γ. Q 1 > Q B T Α Β σχ.3 T

19

20 ΘΕΜΑ B Β.1 Γύν παηδηά, ε Μαξία θαη ε Γεσξγία παίδνπλ ζηελ αθξνζαιαζζηά πεηώληαο πέηξεο. Κάπνηα ζηηγκή ηα δύν παηδηά πεηνύλ ηαπηνρξόλσο, από ην ίδην ύςνο, από κία πέηξα κε νξηδόληηα ηαρύηεηα θαη αληίζηνηρα. Γηα ηα κέηξα ησλ ηαρπηήησλ ηζρύεη. Καηά ηελ θίλεζε ησλ πεηξώλ θαη είλαη ηα ύςε από ην έδαθνο πνπ βξίζθνληαη ηε ρξνληθή ζηηγκή t ε πέηξα ηεο Μαξίαο θαη απηή ηεο Γεσξγίαο αληίζηνηρα. Α) Να επηιέμεηε ηε ζσζηή απάληεζε. Γηα ηα ύςε θαη θάζε ρξνληθή ζηηγκή ηζρύεη: α. < β. = γ. > B. Γύν δξνκείο Α θαη Β μεθηλνύλ λα θηλνύληαη νκόξξνπα ζε θπθιηθό ζηίβν κε ζηαζεξέο γσληαθέο ηαρύηεηεο ω 1 θαη ω αληίζηνηρα γηα ηηο νπνίεο ηζρύεη ω 1 > ω. Οη δξνκείο μεθηλνύλ ηε ρξνληθή ζηηγκή t = 0 από αληηδηακεηξηθά ζεκεία Κ θαη Λ θαη ηε ρξνληθή ζηηγκή t 1 νη επηβαηηθέο ηνπο αθηίλεο ζρεκαηίδνπλ γσλία π/ γηα πξώηε θνξά. Δάλ νη δύν δξνκείο μεθηλνύζαλ από ηα ίδηα ζεκεία Κ θαη Λ ηαπηόρξνλα, κε δηπιάζηεο γσληαθέο ηαρύηεηεο θαη ηόηε νη επηβαηηθέο ηνπο αθηίλεο ζα ζρεκάηηδαλ γσλία π/ γηα πξώηε θνξά ηε ρξνληθή ζηηγκή t. Α) Να επηιέμεηε ηε ζσζηή απάληεζε. Γηα ηνπο ρξόλνπο t 1 θαη t ηζρύεη: α. t 1 = 4t β. t 1 = t γ. t 1 = t

21 ΘΕΜΑ B B.1 Έλα ζθαηξίδην εθηνμεύεηαη από ζεκείν Α πνπ Α βξίζθεηαη ζε ύςνο H από ην έδαθνο, κε απνηέιεζκα λα εθηειέζεη νξηδόληηα βνιή. Η θηλεηηθή ελέξγεηα ηνπ ζθαηξηδίνπ ακέζσο κεηά ηελ εθηόμεπζε ηνπ είλαη Κ 0. Θεσξήζηε σο d ηελ θαηαθόξπθε απόζηαζε ηνπ ζθαηξηδίνπ θάζε ρξνληθή ζηηγκή από ην επίπεδν y εθηόμεπζεο θαη ηηο αληηζηάζεηο ηνπ αέξα ακειεηέεο. Α) Να επηιέμεηε ηε ζσζηή απάληεζε. Η γξαθηθή παξάζηαζε ηεο θηλεηηθήο ελέξγεηαο Κ ηνπ ζώκαηνο ζε ζπλάξηεζε κε ηελ απόζηαζε d είλαη, K K 0 Ι. ΙΙ. ΙΙΙ. α. ε Ι. β. ε ΙΙ. γ. ε ΙΙΙ. B. Έλα κπαιάθη κάδαο m ρηππά ζε έλαλ θαηαθόξπθν ηνίρν κε νξηδόληηα ηαρύηεηα, κέηξνπ θαη αλαπεδά από απηόλ κε ηαρύηεηα, κέηξνπ. Η ρξνληθή δηάξθεηα ηεο επαθήο είλαη θαη ην κέηξν ηεο θάζεηεο δύλακεο πνπ αζθεί ν ηνίρνο ζην κπαιάθη είλαη. Τν ίδην κπαιάθη ρηππά ζην δάπεδν κε θαηαθόξπθε ηαρύηεηα, κέηξνπ θαη αλαπεδά από απηό κε ηαρύηεηα, κέηξνπ. Η ρξνληθή δηάξθεηα ηεο επαθήο είλαη επίζεο δάπεδν ζην κπαιάθη είλαη. d K K 0 x d Η θαη ην κέηξν ηεο θάζεηεο δύλακεο πνπ αζθεί ην Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Γηα ηα κέηξα ησλ δπλάκεσλ Ν 1 θαη Ν πνπ αζθνύληαη ζην κπαιάθη από ηνλ ηνίρν θαη ην δάπεδν αληίζηνηρα, ηζρύεη: α. Ν 1 > Ν β. Ν 1 = Ν γ. Ν 1 < Ν d K K 0 d

22 ΘΕΜΑ Β Β.1 Έλα βιήκα εθηνμεύεηαη νξηδόληηα ηε ρξνληθή ζηηγκή t = 0, από όπιν κε αξρηθή ηαρύηεηα κέηξνπ υ 0. Θεωξνύκε ζύζηεκα νξζνγωλίωλ αμόλωλ, απηό πνπ θαίλεηαη ζην παξαθάηω ζρήκα θαη ην νπνίν έρεη ωο αξρή ην ζεκείν εθηόμεπζεο. Να ζπκπιεξώζεηε ηα θελά ζηνλ παξαθάηω πίλαθα, ηα νπνία αλαθέξνληαη ζηηο ζπληεηαγκέλεο ηεο ζέζεο (x, y), ζηηο ζπληζηώζεο ηεο ηαρύηεηαο (υ x, υ y ) θαη ηεο επηηάρπλζεο (α x, α y ), θαηά ηνπο άμνλεο Ορ θαη Οy, αληίζηνηρα. Α) Χξόλνο x (m) y (m) t (s) Β) 0 8 Χξόλνο t (s) Μονάδες 6 Γ) Χξόλνο t (sec) 7 6 υ x m/s α x m/s α y m/s Μονάδες Δίλεηαη ε επηηάρπλζε ηεο βαξύηεηαο ζηελ επηθάλεηα ηεο Γήο g = 10 m/s. Θεωξνύκε ηελ αληίζηαζε ηνπ αέξα ακειεηέα. Β. Σην ζρήκα βιέπνπκε έλα ζωκαηίδην πνπ εθηειεί νκαιή θπθιηθή θίλεζε ζε θπθιηθή ηξνρηά αθηίλαο 0,5 m. Αλ γλωξίδεηε όηη ε επηβαηηθή αθηίλα δηαγξάθεη γωλία 5π/6 ζε ρξνληθό δηάζηεκα δύν δεπηεξνιέπηωλ, υ y m/s y O υ 0 x Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. α. Η πεξίνδνο ηεο θίλεζεο είλαη 4,8 s β. Η πεξίνδνο ηεο θίλεζεο είλαη,4 s

23 Β) Να επηιέμεηε ηελ ζωζηή απάληεζε. α. Τν κέηξν ηεο γξακκηθήο ηαρύηεηαο είλαη 5π/1 m/s. β. Τν κέηξν ηεο γξακκηθήο ηαρύηεηαο είλαη 5π/4 m/s. Γ) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες Μονάδες

24 ΘΕΜΑ Β Β.1 Μία ζθαίξα εθηειεί νξηδόληηα βνιή κε αξρηθή νξηδόληηα ηαρύηεηα 0. Σην ζρήκα θαίλνληαη νη ζπληεηαγκέλεο ηεο ζέζεο m ηεο ζθαίξαο κεηξεκέλεο ζε m. Δίλεηαη g 10. Η s αληίζηαζε ηνπ αέξα είλαη ακειεηέα. α. 0 = 60 m/s β. 0 = 100 m/s γ. 0 = 600 m/s Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Β. Δύν νκόθεληξνη ηξνρνί, πνπ ν ιόγνο ηωλ αθηίλωλ ηνπο είλαη 4:3 πεξηζηξέθνληαη νκαιά γύξω από άμνλα πνπ δηέξρεηαη από ην θνηλό ηνπο θέληξν κε ηελ ίδηα ζπρλόηεηα. Αλ ηα ζεκεία ηεο πεξηθέξεηαο ηνπ κηθξνύ ηξνρνύ έρνπλ γξακκηθή ηαρύηεηα κέηξνπ 10 m/s, Τα ζεκεία ηεο πεξηθέξεηαο ηνπ κεγάινπ ηξνρνύ έρνπλ γξακκηθή ηαρύηεηα: α. 30/4 m/s β. 40/3 m/s γ. 10 m/s Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο.

25 ΘΕΜΑ Β Β.1 Τέζζεξα ζώκαηα Α, Β, Γ, Γ έρνπλ κάδεο 1/ kg, kg, 3 kg, 4 kg αληίζηνηρα. Τα ζώκαηα θηλνύληαη νκαιά ζε νξηδόληην επίπεδν ρωξίο ηξηβή. Τν Α θηλείηαη πξνο ηα δπηηθά κε ηαρύηεηα 4 m/s. Τν Β θηλείηαη πξνο ην βνξξά κε ηαρύηεηα m/s. Τν Γ θηλείηαη αλαηνιηθά κε ηαρύηεηα 1m/s. Τν Γ θηλείηαη πξνο ην λόην κε ηαρύηεηα 1 m/s. Α) Να κεηαθέξεηε ζην απαληεηηθό ζαο θύιιν ηνλ αξηζκό ηνπ ζέκαηνο, ηνλ αξηζκό ηεο παξαθάηω πξόηαζεο θαη δίπια ην γξάκκα Σ αλ είλαη ζωζηή ή ην γξάκκα Λ αλ είλαη ιαλζαζκέλε. α. Οη νξκέο ηωλ Α θαη Γ είλαη ίζεο. Μονάδες β. Οη νξκέο ηωλ Β θαη Γ είλαη αληίζεηεο. Μονάδες γ. Τν Α είλαη ην γξεγνξόηεξν ζώκα. Μονάδες δ. Τν Α έρεη ηε κηθξόηεξε νξκή. Μονάδες Β) Πνην από ηα ζώκαηα είλαη επθνιόηεξν λα ζηακαηήζεη; Μονάδες 1 Γ) Να δηθαηνινγήζεηε ηελ απάληεζή ζαο ζην εξώηεκα (Β). Μονάδες 3 Β. Πνζόηεηα ηδαληθνύ αεξίνπ βξίζθεηαη ζε θαηάζηαζε ζεξκνδπλακηθήο ηζνξξνπίαο Α. Τν αέξην πνπ έρεη θάπνηα αξρηθή ζεξκνθξαζία, κπνξεί λα ζεξκαλζεί κε ηνπο εμήο δύν ηξόπνπο: α) ηζόρωξα ΑΓ θαη β) ηζνβαξώο ΑB κέρξη λα απνθηήζεη ηελ ίδηα ηειηθή ζεξκνθξαζία κε νπνηνλδήπνηε από ηνπο δύν ηξόπνπο. Γηα ηε ζεξκόηεηα πνπ ρξεηάδεηαη λα δνζεί ζην αέξην ηζρύεη: α. Q ΑΒ = Q ΑΓ β. Q ΑΒ > Q ΑΓ γ. Q ΑΒ < Q ΑΓ Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο.

26 ΘΕΜΑ Β Β.1 Γηα ηα δεδνκέλα ηεο παξαθάηω θξνύζεο: (+) α. Δηαηεξείηαη θαη ε νξκή θαη ε κεραληθή ελέξγεηα. β. Δηαηεξείηαη ε νξκή αιιά όρη ε κεραληθή ελέξγεηα. γ. Δε δηαηεξείηαη ε νξκή αιιά δηαηεξείηαη ε κεραληθή ελέξγεηα. Α) Να επηιέμηε ηε ζωζηή απάληεζε. Β. Σε έλα παηδηθό παηρλίδη δύν ζθαηξίδηα αξρίδνπλ λα θηλνύληαη θπθιηθά θαη νκόξξνπα, εθηειώληαο νκαιή θπθιηθή θίλεζε θαη μεθηλώληαο ηαπηόρξνλα από ην ίδην ζεκείν, κε πεξηόδνπο Τ 1 = 14 s θαη Τ = 4 s. Τα ζθαηξίδηα ζα ζπλαληεζνύλ γηα πξώηε θνξά ζε θάπνην ζεκείν ηεο θπθιηθήο ηξνρηάο ηνπο κεηά από ρξόλν: α. 33,6 s β. 168 s γ. 38 s

27 ΘΔΜΑ Β Β.1 Σην δηπιαλό ζρήκα ηα ζώκαηα βξίζθνληαη ζε ιείν νξηδόληην επίπεδν. Μεηά ηελ θξνύζε ηα ζώκαηα θηλνύληαη πξνο ηα δεμηά, ην Α κε ηαρύηεηα m/s θαη ην Β κε ηαρύηεηα 3 m/s. Α) Να επηιέμεηε ην ζπλδπαζκό από ηνλ παξαθάηω πίλαθα πνπ ηζρύεη γηα ηελ θξνύζε, Ολική Κινητική Δνέργεια Ολική ορμή 1 Γιατηρείται Δλαττώνεται Δλαττώνεται Γιατηρείται 3 Γιατηρείται Γιατηρείται Β. Κηλεηό Σ 1 μεθηλά από ηελ εξεκία από ζεκείν Α ηεο πεξηθέξεηαο ελόο θύθινπ θέληξνπ Κ θαη δηακέηξνπ δ = 10 m λα θηλείηαη ζηε δηάκεηξν ΑΚΒ κε επηηάρπλζε, ζηαζεξνύ κέηξνπ α. Γεύηεξν θηλεηό Σ εθηειεί νκαιή θπθιηθή θίλεζε κε γωληαθή ηαρύηεηα, κέηξνπ ω. Αλ γλωξίδεηε όηη όηαλ ην Σ 1 μεθηλά ηελ θίλεζε ηνπ από ην Α θαη ην Σ δηέξρεηαη από ην ίδην ζεκείν, Α) Να επηιέμεηε ηε ζρέζε ηωλ ω θαη α ώζηε ηα θηλεηά λα ζπλαληεζνύλ ζην ζεκείν Β γηα πξώηε θνξά, α. α = ω β. ω = α γ. α = ω Γίλνληαη: π = 10 θαη όηη όια ηα κεγέζε έρνπλ κνλάδεο ζην S.I.

28 ΘΕΜΑ Β Β.1 Έλα βιήκα εθηνμεύεηαη νξηδόληηα ηε ρξνληθή ζηηγκή t = 0, από όπιν κε αξρηθή ηαρύηεηα κέηξνπ υ 0. Θεωξνύκε ζύζηεκα νξζνγωλίωλ αμόλωλ, απηό πνπ θαίλεηαη ζην παξαθάηω ζρήκα θαη ην νπνίν έρεη ωο αξρή ην ζεκείν εθηόμεπζεο. Να ζπκπιεξώζεηε ηα θελά ζηνπο παξαθάηω πίλαθεο, ηα νπνία αλαθέξνληαη ζηηο ζπληεηαγκέλεο ηεο ζέζεο Ο x (x, y), ζηηο ζπληζηώζεο ηεο ηαρύηεηαο (υ x, υ y ) θαη ηεο επηηάρπλζεο (α x, α y ), θαηά ηνπο άμνλεο Ορ θαη Οy, αληίζηνηρα. Χξόλνο t (s) υ x (m/s) υ y (m/s) 60 0 Χξόλνο t (s) 0 8 Χξόλνο t (s) 3 6 Χξόλνο t (s) x (m) y (m) υ x (m/s) υ y (m/s) a x (m/s ) a y (m/s ) y Μονάδες 6 9 Μονάδες Β. Σώκα κάδαο m ην νπνίν έρεη θηλεηηθή ελέξγεηα Κ θηλείηαη, ρωξίο ηξηβέο, ζηελ ίδηα επζεία πνπ βξίζθεηαη ζώκα κάδαο 3 m. Τν ζπζζωκάηωκα πνπ πξνθύπηεη κεηά ηελ θξνύζε παξακέλεη αθίλεην. Η θηλεηηθή ελέξγεηα πνπ κεηαηξάπεθε ζε ζεξκηθή θαηά ηε θξνύζε είλαη: α. Κ β. 4 Κ/3 γ. Κ

M Β.2 Σε νξηδόληην επίπεδν βξίζθεηαη αθίλεην ζώκα κάδαο Μ. Βιήκα κάδαο m = θηλείηαη

M Β.2 Σε νξηδόληην επίπεδν βξίζθεηαη αθίλεην ζώκα κάδαο Μ. Βιήκα κάδαο m = θηλείηαη M Β.2 Σε νξηδόληην επίπεδν βξίζθεηαη αθίλεην ζώκα κάδαο Μ. Βιήκα κάδαο m = θηλείηαη νξηδόληηα κε ηαρύηεηα υ 1, ρηππά ην ζώκα κε απνηέιεζκα λα ην δηαπεξάζεη. Τν βιήκα εμέξρεηαη από ην ζώκα νξηδόληηα κε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα

Διαβάστε περισσότερα

ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ..

ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ.. ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ.. ΘΔΜΑ Α Σηηο εκηηειείο πξνηάζεηο Α.1 Α.4 λα γξάςεηε ζην ηεηξάδην ζαο ηνλ αξηζκό ηεο πξόηαζεο θαη, δίπια, ην γξάκκα πνπ αληηζηνηρεί ζηε θξάζε ε νπνία ηε ζπκπιεξώλεη

Διαβάστε περισσότερα

Τκήκα : ΓΘΕΤΘΚΗΣ Ηκ/ληα : 30 / 11 / 2016

Τκήκα : ΓΘΕΤΘΚΗΣ Ηκ/ληα : 30 / 11 / 2016 Τκήκα : ΓΘΕΤΘΚΗΣ Ηκ/ληα : 30 / 11 / Ολνκαηεπώλπκν : ΘΔΜΑ Α : Σηηο παξαθάησ εξσηήζεηο Α1 Α4 λα επηιέμεηε ηε ζσζηή απάληεζε Δηάξθεηα 3h Α1. Έλα ζύζηεκα κάδαο ειαηεξίνπ εθηειεί εμαλαγθαζκέλε ηαιάλησζε. Η

Διαβάστε περισσότερα

Ασκήσειρ μησανικών ταλαντώσεων. 1. Σώκα κάδαο m = 4 kg εθηειεί α.α.η. κε εμίζωζε απνκάθξπλζεο:

Ασκήσειρ μησανικών ταλαντώσεων. 1. Σώκα κάδαο m = 4 kg εθηειεί α.α.η. κε εμίζωζε απνκάθξπλζεο: Ασκήσειρ μησανικών ταλαντώσεων 1. Σώκα κάδαο m = 4 kg εθηειεί α.α.η. κε εμίζωζε απνκάθξπλζεο: x = 8ημ(πt+π/6) 1. Να ππνινγίζεηε ηε ζηαζεξά επαλαθνξάο ηνπ. 2. Να παξαζηήζεηε γξαθηθά ηελ απνκάθξπλζή ηνπ

Διαβάστε περισσότερα

Τράπεζα θεμάηων Θεηικού Προζαναηολιζμού. Συνδυαζηικά θέμαηα με : Κυκλική κίνηζη και ορμή

Τράπεζα θεμάηων Θεηικού Προζαναηολιζμού. Συνδυαζηικά θέμαηα με : Κυκλική κίνηζη και ορμή Τράπεζα θεμάηων Θεηικού Προζαναηολιζμού Κεθ. 2 Θέμα Δ Συνδυαζηικά θέμαηα με : Κυκλική κίνηζη και ορμή 1. Μηα ξάβδνο κήθνπο R = 1 m θαη ακειεηέαο κάδαο βξίζθεηαη πάλσ ζε ιείν νξηδόληην επίπεδν (θάηνςε ηνπ

Διαβάστε περισσότερα

Ύλη: Έργο - Ενέργεια

Ύλη: Έργο - Ενέργεια ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 32 Ον/μο:... Α Λσκείοσ Ύλη: Έργο - Ενέργεια 22-3-2015 Θέμα 1 ο : 1. Τν έξγν ηνπ βάξνπο ελόο ζώκαηνο: α) Δίλαη πάληα ίζν κε κεδέλ όηαλ ην ζώκα θηλείηαη επζύγξακκα. β) Απμάλεηαη ζηελ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ στα ΚΕΦΑΛΑΙΑ 1.2 και 1.3 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΗΜΕΡΟΜΗΝΙΑ : ΘΕΜΑ 1 A. Να δηαηππώζεηε ην δεύηεξν λόκν ηνπ Νεύησλα κε ιόγηα θαη λα γξάςεηε ηελ αληίζηνηρε καζεκαηηθή ζρέζε (ηύπν) πνπ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΣΑΞΗ: ΦΤΙΚΗ / Α ΛΤΚΔΙΟΤ ΔΙΡΑ: ΗΜΔΡΟΜΗΝΙΑ: 24/02/2013 ΛΤΔΙ ΘΔΜΑ A

ΜΑΘΗΜΑ / ΣΑΞΗ: ΦΤΙΚΗ / Α ΛΤΚΔΙΟΤ ΔΙΡΑ: ΗΜΔΡΟΜΗΝΙΑ: 24/02/2013 ΛΤΔΙ ΘΔΜΑ A ΜΑΘΗΜΑ / ΣΑΞΗ: ΦΤΙΚΗ / Α ΛΤΚΔΙΟΤ ΔΙΡΑ: ΗΜΔΡΟΜΗΝΙΑ: 24/02/2013 ΘΔΜΑ A ΛΤΔΙ ηις ημιηελείς προηάζεις Α 1 -Α 4 να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό ηης πρόηαζης και δίπλα ηο γράμμα ποσ ανηιζηοιτεί ζηη θράζη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη Δσναμική

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη Δσναμική ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη - 7-2-2016 Δσναμική Θέμα 1 ο : 1) Έλα ζώκα θηλείηαη ζε επζεία γξακκή θαη κεηαηνπίδεηαη από ηε ζέζε ρ 1 = +10 m ζηε ζέζε ρ 2 = -10 m. Η κεηαηόπηζε

Διαβάστε περισσότερα

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 31. Ύλη:Εσθύγραμμη Κίνηζη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 31. Ύλη:Εσθύγραμμη Κίνηζη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 31 Ον/μο:.. A Λσκείοσ Ύλη:Εσθύγραμμη Κίνηζη 9-11-2014 Θέμα 1 ο : 1. Έλα ζώκα θηλείηαη ζε επζεία γξακκή θαη κεηαηνπίδεηαη από ηε ζέζε ρ 1 = +2m ζηε ζέζε ρ 2 = -2m. Πνηα από ηηο επόκελεο

Διαβάστε περισσότερα

1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h.

1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h. ΦΤΙΚΗ A ΛΤΚΔΙΟΤ ΓΙΑΡΚΔΙΑ: 10min ΣΜΗΜΑ:. ONOMA:. ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ 1 ο ΘΔΜΑ ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ A: 1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s

Διαβάστε περισσότερα

Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο

Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ: 1. Η ηαιάλησζε είλαη

Διαβάστε περισσότερα

ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ

ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ Σε όια ηα πξνβιήκαηα πνπ ζα αληηκεηωπίζνπκε, ην ειαηήξην ζα είλαη αβαξέο θαη ζα ηθαλνπνηεί ην λόκν ηνπ Hooke (ηδαληθό ειαηήξην), δειαδή ε δύλακε πνπ αζθεί έλα ηδαληθό ειαηήξην έρεη

Διαβάστε περισσότερα

Φροντιστηριακός όμιλος ΟΡΟΣΗΜΟ

Φροντιστηριακός όμιλος ΟΡΟΣΗΜΟ Φροντιστηριακός όμιλος Β.1 Σηο πιο κάηυ διάγπαμμα παπιζηάνονηαι ηπειρ πεπιπηώζειρ Α, Β και Γ ανηιζηπεπηών μεηαβολών ηιρ οποίερ μποπεί να ςποζηεί ποζόηηηα ιδανικού αεπίος. p (kn/m ) 5 A 4 3 B 1 0 0 4 6

Διαβάστε περισσότερα

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη ΛΤΜΔΝΔ ΑΚΖΔΗ ΣΖΝ ΔΤΡΔΖ ΑΡΥΗΚΖ ΦΑΖ 1. Η αιή αξκνληθή ηαιάλησζε ν εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη ιάηνο Α = cm θαη ζρλόηεηα f = 5 Hz. Τε ρξνληθή ζηηγκή = ην κηθξό ζώκα δηέξρεηαη αό ηε ζέζε ανκάθξλζεο

Διαβάστε περισσότερα

ΜΕΣΑΣΟΠΙΗ ΕΤΘΤΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΗ

ΜΕΣΑΣΟΠΙΗ ΕΤΘΤΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΗ ΜΕΣΑΣΟΠΙΗ ΕΤΘΤΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΗ 1. 10078, 9136, 10821 Β 1. Η ζέζε ελόο ζώκαηνο, πνπ θηλείηαη επζύγξακκα θαηά κήθνο ελόο πξνζαλαηνιηζκέλνπ άμνλα x'x, δίλεηαη ζε θάζε ρξνληθή ζηηγκή από ηελ εμίζσζε x =

Διαβάστε περισσότερα

66. Ομογενής ράβδος ποσ περιζηρέθεηαι

66. Ομογενής ράβδος ποσ περιζηρέθεηαι 1 66. Ομογενής ράβδος ποσ περιζηρέθεηαι Λεπηή νκνγελήο ξάβδνο Α κήθνπο L=1 θαη κάδαο Μ=Kg, κπνξεί λα ζηξέθεηαη ζε θαηαθόξπθν επίπεδν ρωξίο ηξηβέο γύξω από νξηδόληην άμνλα πνπ πεξλά από ην άθξν ηεο Α. Σην

Διαβάστε περισσότερα

ΘΔΜΑ Β Β1. Τν κέηξν ηεο επηηάρπλζεο ηεο βαξύηεηαο ζηελ επηθάλεηα ηεο Σειήλεο, ε νπνία δελ έρεη

ΘΔΜΑ Β Β1. Τν κέηξν ηεο επηηάρπλζεο ηεο βαξύηεηαο ζηελ επηθάλεηα ηεο Σειήλεο, ε νπνία δελ έρεη ΘΔΜΑ Β Β1. Τν κέηξν ηεο επηηάρπλζεο ηεο βαξύηεηαο ζηελ επηθάλεηα ηεο Σειήλεο, ε νπνία δελ έρεη αηκόζθαηξα, είλαη έμη θνξέο κηθξόηεξν από απηό ζηελ επηθάλεηα ηεο Γεο Α) Να επηιέμεηε ηελ ζσζηή απάληεζε.

Διαβάστε περισσότερα

ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΠΑΡΑΔΕΙΓΜΑ 1 Σώκα Α κάδαο m 1 = 1 kg θηλείηαη κε ηαρύηεηα π 1 = 4 m/s πάλσ ζε ιείν νξηδόληην επίπεδν θαη ζπγθξνύεηαη κεησπηθά θαη ειαζηηθά κε αθίλεην ζώκα Β κάδαο m = 3 kg. Σηε ζπλέρεηα,

Διαβάστε περισσότερα

Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Κπούζειρ 1 ο Φςλλάδιο

Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Κπούζειρ 1 ο Φςλλάδιο Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Κπούζειρ ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ:. Κεληξηθή θξνύζε, νλνκάδνπκε

Διαβάστε περισσότερα

Φυσική Προσανατολισμού

Φυσική Προσανατολισμού Φυσική Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου «Θέμα Β» Τα Διαγωνίσματα έχουν δύο ερωτήματα (πολλαπλής επιλογής με αιτιολόγηση). Σε αρκετά από τα διαγωνίσματα το ένα ερώτημα είναι από τα Κεφάλαια της

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΘΔΜΑ Β. Α) Να επηιέμεηε ηε ζσζηή πξόηαζε. Τα κέηξα ς Α θαη ς Β ησλ ηαρπηήησλ ηθαλνπνηνύλ ηε ζρέζε: β) Α. Β) Να αηηηνινγήζεηε ηελ επηινγή ζαο.

ΟΡΟΣΗΜΟ ΘΔΜΑ Β. Α) Να επηιέμεηε ηε ζσζηή πξόηαζε. Τα κέηξα ς Α θαη ς Β ησλ ηαρπηήησλ ηθαλνπνηνύλ ηε ζρέζε: β) Α. Β) Να αηηηνινγήζεηε ηελ επηινγή ζαο. ΘΔΜΑ Β Β1) Από έλα ζεκείν ηνπ εδάθνπο εθηνμεύνπκε θαηαθόξπθα πξνο ηα πάλσ κηα πέηξα. Η πέηξα θηλείηαη θαηαθόξπθα, θηάλεη ζε ύςνο 6 m από ην έδαθνο θαη ζηε ζπλέρεηα πέθηεη ζην έδαθνο αθξηβώο ζην ζεκείν

Διαβάστε περισσότερα

Μια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε.

Μια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε. Μια μεταβαλλόμενη κυκλική κίνηση. Φ.Ε. ) Έλα ζώκα εξεκεί ζε ιείν νξηδόληην επίπεδν. Σε κηα ζηηγκή αζθείηαη πάλσ ηνπ κηα νξηδόληηα ζηαζεξή δύλακε F, όπσο ζην ζρήκα. i) Σε πνηα δηεύζπλζε ζα θηλεζεί ην ζώκα;

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΘΔΜΑ Β. Μονάδες 4. Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 8

ΟΡΟΣΗΜΟ ΘΔΜΑ Β. Μονάδες 4. Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 8 ΘΔΜΑ Β Β 1. Σηε δηπιαλή εηθόλα παξηζηάλεηαη ην δηάγξακκα ηαρύηεηαο ρξόλνπ ελόο θηλεηνύ, πνπ εθηειεί επζύγξακκε νκαιά κεηαβαιιόκελε θίλεζε. Α) Να επηιέμεηε ηελ ζωζηή απάληεζε. Από ην δηάγξακκα απηό, γλωξίδνληαο

Διαβάστε περισσότερα

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Κρούζεις Θερμοδσναμική

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Κρούζεις Θερμοδσναμική ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Β Λσκείοσ Ύλη: Καμπσλόγραμμες κινήζεις Προζαναηολιζμού Κρούζεις Θερμοδσναμική 7-2-2016 Θέμα 1 ο : 1) Μηα πνζόηεηα κνλναηνκηθνύ αεξίνπ εθηνλώλνλεηαη από κηα αξρηθή θαηάζηαζε

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Άρης Ασλανίδης ΘΕΜΑΤΑ (10794-10844) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΔΥΘΥΝΣΗΣ / Γ ΛΥΚΔΙΟΥ ΣΔΙΡΑ: 1η ΘΔΡΙΝΑ ΗΜΔΡΟΜΗΝΙΑ: 10/02/13

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΔΥΘΥΝΣΗΣ / Γ ΛΥΚΔΙΟΥ ΣΔΙΡΑ: 1η ΘΔΡΙΝΑ ΗΜΔΡΟΜΗΝΙΑ: 10/02/13 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΔΥΘΥΝΣΗΣ / Γ ΛΥΚΔΙΟΥ ΣΔΙΡΑ: 1η ΘΔΡΙΝΑ ΗΜΔΡΟΜΗΝΙΑ: 10/0/13 ΘΔΜΑ A Σηις ημιηελείς προηάζεις Α 1 -Α 4 να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό ηης πρόηαζης

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Άρης Ασλανίδης ΘΕΜΑΤΑ (9654-10108) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση

Διαβάστε περισσότερα

Ερωτήςεισ Γ. Γ. A. 8J B. 32J Γ. 16J Γ. 4J. 3. Τν έξγν κηαο δύλακεο: Α. είλαη δηαλπζκαηηθό θπζηθό κέγεζνο. Β. είλαη πάληα ζεηηθό.

Ερωτήςεισ Γ. Γ. A. 8J B. 32J Γ. 16J Γ. 4J. 3. Τν έξγν κηαο δύλακεο: Α. είλαη δηαλπζκαηηθό θπζηθό κέγεζνο. Β. είλαη πάληα ζεηηθό. 18 Ερωτήςεισ 1. Η γξαθηθή παξάζηαζε ηνπ έξγνπ ηεο ζηαζεξήο ζπληζηακέλεο δύλακεο πνπ δέρεηαη ζεκεηαθό αληηθείκελν ζε ζπλάξηεζε κε ηελ αιγεβξηθή ηηκή ηεο κεηαηόπηζήο ηνπ είλαη: W W A. B. Γx Γx W W Γ. Γ.

Διαβάστε περισσότερα

αζθείηαη ζηαζεξή νξηδόληηα δύλακε κέηξνπ F. Όηαλ ην θηβώηην έρεη κεηαηνπηζηεί θαηά x έρεη απνθηήζεη

αζθείηαη ζηαζεξή νξηδόληηα δύλακε κέηξνπ F. Όηαλ ην θηβώηην έρεη κεηαηνπηζηεί θαηά x έρεη απνθηήζεη 1. 10079 B 1. Κηβώηην βξίζθεηαη αθίλεην ζε ιείν νξηδόληην επίπεδν ζηε ζέζε x=0 ηνπ πξνζαλαηνιηζκέλνπ άμνλα xx. Σε ρξνληθή ζηηγκή t = 0 s ζην θηβώηην αζθείηαη νξηδόληηα δύλακε ε ηηκή ηεο νπνίαο ζε ζπλάξηεζε

Διαβάστε περισσότερα

ΘΔΜΑ B Β1. Γύν πέηξεο Α, θαη Β αθήλνληαη αληίζηνηρα από ηα ύςε h A, h B πάλσ από ην έδαθνο λα

ΘΔΜΑ B Β1. Γύν πέηξεο Α, θαη Β αθήλνληαη αληίζηνηρα από ηα ύςε h A, h B πάλσ από ην έδαθνο λα 1.10079 B 2 Γπν όκνηεο κηθξέο ζθαίξεο, αθήλνληαη ηαπηόρξνλα ηε ρξνληθή ζηηγκή t=0, λα εθηειέζνπλ ειεύζεξε πηώζε, από δπν δηαθνξεηηθά ύςε πάλσ από ην έδαθνο Η πξώηε ζθαίξα θηάλεη ζην έδαθνο ηε ρξνληθή ζηηγκή

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΘΚΗ A ΛΥΚΕΘΟΥ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΘΚΗ A ΛΥΚΕΘΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΘΚΗ A ΛΥΚΕΘΟΥ ΘEMA Α: Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μηα κνηνζπθιέηα θη έλα θνξηεγό ζπγθξνύνληαη. Καηά ηε δηάξθεηα ηεο ζύγθξνπζεο: i.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ (10111-10793)

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ (10111-10793) ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ (10111-10793) Συγγραφή λύσεων: Άρης Ασλανίδης Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

ΟΡΗΕΟΝΣΗΑ ΒΟΛΖ-ΑΝΔΞΑΡΣΖΗΑ ΚΗΝΖΔΩΝ

ΟΡΗΕΟΝΣΗΑ ΒΟΛΖ-ΑΝΔΞΑΡΣΖΗΑ ΚΗΝΖΔΩΝ ΟΡΗΕΟΝΣΗΑ ΒΟΛΖ-ΑΝΔΞΑΡΣΖΗΑ ΚΗΝΖΔΩΝ 1) Μηα κπάια βάιιεηαη κε νξηδόληηα ηαρύηεηα 20 m/s θαη ηε ζηηγκή πνπ θζάλεη ζην έδαθνο ε ηαρύηεηά ηεο ζρεκαηίδεη γσλία 45 κε ηελ νξηδόληηα δηεύζπλζε. Πνην είλαη ην ύςνο

Διαβάστε περισσότερα

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων Είμαζηε ηυχεροί που είμαζηε δάζκαλοι 58 Β Λςκείος Γεν. Παιδείαρ 9-11-2014 Θέμα 1 ο : 1. Γύν ζεηηθά θνξηία πνπ βξίζθνληαη ζε απόζηαζε

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Άρης Ασλανίδης ΘΕΜΑΤΑ (10850-10969) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

2 ος και 3 ος ΝΟΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ

2 ος και 3 ος ΝΟΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ 2 ος και 3 ος ΝΟΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ 1. 10077 Β 1. Γύν κηθξνί θύβνη Σ 1 θαη Σ 2 κε κάδεο m 1 θαη m 2 κε m 2 = m 1 είλαη αξρηθά αθίλεηνη πάλσ ζε ιείν νξηδόληην δάπεδν θαη απέρνπλ απόζηαζε d. Τε ρξνληθή ζηηγκή

Διαβάστε περισσότερα

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΦΤΛΛΟ ΕΡΓΑΙΑ (Θεοδώρα Γιώηη, Νικόλας Καραηάζιος- Τπεύθσνη εκ/κος Λ. Παπαηζίμπα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:.., ΗΜΕΡΟΜΗΝΙΑ:.// Σε ακαμίδην πνπ κπνξεί λα θηλείηαη ρσξίο ηξηβέο πάλσ

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΘΕΜΑ Β B 1. Α) Να επιλέξετε τη σωστή απάντηση.

ΟΡΟΣΗΜΟ ΘΕΜΑ Β B 1. Α) Να επιλέξετε τη σωστή απάντηση. ΘΕΜΑ Β B 1. Αυτοκίνητο είναι αρχικά ακίνητο σε οριζόντιο δρομο. Ο οδηγός του αυτοκινήτου τη χρονική στιγμή t=0, πατώντας το γκάζι αρχίζει να επιταχύνει το αυτοκίνητο με σταθερή επιτάχυνση. Τη χρονική στιγμή

Διαβάστε περισσότερα

ΘΔΜΑ Β Β1. Μονάδες 6 Μονάδες 6 2. Μονάδες 4 Μονάδες 9

ΘΔΜΑ Β Β1. Μονάδες 6 Μονάδες 6 2. Μονάδες 4 Μονάδες 9 ΘΔΜΑ Β Β 1. Έλαο κεηεσξίηεο πέθηεη θαηαθόξπθα πξνο ηε γε. Α) Όηαλ ν κεηεσξίηεο βξίζθεηαη ζε έλα ζεκείν εθηόο ηεο αηκόζθαηξαο λα ζρεδηάζεηε ηηο δπλάκεηο αιιειεπίδξαζεο Γεο - κεηεσξίηε θαη λα ζπγθξίλεηε

Διαβάστε περισσότερα

ΓΙΑΡΚΔΙΑ: 180min ΣΜΗΜΑ:. ONOMA/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΘΔΜΑ 1 ο ΘΔΜΑ 2 ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΜΟΝΑΓΔ

ΓΙΑΡΚΔΙΑ: 180min ΣΜΗΜΑ:. ONOMA/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΘΔΜΑ 1 ο ΘΔΜΑ 2 ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΜΟΝΑΓΔ Γ ΛΤΚΔΙΟΤ ΦΤΙΚΗ ΚΑΣΔΤΘΤΝΗ ΓΙΑΡΚΔΙΑ: 180min ΣΜΗΜΑ:. ONOMA/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΘΔΜΑ 1 ο ΘΔΜΑ 2 ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΜΟΝΑΓΔ ΘΔΜΑ Α: 1. Έλαο αξκνληθόο ηαιαλησηήο εθηειεί εμαλαγθαζκέλε ηαιάλησζε. Όηαλ

Διαβάστε περισσότερα

Οδηγία: Να γπάτεηε ζηο ηεηπάδιό ζαρ ηον απιθμό καθεμιάρ από ηιρ παπακάηυ επυηήζειρ Α1-Α4 και δίπλα ηο γπάμμα πος ανηιζηοισεί ζηη ζυζηή απάνηηζη.

Οδηγία: Να γπάτεηε ζηο ηεηπάδιό ζαρ ηον απιθμό καθεμιάρ από ηιρ παπακάηυ επυηήζειρ Α1-Α4 και δίπλα ηο γπάμμα πος ανηιζηοισεί ζηη ζυζηή απάνηηζη. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΘΔΜΑ Α Οδηγία: Να γπάτεηε ζηο ηεηπάδιό ζαρ ηον απιθμό καθεμιάρ από ηιρ παπακάηυ επυηήζειρ Α-Α4 και

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 1. α) ηηο ηαρύηεηεο ησλ ζθαηξώλ κεηά ηελ θξνύζε. β) ην κέηξν ηεο κεηαβνιήο ηεο νξκήο ηεο ζθαίξαο 1 θαηά ηε θξνύζε, αλ m 1 = 1kg.

ΠΑΡΑΔΕΙΓΜΑ 1. α) ηηο ηαρύηεηεο ησλ ζθαηξώλ κεηά ηελ θξνύζε. β) ην κέηξν ηεο κεηαβνιήο ηεο νξκήο ηεο ζθαίξαο 1 θαηά ηε θξνύζε, αλ m 1 = 1kg. ΠΛΑΓΙΕ ΚΡΟΥΕΙ ΠΑΡΑΔΕΙΓΜΑ 1 θαίξα 1, κάδαο m 1 θηλείηαη κε ηαρύηεηα π 1 = 3 m/s θαη ζπγθξνύεηαη έθθεληξα θαη ειαζηηθά κε άιιε ζθαίξα κάδαο m =m 1 πνπ αξρηθά εξεκεί. Μεηά ηελ θξνύζε ε 1 θηλείηαη κε ηαρύηεηα

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )

ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ: /0/03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΔΜΑ Α ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑΣΩΝ Α.

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

ΘΔΜΑ Β Β1. Μονάδες 4 Β) Μονάδες 8 Β2. F α) Μονάδες 4 Β) Μονάδες 9

ΘΔΜΑ Β Β1. Μονάδες 4 Β) Μονάδες 8 Β2. F α) Μονάδες 4 Β) Μονάδες 9 ΘΔΜΑ Β Β1. Ο Μάξηνο πνπ έρεη κάδα 20 Kg κε ηε κακά ηνπ πνπ έρεη κάδα 60 Κg θάλνπλ παηηλάδ ζηνλ πάγν. Κάπνηα ζηηγκή, από απξνζεμία, ζπγθξνύνληαη κε απνηέιεζκα λα αθηλεηνπνηεζνύλ θαη νη δπν. Α) Να επηιέμηε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ. G. Mitsou

ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ. G. Mitsou ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ηαηηθή ηωλ ξεπζηώλ (Τδξνζηαηηθή) Ση είλαη ηα ξεπζηά - Γεληθά Ππθλόηεηα Πίεζε Μεηαβνιή ηεο πίεζεο ζπλαξηήζεη ηνπ βάζνπο Αξρή ηνπ Pascal Τδξνζηαηηθή πίεζε Αηκνζθαηξηθή πίεζε Απόιπηε &

Διαβάστε περισσότερα

Ερωηήζεις πολλαπλής επιλογής 1. Καηά ηελ θεληξηθή αλειαζηηθή θξνύζε δύν ζθαηξώλ (νη νπνίεο θαηά ηε δηάξθεηα ηεο θξνύζεο απνηεινύλ κνλσκέλν ζύζηεκα),

Ερωηήζεις πολλαπλής επιλογής 1. Καηά ηελ θεληξηθή αλειαζηηθή θξνύζε δύν ζθαηξώλ (νη νπνίεο θαηά ηε δηάξθεηα ηεο θξνύζεο απνηεινύλ κνλσκέλν ζύζηεκα), Ερωηήζεις πολλαπλής επιλογής 1. Καηά ηελ θεληξηθή αλειαζηηθή θξνύζε δύν ζθαηξώλ (νη νπνίεο θαηά ηε δηάξθεηα ηεο θξνύζεο απνηεινύλ κνλσκέλν ζύζηεκα), δηαηεξείηαη ζηαζεξή : α. ε θηλεηηθή ελέξγεηα θάζε ζθαίξαο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη: Κινητική 1 Α Λυκείου Γεν. Παιδείας 13-11-11 Θέμα 1 ο : Δπηιέμηε ηε ζωζηή απάληεζε: 1.Σηελ επζύγξακκε νκαιά επηηαρπλόκελε θίλεζε ε επηηάρπλζε ελόο θηλεηνύ είλαη: α)αλάινγε

Διαβάστε περισσότερα

Β. Η θακππιόγξακκε θίλεζε πιηθνύ ζεκείνπ

Β. Η θακππιόγξακκε θίλεζε πιηθνύ ζεκείνπ Β. Η θακππιόγξακκε θίλεζε πιηθνύ ζεκείνπ Β.1 Γεληθά γηα ηελ θακππιόγξακκε θίλεζε 1. Πνηα θίλεζε ιέγεηαη θακππιόγξακκε; Κακππιόγξακκε είλαη ε θίλεζε ζηελ νπνία ε ηξνρηά είλαη θακπύιε. 2. Πώο νξίδεηαη θαη

Διαβάστε περισσότερα

ΘΕΜΑΣΑ ΕΞΕΣΑΕΩΝ. β. f. δ. fa. ΘΕΜΑ 1ο 5. ε. Σν θαηλόκελν Doppler ηζρύεη θαη ζηελ πεξίπηωζε ηωλ ειεθηξνκαγλεηηθώλ θπκάηωλ.

ΘΕΜΑΣΑ ΕΞΕΣΑΕΩΝ. β. f. δ. fa. ΘΕΜΑ 1ο 5. ε. Σν θαηλόκελν Doppler ηζρύεη θαη ζηελ πεξίπηωζε ηωλ ειεθηξνκαγλεηηθώλ θπκάηωλ. ΘΕΜΑΣΑ ΕΞΕΣΑΕΩΝ ΘΕΜΑ ο. Παξαηεξεηήο πιεζηάδεη κε ζηαζεξή ηαρύηεηα αθίλεηε ερεηηθή πεγή θαη αληηιακβάλεηαη ήρν ζπρλόηεηαο f. Αλ ε ηαρύηεηα ηνπ ήρνπ ζηνλ αέξα είλαη, ηόηε ε ζπρλόηεηα f S ηνπ ήρνπ πνπ εθπέκπεη

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.

Διαβάστε περισσότερα

α) Γηα έλα ζηεξεό ην νπνίν πεξηζηξέθεηαη γύξω από ζηαζεξό άμνλα ζπκκεηξίαο, ηζρύεη όηη ε δηεύζπλζε ηεο ζηξνθνξκήο L είλαη απηή ηνπ ζρήκαηνο.

α) Γηα έλα ζηεξεό ην νπνίν πεξηζηξέθεηαη γύξω από ζηαζεξό άμνλα ζπκκεηξίαο, ηζρύεη όηη ε δηεύζπλζε ηεο ζηξνθνξκήο L είλαη απηή ηνπ ζρήκαηνο. ΡΟΠΗ ΟΡΜΗ ΣΡΟΦΟΡΜΗ ΡΟΠΗ ΑΔΡΑΝΕΙΑ 1. Η πιαηθόξκα ελόο pickup (είλαη θπιηλδξηθόο δίζθνο κάδαο 1,5 Kg θαη δηακέηξνπ 32 cm) πεξηζηξέθεηαη ζηηο 33 ζηξνθέο αλά ιεπηό. Να ππνινγηζηνύλ α) ε ζηξνθνξκή L ηεο πιαηθόξκαο,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη: Στερεό Γ Λσκείοσ Θετ.-Τετν Κατ. -- Θέμα ο :.Δίζθνο αθηίλαο R=0,m θπιά ρωξίο νιίζζεζε από ηελ θνξπθή θεθιηκέλνπ επηπέδνπ.αλ ην κέηξν ηεο γωληαθήο ηαρύηεηαο ηνπ δίζθνπ

Διαβάστε περισσότερα

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Αντώνης Σαρηγιάννης ΘΕΜΑΤΑ (5052-5216) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

Ονομαηεπώνυμο: Μάθημα: Υλη: Δπιμέλεια διαγωνίζμαηος: Αξιολόγηζη :

Ονομαηεπώνυμο: Μάθημα: Υλη: Δπιμέλεια διαγωνίζμαηος: Αξιολόγηζη : Ονομαηεπώνυμο: Μάθημα: Υλη: Δπιμέλεια διαγωνίζμαηος: Αξιολόγηζη : Θέμα Α. Σηιρ επωηήζειρ πολλαπλήρ επιλογήρ πος ακολοςθούν ζημειώζηε ζηο γπαπηό ζαρ ηον απιθμό ηηρ επώηηζηρ και δίπλα ηην ένδειξη ηηρ ζωζηήρ

Διαβάστε περισσότερα

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία

Διαβάστε περισσότερα

Τράπεζα θεμάτων Θετικού Προςανατολιςμού. Συνδυαζηικά θέμαηα με : Οριζόνηια Βολή και ορμή

Τράπεζα θεμάτων Θετικού Προςανατολιςμού. Συνδυαζηικά θέμαηα με : Οριζόνηια Βολή και ορμή Τράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 2 Θέμα Δ Συνδυαζηικά θέμαηα με : Οριζόνηια Βολή και ορμή 1. Τε ρξνληθή ζηηγκή t o = 0 ζώκα κάδαο m 1 = 0,4 kg βάιιεηαη νξηδόληηα κε ηαρύηεηα κέηξνπ υ 1 = 30

Διαβάστε περισσότερα

ΘΔΜΑ Β. , ηθαλνπνηνύλ ηε ζρέζε: α) s A. Β) Να αηηηνινγήζεηε ηελ επηινγή ζαο. ΘΔΜΑ Γ

ΘΔΜΑ Β. , ηθαλνπνηνύλ ηε ζρέζε: α) s A. Β) Να αηηηνινγήζεηε ηελ επηινγή ζαο. ΘΔΜΑ Γ ΘΔΜΑ Β Β1) Έλαο αιεμηπησηηζηήο πνπ έρεη καδί κε ηνλ εμνπιηζκό ηνπ ζπλνιηθή κάδα Μ, πέθηεη από αεξνπιάλν πνπ πεηάεη ζε ύςνο Η. Αθνύ αλνίμεη ην αιεμίπησην, θηλνύκελνο γηα θάπνην ρξνληθό δηάζηεκα κε ζηαζεξή

Διαβάστε περισσότερα

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12 ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα

Διαβάστε περισσότερα

α) νκαιή θίλεζε β) επηηαρπλόκελε θίλεζε γ) επηβξαδπλόκελε θίλεζε Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 8

α) νκαιή θίλεζε β) επηηαρπλόκελε θίλεζε γ) επηβξαδπλόκελε θίλεζε Μονάδες 4 Β) Να δηθαηνινγήζεηε ηελ επηινγή ζαο. Μονάδες 8 ΘΔΜΑ Β Β 1. Έλαο ζθηέξ θηλείηαη επζύγξακκα ζε νξηδόληηα πίζηα. Σηε δηπιαλή εηθόλα παξηζηάλεηαη ην δηάγξακκα ηεο ζέζεο ηνπ ζθηέξ ζε ζπλάξηεζε κε ην ρξόλν. Α) Να επηιέμεηε ηελ ζσζηή απάληεζε. Από ην δηάγξακκα

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ Αρχική θάζε Οη ζρέζεηο x= Aεκσt π = π max ζπλσt α = - α max εκσt ηζρύνπλ, όηαλ ηε ρξνληθή ζηηγκή t=0 ην ζώκα δηέξρεηαη από ηε ζέζε ηζνξξνπίαο (x=0) θαη θηλείηαη θαηά

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες Καηά ηελ ειαζηηθή θξνύζε δύν ζσκάησλ :

Μονάδες 5. Μονάδες Καηά ηελ ειαζηηθή θξνύζε δύν ζσκάησλ : 52 Υρόνια ΦΡΟΝΣΙΣΗΡΙΑ ΜΔΗ ΔΚΠΑΙΓΔΤΗ ΑΒΒΑΪΓΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΣΙ : Φιλολάοσ & Δκφαντίδοσ 26 : Σηλ.: 2107601470 ΓΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ 2012 Θέμα 1 ο 1. Αξκνληθό θύκα ζπρλόηεηαο f = 200Hz

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο : ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη

Διαβάστε περισσότερα

Απιή αξκνληθή ηαιάλησζε

Απιή αξκνληθή ηαιάλησζε Απι αξκνληθ ηαιάλησζε Βαζηθνί ηύπνη Σώκα κάδαο m εθηειεί απι αξκνληθ ηαιάληωζε κε πιάηνο Α θαη γωληαθ ζπρλόηεηα ω. Τε ρξνληθ ζηηγκ t ην ζώκα πεξλά από ηε ζέζε ηζνξξνπίαο ηνπ κε ηαρύηεηα ζεηηθ. Εμίζωζε

Διαβάστε περισσότερα

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή

Διαβάστε περισσότερα

β) ην πνζνζηό ηεο θηλεηηθήο ελέξγεηαο ηνπ βιήκαηνο πνπ κεηαβηβάδεηαη ζην ζώκα Μ. Γp 2 =40 kg.m/s, F 1 =- 4000N, F 2 = 4000N ε.40 m

β) ην πνζνζηό ηεο θηλεηηθήο ελέξγεηαο ηνπ βιήκαηνο πνπ κεηαβηβάδεηαη ζην ζώκα Μ. Γp 2 =40 kg.m/s, F 1 =- 4000N, F 2 = 4000N ε.40 m ΑΝΕΛΑΣΙΚΗ - ΠΛΑΣΙΚΗ ΚΡΟΤΗ ΠΑΡΑΔΕΙΓΜΑ 1 Βιήκα κάδαο m=0,4 kg θηλείηαη νξηδόληηα κε ηαρύηεηα π 1 =400 m/s. Σν βιήκα ζηελ πνξεία ηνπ ζπλαληάεη ζώκα κάδαο Μ= kg πνπ ήηαλ αθίλεην ζε νξηδόληην. επίπεδν, ην δηαπεξλά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη

Διαβάστε περισσότερα

ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ

ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ 1. 10077, 10793 Β 2. Έλα απηνθίλεην θηλείηαη επζύγξακκα νκαιά. Έλα αθίλεην πεξηπνιηθό, κόιηο πεξλά ην απηνθίλεην από κπξνζηά ηνπ, αξρίδεη λα ην θαηαδηώθεη κε ζηαζεξή επηηάρπλζε. Α)

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΤΣΗΜΑ 2014 Θ Ε Ω Ρ Ι Α 10

ΜΕ ΝΕΟ ΤΣΗΜΑ 2014 Θ Ε Ω Ρ Ι Α 10 1 ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΣΑΕΙ ΥΤΙΚΗ Α ΛΤΚΕΙΟΤ ΜΕ ΝΕΟ ΤΣΗΜΑ 014 Θ Ε Ω Ρ Ι Α 10 ΘΕΜΑ Α.1 Α1. Να χαρακηηρίζεηε με (Σ) ηις ζωζηές και με (Λ) ηις λανθαζμένες προηάζεις Σηελ επζύγξακκα νκαιά επηβξαδπλόκελε θίλεζε: Α.

Διαβάστε περισσότερα

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 61 Ον/μο:.. Β Λσκείοσ Ύλη: Ηλεκηρικό ρεύμα Το Φως Γενικής Παιδείας 22-3-2015 Θέμα 1 ο : 1. Μία ειεθηξηθή ζπζθεπή ιεηηνπξγεί γηα ρξνληθή δηάξθεηα 0,5h θαη θαηαλαιώλεη 2kWh ειεθηξηθήο

Διαβάστε περισσότερα

ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ

ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Θέμα Α Σηηο εξσηήζεηο 1-4, λα επηιέμεηε ηε ζσζηή απάληεζε: Α1. Έλα ζώκα εθηειεί απιή αξκνληθή ηαιάλησζε κε ζπρλόηεηα f. Ζ ζπρλόηεηα πνπ κεηαβάιιεηαη ε θηλεηηθή ελέξγεηα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και

Διαβάστε περισσότερα

3 ΑΠΙΔ ΑΘΖΔΗ ΘΟΚΟΙΟΓΗΑ ΠΟΤ ΑΛΣΗΚΔΣΩΠΗΕΟΛΣΑΗ ΚΔ ΦΤΗΘΖ ΘΑΗ ΚΑΘΖΚΑΣΗΘΑ ΙΤΘΔΗΟΤ

3 ΑΠΙΔ ΑΘΖΔΗ ΘΟΚΟΙΟΓΗΑ ΠΟΤ ΑΛΣΗΚΔΣΩΠΗΕΟΛΣΑΗ ΚΔ ΦΤΗΘΖ ΘΑΗ ΚΑΘΖΚΑΣΗΘΑ ΙΤΘΔΗΟΤ 3 ΑΠΙΔ ΑΘΖΔΗ ΘΟΚΟΙΟΓΗΑ ΠΟΤ ΑΛΣΗΚΔΣΩΠΗΕΟΛΣΑΗ ΚΔ ΦΤΗΘΖ ΘΑΗ ΚΑΘΖΚΑΣΗΘΑ ΙΤΘΔΗΟΤ ΘΔΩΡΖΣΗΘΟ ΤΠΟΒΑΘΡΟ: Γηα ηελ ιύζε ηωλ αζθζεωλ πνπ αθνινπζνύλ ζα ρξεηαζζνύκε: 1. Σελ (δηάζεκε) εμίζωζε ηνπ ΔΗΛΣΔΗΛ: E c. Σνλ λόκν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύιε: Ταιαληώζεηο-Κξνύζεηο Σηεξεό Σώκα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύιε: Ταιαληώζεηο-Κξνύζεηο Σηεξεό Σώκα ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ολ/κν:... Γ Λπθείνπ Ύιε: Ταιαληώζεηο-Κξνύζεηο- 7-2-2016 Σηεξεό Σώκα Θέκα 1 ν : 1) Ο ζπληνληζκόο είλαη κηα θαηάζηαζε εμαλαγθαζκέλεο ηαιάλησζεο ζηελ νπνία: α) ε ζπρλόηεηα ηνπ δηεγέξηε

Διαβάστε περισσότερα

1.1 Εςθύγπαμμη κίνηζη

1.1 Εςθύγπαμμη κίνηζη . Εςθύγπαμμη κίνηζη.. Ύλη και κίνηζη Η ύιε βξίζθεηαη ζε κία δηαξθή θίλεζε. Η θίλεζε είλαη ζρεηηθή, δελ ππάξρεη ηίπνηε ζην ζύκπαλ ην νπνίν λα είλαη αθίλεην. Οξίδεηαη ωο ηξνρηά νη δηαδνρηθέο ζέζεηο πνπ παίξλεη

Διαβάστε περισσότερα

Φυσική Α Γενικού Λυκείου

Φυσική Α Γενικού Λυκείου Φυσική Α Γενικού Λυκείου Λύσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή λύσεων: Αντώνης Σαρηγιάννης ΘΕΜΑΤΑ (3761-5050) Χρησιμοποιείτε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την

Διαβάστε περισσότερα

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 .1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ

Διαβάστε περισσότερα

ΓΙΑΡΚΔΙΑ: 180min ΣΜΗΜΑ:. ONOMA/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΘΔΜΑ 1 ο ΘΔΜΑ 2 ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΜΟΝΑΓΔ

ΓΙΑΡΚΔΙΑ: 180min ΣΜΗΜΑ:. ONOMA/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΘΔΜΑ 1 ο ΘΔΜΑ 2 ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΜΟΝΑΓΔ ΦΥΣΙΚΗ KTΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΙΑΡΚΔΙΑ: 80min ΣΜΗΜΑ:. ONOM/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ ο ΘΔΜΑ ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ Α:. Γύν ζύγρξνλεο ζεκεηαθέο πεγέο θπκάησλ Π θαη Π δεκηνπξγνύλ εγθάξζηα αξκνληθά

Διαβάστε περισσότερα

ΣΤΠΟΛΟΓΙΟ ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΏΣΕΙΣ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ (Α.Α.Σ.)

ΣΤΠΟΛΟΓΙΟ ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΏΣΕΙΣ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ (Α.Α.Σ.) ΣΤΠΟΛΟΓΙΟ ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΏΣΕΙΣ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ (Α.Α.Σ.) x t t Δμηζώζεηο Α.Α.Σ. (ρωξίο αξρηθ θάζε) Δμηζώζεηο Α.Α.Σ. (κε αξρηθ θάζε) Γύλακε ζηελ Α.Α.Σ. a a t α ρέζε επηηάρπλζεο απνκάθξπλζεο

Διαβάστε περισσότερα

ΔΗΑΓΩΓΖ ΣΗ ΣΑΛΑΝΣΩΔΗ

ΔΗΑΓΩΓΖ ΣΗ ΣΑΛΑΝΣΩΔΗ ΔΗΑΓΩΓΖ ΣΗ ΣΑΛΑΝΣΩΔΗ ΠΔΡΗΟΓΗΚΑ ΦΑΗΝΟΜΔΝΑ Πεξηνδηθά θαηλόκελα, ιέγνληαη ηα θαηλόκελα πνπ επαλαιακβάλνληαη κε ηνλ ίδην ηξόπν ζε ίζα ρξνληθά δηαζηήκαηα. Υαξαθηεξηζηηθά κεγέζε πεξηνδηθώλ θαηλνκέλωλ Πεξίνδνο

Διαβάστε περισσότερα

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ

(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ

Διαβάστε περισσότερα

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,

Διαβάστε περισσότερα

Θέκα 1 ν. 0,3kg είλαη θξεκαζκέλν ζην άθξν θαηαθόξπθνπ. 0,45kg βάιιεηαη θαηαθόξπθα πξνο ηα πάλσ κε ηαρύηεηα 0. 10 m / s.

Θέκα 1 ν. 0,3kg είλαη θξεκαζκέλν ζην άθξν θαηαθόξπθνπ. 0,45kg βάιιεηαη θαηαθόξπθα πξνο ηα πάλσ κε ηαρύηεηα 0. 10 m / s. Θέκα 1 ν Σώκα Σ κάδαο m1 0,3kg είλαη θξεκαζκέλν ζην άθξν θαηαθόξπθνπ ειαηεξίνπ ζηαζεξάο k 1N / m, όπσο ζην ζρήκα. Γεύηεξν ζώκα κάδαο m 0,45kg βάιιεηαη θαηαθόξπθα πξνο ηα πάλσ κε ηαρύηεηα 0 θαη ζθελώλεηαη

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ

Διαβάστε περισσότερα

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000. ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε

Διαβάστε περισσότερα

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. p (kn/m 2 ) 5 A 4 3 B 2 1. V (m 3 )

ΟΡΟΣΗΜΟ. p (kn/m 2 ) 5 A 4 3 B 2 1. V (m 3 ) Β.1 Σηο πιο κάηυ διάγπαμμα παπιζηάνονηαι ηπειρ πεπιπηώζειρ Α, Β και Γ ανηιζηπεπηών μεηαβολών ηιρ οποίερ μποπεί να ςποζηεί ποζόηηηα ιδανικού αεπίος. p (kn/m 2 ) 5 A 4 3 B 2 1 0 0 2 4 6 8 10 12 V (m 3 )

Διαβάστε περισσότερα

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:

Διαβάστε περισσότερα

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1. ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ

Διαβάστε περισσότερα

ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΟΚΔΦΑΛΑΙΟ ΤΩΝ ΚΥΜΑΤΩΝ

ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΟΚΔΦΑΛΑΙΟ ΤΩΝ ΚΥΜΑΤΩΝ ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΟΚΔΦΑΛΑΙΟ ΤΩΝ ΚΥΜΑΤΩΝ ΘΔΜΑ Α Γπάτηε ζηην κόλλα ζαρ ηον απιθμό καθεμιάρ από ηιρ παπακάηυ επυηήζειρ 1-3 και δίπλα ηο γπάμμα πος ανηιζηοισεί ζηη ζυζηή απάνηηζη. Α1. Καηά

Διαβάστε περισσότερα

Πανελλαδικέρ εξεηάζειρ 2017

Πανελλαδικέρ εξεηάζειρ 2017 Θέμα Α Α. δ Α. γ Α3. α Α4. δ Α5. Λ,Σ,Σ,Σ,Λ Θέμα Β Πανελλαδικέρ εξεηάζειρ 07 Δνδεικηικέρ απανηήζειρ ζηο μάθημα «Φςζική πποζαναηολιζμού ΓΔΛ» Β. Σωζηή απάνηηζη είναι η : ii) Η ζέζε θπζηθνύ κήθνπο απνηειεί

Διαβάστε περισσότερα

ΓΙΑΡΚΔΙΑ: 180min ΣΜΗΜΑ:. ONOMA/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΘΔΜΑ 1 ο ΘΔΜΑ 2 ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΜΟΝΑΓΔ

ΓΙΑΡΚΔΙΑ: 180min ΣΜΗΜΑ:. ONOMA/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΘΔΜΑ 1 ο ΘΔΜΑ 2 ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΜΟΝΑΓΔ ΦΥΣΙΚΗ KATΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΙΑΡΚΔΙΑ: 180min ΣΜΗΜΑ:. ONOMA/ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ 1 ο ΘΔΜΑ 2 ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ Α: 1. Έλα θύκα κεηαβαίλεη από έλα ειαζηηθό κέζν ζε έλα άιιν. Αλ θαηά

Διαβάστε περισσότερα

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x) ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΘΕΜΑ Β. , συν60 ) και ότι η επίδραση το αέρα. είναι αμελητέα.

ΟΡΟΣΗΜΟ ΘΕΜΑ Β. , συν60 ) και ότι η επίδραση το αέρα. είναι αμελητέα. ΘΕΜΑ Β Β 1. Δυο κιβώτια Α και Β βρίσκονται δίπλα-δίπλα ακίνητα σε λείο οριζόντιο επίπεδο. Τη χρονική στιγμή t = 0 s ασκούνται στα κιβώτια δυο σταθερές δυνάμεις F A και F B ίσου μέτρου αντίστοιχα όπως φαίνεται

Διαβάστε περισσότερα