ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση"

Transcript

1 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος - Δικτυωτή Ανάλυση Δίκτυο είναι ένα διάγραμμα το οποίο το οποίο αναπαριστά τη σχεδίαση κάποιου συστήματος μεταφοράς επικοινωνίας. Σχεδιάζεται ως ένα σύνολο κύκλων (nodes κόμβοι-) οι οποίοι συνδέονται μεταξύ τους με γραμμές (arcs ακμές-). Μεταξύ των κόμβων και δια μέσου των ακμών «ρέουν» διάφορα υλικά. π.χ. ΣΥΣΤΗΜΑ συγκοινωνιακό δίκτυο πόλεις ΚΟΜΒΟΙ ΑΚΜΕΣ Δρόμοι, αεροδιάδρομοι, γραμμές τρένων δίκτυο υπολογιστών υπολογιστές, εκτυπωτές καλώδια, ασύρμ συνδέσ

2 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Δικτυωτή Ανάλυση Κάθε κόμβος συμβολίζεται με έναν αριθμό (ήγράμμαήλέξη). Οι αριθμοί αυτοί χρησιμοποιούνται και για το συμβολισμό των ακμών (π.χ. -). Δικτυωτή Ανάλυση Το πρόβλημα της Συντομότερης Διαδρομής Αφορά τον εντοπισμό του βέλτιστου τρόπου σύνδεσης δύο ή περισσότερων σημείων του συστήματος μέσα από τα υπάρχοντα εναλλακτικά κανάλια διασύνδεσής τους (διαδρομή με τη μικρότερη απόσταση ). Το πρόβλημα του Ελάχιστου Ζευγνύοντος Δέντρου Εδώ όλοι οι κόμβοι πρέπει να επικοινωνούν άμεσα ή έμμεσα μεταξύ τους, σε τρόπο ώστε το συνολικό κόστος να είναι το ελάχιστο δυνατόν. Το πρόβλημα της Μέγιστης Ροής Αφορά τη μεγιστοποίηση του πλήθους των αντικειμένων που μπορούν να ρέουν από έναν κόμβο προς κάποιον άλλο κόμβο.

3 ΤΣΑΝΤΑΣ ΝΙΚΟΣ /9/ ΟΡΟΛΟΓΙΑ - Δικτυωτή Ανάλυση Δίκτυο είναι ένα γράφημα που αναπαριστά κάποιου είδους ροή, διαμέσου ακμών, μεταξύ των κόμβων του. Μη προσανατολισμένες ακμές είναι οι ακμές που επιτρέπουν τη ροή και προς τις δύο κατευθύνσεις. Στις προσανατολισμένες ακμές χρησιμοποιούνται βέλη τα οποία υποδεικνύουν την κατεύθυνση που επιτρέπεται η ροή. Στομηπροσανατολισμένοδίκτυουπάρχει δυνατότητα ροής και προς τις δύο κατευθύνσεις των ακμών, ενώ στο προσανατολισμένο όλες του οι ακμές είναι προσανατολισμένες. ΟΡΟΛΟΓΙΑ - Δικτυωτή Ανάλυση Άμεσα συνδεδεμένος κόμβος είναι ο κόμβος που συνδέεται με κάποιον άλλο με μία ακμή (απευθείας). Μια ακολουθία συνεχόμενων ακμών ορίζει ένα μονοπάτι (διαδρομή). Εάν για ένα (υπο)σύνολο κόμβων υπάρχει ένα μονοπάτι το οποίο συνδέει κάθε δυάδα των κόμβων, τότε το (υπο)δίκτυο είναι συνεκτικό.

4 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // ΟΡΟΛΟΓΙΑ - Δικτυωτή Ανάλυση Οι κόμβοι έναρξης και τερματισμού στο πρόβλημα της συντομότερης διαδρομής χαρακτηρίζονται ως αφετηρία και προορισμός του δικτύου (αντίστοιχα). Το πλήθος των αντικειμένων που μπορούν να περάσουν από μια ακμή προς κάποια κατεύθυνση στη μονάδα του χρόνου είναι η δυναμικότητα της ακμής. Οι κόμβοι εκπομπής/προσφοράς και αποδοχής/ζήτησης των αντικειμένων στο πρόβλημα της μέγιστης ροής χαρακτηρίζονται ως πηγή και δέκτης του δικτύου (αντίστοιχα). το πρόβλημα της ΣΥΝΤΟΜΟΤΕΡΗΣ ΔΙΑΔΡΟΜΗΣ Το πρόβλημα της συντομότερης διαδρομής αναφέρεται στον εντοπισμό του μονοπατιού μεταξύ κάποιου κόμβου εκκίνησης (αφετηρία) κι ενός κόμβου τερματισμού (προορισμός) με το μικρότερο συνολικό «μήκος» ακμών (κόστος, απόσταση, χρονική διάρκεια, αναλωθέν κεφάλαιο, κ.λπ.). Ο ομώνυμος αλγόριθμος, σε κάθε επανάληψη, υποδεικνύει έναν τουλάχιστο κόμβο για τον οποίο, η διαδρομή από την αφετηρία μέχρι αυτόν είναι η δυνατόν συντομότερη. Ο κόμβος λαμβάνει τον χαρακτηρισμό μόνιμος. Στη συνέχεια, εξετάζεται το ενδεχόμενο ο κόμβος αυτός να μπορεί να χρησιμοποιηθεί για τη βελτίωση των προσωρινών διαδρομών που έχουν βρεθεί για τους υπόλοιπους κόμβους του δικτύου (συμπεριλαμβανομένου του προορισμού).

5 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Στο πρόβλημα της συντομότερης διαδρομής, κάθε ακμή που συνδέει δύο κόμβους συνοδεύεται από έναν αριθμό ο οποίος δίνει μια ποσότητα η οποία προκύπτει όταν πραγματοποιηθεί η διαδρομή από τον ένα κόμβο στον άλλο (π.χ. σ ένα συγκοινωνιακό δίκτυο μπορεί να είναι κόστος, απόσταση, χρόνος ταξιδιού, κ.λπ.). Αφετηρία Προορισμός 9 o αλγόριθμος της ΣΥΝΤΟΜΟΤΕΡΗΣ ΔΙΑΔΡΟΜΗΣ Η αφετηρία είναι ο πρώτος κόμβος του συνόλου Λ των μόνιμων κόμβων του δικτύου. οβημα: Καταγραφή του συνόλου Λ των μόνιμων κόμβων. οβημα: Εντοπισμός όλων των κόμβων που είναι άμεσα συνδεδεμένοι με τουλάχιστον έναν από τους κόμβους του Λ. Υπολογισμός του μήκους της (προσωρινής) διαδρομής από την αφετηρία προς έκαστο εξ αυτών. Έλεγχος για βελτίωση των (υπαρχουσών προσωρινών) διαδρομών. Επιλογή του κόμβου που αντιστοιχεί στη συντομότερη διαδρομή για είσοδο στο σύνολο Λ (τυχαία σε περίπτωση ισοπαλίας). Η διαδρομή από την αφετηρία προς τον συγκεκριμένο κόμβο δεν επιδέχεται περεταίρω βελτίωση. οβημα: Επαναλαμβάνονται τα βήματα & μέχρις ότου όλοι οι κόμβοι γίνουν μόνιμοι, ή εισέλθει στο Λ ο κόμβος του προορισμού.

6 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // ηεπαναληψη Βήμα : Οκόμβος (αφετηρία) γίνεται μόνιμος, Λ = {}. Βήμα : Οι κόμβοι, και είναι άμεσα συνδεδεμένοι με τον κόμβο. Σημειώνουμε το μήκος των διαδρομών από την αφετηρία προς τους κόμβους αυτούς. Πλησιέστερα άμεσα συνδεδεμένος κόμβος στην αφετηρία, είναι ο κόμβος. ΛΥΜΕΝΟΙ ΚΟΜΒΟΙ {} ΑΚΜΗ ΑΜΕΣΑ ΣΥΝΔΕΔΕΜΕΝΟΥ ΚΟΜΒΟΥ ΠΡΟΣΩΡΙΝΟ ΜΗΚΟΣ ΔΙΑΔΡΟΜΗΣ ΣΧΟΛΙΑ λυμένος κόμβος ηεπαναληψη: Λ = {} + {} [,,, ος [, Αρχή,, ος (,) (,) [απόσταση από την αφετηρία / προηγούμενος κόμβος στη διαδρομή από την αφετηρία προς τον συγκεκριμένο κόμβο / σειρά εισόδου στο Λ η τελευταία ένδειξη μπορεί και να μην υπάρχει-]

7 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // ηεπαναληψη Βήμα : Οκόμβος γίνεται μόνιμος, Λ = {, }. Βήμα : Οι κόμβοι, και είναι άμεσα συνδεδεμένοι με τους κόμβους του συνόλου Λ. Σημειώνουμε το μήκος των διαδρομών από την αφετηρία προς τους κόμβους αυτούς. Ο κόμβος έχει το μικρότερο προσωρινό μήκος διαδρομής. Η είσοδος του κόμβου στο σύνολο Λ δεν βελτίωσε την προσέγγιση προς τον κόμβο (δίνει, όσο και ήταν). ΛΥΜΕΝΟΙ ΚΟΜΒΟΙ {, } ΑΚΜΗ ΑΜΕΣΑ ΣΥΝΔΕΔΕΜΕΝΟΥ ΚΟΜΒΟΥ ΠΡΟΣΩΡΙΝΟ ΜΗΚΟΣ ΔΙΑΔΡΟΜΗΣ + = + = 9 ΣΧΟΛΙΑ βελτίωση λυμένος κόμβος ηεπαναληψη: Λ = {, } + {} [, Αρχή,, ος [,,, ος (9,) (,) [,,, ος ήταν: - με απόσταση ομοίως είναι: -- με απόσταση

8 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // ηεπαναληψη Βήμα : Οκόμβος γίνεται μόνιμος, Λ = {,, }. Βήμα : Οι κόμβοι, και είναι άμεσα συνδεδεμένοι με τους κόμβους του συνόλου Λ. Σημειώνουμε το μήκος των διαδρομών από την αφετηρία προς τους κόμβους αυτούς. Ο κόμβος έχει το μικρότερο προσωρινό μήκος διαδρομής. Η είσοδος του κόμβου στο σύνολο Λ βελτίωσε την προσέγγιση προς τον κόμβο (ήταν, γίνεται ). ΛΥΜΕΝΟΙ ΚΟΜΒΟΙ ΑΚΜΗ ΑΜΕΣΑ ΣΥΝΔΕΔΕΜΕΝΟΥ ΚΟΜΒΟΥ ΠΡΟΣΩΡΙΝΟ ΜΗΚΟΣ ΔΙΑΔΡΟΜΗΣ ΣΧΟΛΙΑ {,, } = + = βελτίωση λυμένος κόμβος ηεπαναληψη: Λ = {,, } + {} [, Αρχή,, ος [,,, ος (9,) [,, ος [,,, ος (,) ήταν: - με απόσταση έγινε: -- με απόσταση

9 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // ηεπαναληψη Βήμα : Οκόμβος γίνεται μόνιμος, Λ = {,,, }. Βήμα : Οι κόμβοι και είναι άμεσα συνδεδεμένοι με τους κόμβους του συνόλου Λ. Σημειώνουμε το μήκος των διαδρομ από την αφετηρία προς τους κόμβους αυτούς. Οκόμβος έχει το μικρότερο προσωρινό μήκος διαδρομής. Η είσοδος του κόμβου στο σύνολο Λ βελτίωσε την προσέγγιση προς τον κόμβο (από 9 σε ) αλλά και προς τον κόμβο (από σε ) ΛΥΜΕΝΟΙ ΚΟΜΒΟΙ {,,, } ΑΚΜΗ ΑΜΕΣΑ ΣΥΝΔΕΔΕΜΕΝΟΥ ΚΟΜΒΟΥ ΠΡΟΣΩΡΙΝΟ ΜΗΚΟΣ ΔΙΑΔΡΟΜΗΣ 9 + = + = ΣΧΟΛΙΑ βελτίωση βελτίωση λυμένος κόμβος ηεπαναληψη: Λ = {,,, } + {} [,,, ος [,, ος [, Αρχή,, ος [,, ος [,,, ος (,) ήταν: -- με απόσταση 9 έγινε: --- με απόσταση ήταν: -- με απόσταση έγινε: --- με απόσταση 9

10 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // ηεπαναληψη Βήμα : Οκόμβος γίνεται μόνιμος, Λ = {,,,, }. Βήμα : Οι κόμβοι και είναι άμεσα συνδεδεμένοι με τους κόμβους του συνόλου Λ. Σημειώνουμε το μήκος των διαδρομών από την αφετηρία προς τους κόμβους αυτούς. Ο κόμβος έχει το μικρότερο προσωρινό μήκος διαδρομής. Η είσοδος του κόμβου στο σύνολο Λ βελτίωσε την προσέγγιση προς τον κόμβο (ήταν, γίνεται ). ΛΥΜΕΝΟΙ ΚΟΜΒΟΙ {,,,, } ΑΚΜΗ ΑΜΕΣΑ ΣΥΝΔΕΔΕΜΕΝΟΥ ΚΟΜΒΟΥ ΠΡΟΣΩΡΙΝΟ ΜΗΚΟΣ ΔΙΑΔΡΟΜΗΣ + = + = ΣΧΟΛΙΑ βελτίωση λυμένος κόμβος 9 ηεπαναληψη: Λ = {,,,, } + {} [,,, ος [,, ος [, Αρχή,, ος [,, ος (,) [,,, ος [,, ος ήταν: --- με απόσταση έγινε: ---- με απόσταση

11 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // ηεπαναληψη Βήμα : Οκόμβος γίνεται μόνιμος, Λ = {,,,,, }. Βήμα : Οκόμβος είναι άμεσα συνδεδεμένοι με τους κόμβους του συνόλου Λ. Σημειώνουμε το μήκος των διαδρομών από την αφετηρία προς τον κόμβο. Η είσοδος του κόμβου στοσύνολολβελτίωσετην προσέγγιση προς τον κόμβο (ήταν, γίνεται ). Ικανοποιείται το κριτήριο του τερματισμού. ΛΥΜΕΝΟΙ ΚΟΜΒΟΙ {,,,,, } ΑΚΜΗ ΑΜΕΣΑ ΣΥΝΔΕΔΕΜΕΝΟΥ ΚΟΜΒΟΥ - - ΠΡΟΣΩΡΙΝΟ ΜΗΚΟΣ ΔΙΑΔΡΟΜΗΣ + = ΣΧΟΛΙΑ βελτίωση λυμένος κόμβος ηεπαναληψη: Λ = {,,,,, } + {} [, Αρχή,, ος [,,, ος [,, ος [,, ος [,, ος [,,, ος [,, ος ήταν: ---- με απόσταση έγινε: με απόσταση

12 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Συνοπτικάτααποτελέσματα Κόμβος Ελάχιστη Απόσταση Βέλτιστη Διαδρομή Οι βέλτιστες διαδρομές (έχουν διαγραφεί οι ακμές που δεν συμμετέχουν στη βέλτιστη διαδρομή για κάθε κόμβο). [] [] [] [] [] [] []

13 ΤΣΑΝΤΑΣ ΝΙΚΟΣ /9/ το πρόβλημα της ΣΥΝΤΟΜΟΤΕΡΗΣ ΔΙΑΔΡΟΜΗΣ Στο παράδειγμα, ο προορισμός εισήλθε τελευταίος στο σύνολο των λυμένων κόμβων. Το γεγονός αυτό έχει ως αποτέλεσμα, να βρεθούν οι άριστες αποστάσεις όλων των κόμβων από την αφετηρία. Είναιδυνατόνοπροορισμόςναεισέλθειστοσύνολοτων λυμένων κόμβων χωρίς να έχουν προηγηθεί όλοι οι άλλοι. Οπισθοδρομική ανίχνευση του δικτύου εντοπίζει όλες τις άριστες διαδρομές. το πρόβλημα του ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ (Γνωρίζουμε ότι) μια ακολουθία συνεχόμενων ακμών ορίζει ένα μονοπάτι. Κύκλος είναιτομονοπάτιπουσυνδέειένανκόμβομετονεαυτό του χωρίς επαναλήψεις ακμών. Δέντρο ονομάζεται το (υπο)δίκτυο που δεν περιέχει κύκλους. Ζευγνύον δέντρο είναι ένα δέντρο στο οποίο όλοι οι κόμβοι του είναι συνδεδεμένοι. Το πρόβλημα του ελάχιστου ζευγνύοντος δέντρου αφορά τον εντοπισμό του ελάχιστου συνολικού «μήκους» των ακμών ενός δικτύου, σετρόποώστεόλοιοικόμβοιτουνασυνδέονται. Το κριτήριο δεν περιορίζεται σε απόσταση. Μπορεί να αφορά χρόνο, κόστος, κλπ.

14 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // ο αλγόριθμος του ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ ο ΒΗΜΑ: Επιλέγουμε τυχαία έναν από τους κόμβους του δικτύου και τον συνδέουμε με αυτόν που βρίσκεται πιο κοντά του. Οι δύο κόμβοι χαρακτηρίζονται ως συνδεδεμένοι κόμβοι. ο ΒΗΜΑ: Εντοπίζουμε τον κόμβο που είναι πιο κοντά σε κάποιον από τους συνδεδεμένους για να τον συνδέσουμε κι αυτόν (σε περίπτωση ισοβάθμησης επιλέγουμε αυθαίρετα). ο ΒΗΜΑ: Επαναλαμβάνουμε το ο ΒΗΜΑ μέχρι να συνδέσουμε όλους τους κόμβους. Σημείωση: Για ένα πρόβλημα με n κόμβους, απαιτούνται n - επαναλήψεις του αλγορίθμου. παράδειγμα ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ Αναζήτηση του Βέλτιστου Ζευγνύοντος Δέντρου 9

15 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // παράδειγμα ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ η Επανάληψη: Επιλέγοντας τον κόμβο για να ξεκινήσουμε, βλέπουμε ότι ο πιο κοντινός του είναι ο κόμβος (με( απόσταση ). Συνεπώς: Συνδεδεμένοι κόμβοι: :, Μη Συνδεδεμένοι κόμβοι: :,,,,,,9, Ακμές που επιλέχθηκαν: : - η Επανάληψη: Κοντινότερος μη συνδεδεμένος κόμβος σε έναν εκ των συνδεδεμένων είναι ο κόμβος (με( απόσταση από τον κόμβο ). Ο κόμβος γίνεται συνδεδεμένος: Συνδεδεμένοι κόμβοι: :,, Μη Συνδεδεμένοι κόμβοι: :,,,,,9, Ακμές που επιλέχθηκαν: : -, - 9 παράδειγμα ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ η Επανάληψη: Κοντινότερος μη συνδεδεμένος κόμβος σε έναν εκ των συνδεδεμένων είναι ο κόμβος (με( απόσταση από τον κόμβο ). Ο κόμβος γίνεται συνδεδεμένος. Συνδεδεμένοι κόμβοι: :,,, Μη Συνδεδεμένοι κόμβοι: :,,,,9, Ακμές που επιλέχθηκαν: : -, -, - η Επανάληψη: Κοντινότερος μη συνδεδεμένος κόμβος σε έναν εκ των συνδεδεμένων είναι ο κόμβος (με( απόσταση από τον κόμβο ). Ο κόμβος γίνεται συνδεδεμένος. Συνδεδεμένοι κόμβοι: :,,,, Μη Συνδεδεμένοι κόμβοι: :,,,,9 Ακμές που επιλέχθηκαν: : -, -, -, -

16 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // παράδειγμα ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ η Επανάληψη: Κοντινότερος μη συνδεδεμένος κόμβος σε έναν εκ των συνδεδεμένων είναι ο κόμβος (με( απόσταση από τον κόμβο ). Ο κόμβος γίνεται συνδεδεμένος. Συνδεδεμένοι κόμβοι: :,,,,, Μη Συνδεδεμένοι κόμβοι: :,,,9 Ακμές που επιλέχθηκαν: : -, -, -, -, - η Επανάληψη: Κοντινότερος μη συνδεδεμένος κόμβος σε έναν εκ των συνδεδεμένων είναι ο κόμβος (με( απόσταση από τον κόμβο ). Ο κόμβος γίνεται συνδεδεμένος. Συνδεδεμένοι κόμβοι :,,,,,, Μη Συνδεδεμένοι κόμβοι: :,,9 Ακμές που επιλέχθηκαν: : -, -, -, -, -, - παράδειγμα ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ η Επανάληψη: Κοντινότερος μη συνδεδεμένος κόμβος σε έναν εκ των συνδεδεμένων είναι ο κόμβος (με( απόσταση από τον κόμβο ). Ο κόμβος γίνεται συνδεδεμένος. Συνδεδεμένοι κόμβοι: :,,,,,,, Μη Συνδεδεμένοι κόμβοι: :,9 Ακμές που επιλέχθηκαν: : -, -, -, -, -,, -, - η Επανάληψη: Κοντινότερος μη συνδεδεμένος κόμβος σε έναν εκ των συνδεδεμένων είναι ο κόμβος 9 (με( απόσταση από τον κόμβο ). Ο κόμβος 9 γίνεται συνδεδεμένος. Συνδεδεμένοι κόμβοι: :,,,,,,,,9 Μη Συνδεδεμένοι κόμβοι: : Ακμές που επιλέχθηκαν: : -, -, -, -, -, -, -, -9

17 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // παράδειγμα ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ 9η Επανάληψη: Μοναδικός μη συνδεδεμένος έχει απομείνει ο κόμβος. Ο κοντινότερος συνδεδεμένος κόμβος είναι ο (με απόσταση ). Άρα, το ελάχιστο ζευγνύον δέντρο σχηματίζεται από Ακμές: : -, -, -, -, -, -, -, -9, - Τιμές: : = παράδειγμα ΕΛΑΧΙΣΤΟΥ ΖΕΥΓΝΥΟΝΤΟΣ ΔΕΝΤΡΟΥ Το Βέλτιστο Ζευγνύον Δέντρο (έχει - ακμές) 9

18 ΤΣΑΝΤΑΣ ΝΙΚΟΣ /9/ το πρόβλημα της ΜΕΓΙΣΤΗΣ ΡΟΗΣ Το πρόβλημα της συντομότερης διαδρομής ή του ζευγνύοντος δέντρου δεν αντιμετωπίζει το προφανές ερώτημα της περιορισμένης δυναμικότητας ροής των ακμών θεωρώντας ότι είναι απεριόριστη (ή μοναδιαία). Το πρόβλημα της μέγιστης ροής αφορά τη μεγιστοποίηση του πλήθουςτωναντικειμένωνπουμπορούνναρέουναπόέναν κόμβο (πηγή) προς κάποιον άλλο κόμβο (δέκτης). Χαρακτηριστικά παραδείγματα η σχεδίαση συστημάτων μεταφοράς και διανομής πετρελαίου και φυσικού αερίου, συστημάτων ύδρευσης και άρδευσης, γραμμών παραγωγής, κ.λπ. παράδειγμα ΜΕΓΙΣΤΗΣ ΡΟΗΣ Στο πρόβλημα της μέγιστης ροής, κάθε ακμή έχει μια ορισμένη - περιορισμένη δυναμικότητα ροής: το γεγονός επισημαίνεται με έναν αριθμό σε κάθε άκρο, ο οποίος εκφράζει το πλήθος των αντικειμένων που μπορούν να μετακινηθούν (ρέουν) από τον κόμβο του συγκεκριμένου άκρου προς τον κόμβο που βρίσκεται στοάλλοάκρο(προσανατολισμένες ακμές). Πηγή Δέκτης

19 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // o αλγόριθμος της ΜΕΓΙΣΤΗΣ ΡΟΗΣ οβημα: Αυθαίρετη επιλογή ενός μονοπατιού από την πηγή προς τον δέκτη με θετική (μη-μηδενική) δυναμικότητα ροής. οβημα: Αναπροσαρμογή των δυναμικοτήτων ροής του μονοπατιού με αφαίρεση της δυναμικότητας ροής από όλες τις δυναμικότητες των ακμών προς την κατεύθυνση του δέκτη. οβημα: Αναπροσαρμογή των δυναμικοτήτων ροής του μονοπατιού με πρόσθεση της δυναμικότητας ροής σε όλες τις δυναμικότητες των ακμών προς την κατεύθυνση της πηγής. οβημα: Επανάληψη των βημάτων, & μέχρις ότου να μην υπάρχουν μονοπάτια με θετική (μη-μηδενική) δυναμικότητα ροής. Μεταφέρετε όσο το δυνατόν μεγαλύτερη ποσότητα από τον κόμβο στον κόμβο. Πηγή παράδειγμα ΜΕΓΙΣΤΗΣ ΡΟΗΣ Δέκτης 9

20 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // παράδειγμα ΜΕΓΙΣΤΗΣ ΡΟΗΣ ηεπαναληψη: (με( ροή ) 9 παράδειγμα ΜΕΓΙΣΤΗΣ ΡΟΗΣ ηεπαναληψη: (με( ροή )

21 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // παράδειγμα ΜΕΓΙΣΤΗΣ ΡΟΗΣ ηεπαναληψη: (με( ροή ) παράδειγμα ΜΕΓΙΣΤΗΣ ΡΟΗΣ ηεπαναληψη: (με( ροή )

22 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // παράδειγμα ΜΕΓΙΣΤΗΣ ΡΟΗΣ Δεν υπάρχουν δρόμοι με θετική δυναμικότητα ροής παράδειγμα ΜΕΓΙΣΤΗΣ ΡΟΗΣ Συνοπτικάτααποτελέσματα Μονοπάτι Ροή ΣΥΝΟΛΟ

23 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // εξασκηθείτε () Η επιχείρηση των ΑΦΩΝ Κωνσταντινίδη αναλαμβάνει τον εφοδιασμό δημοσίων ιδρυμάτων με αγροτικά προϊόντα. Πρόσφατα κέρδισε έναν διαγωνισμόγια το νοσοκομείο μιας σχετικά απομακρυσμένης πόλης (κόμβος ) με φρέσκα φρούτα, τα οποία πρέπει να μεταφέρονται εκεί από την έδρα της (κόμβος ). 9 9 Οιενδιάμεσοικόμβοιείναιπιθανοίενδιάμεσοισταθμοί, οι ακμές οι δυνατές διαδρομές μέσω του δικτύου των αυτοκινητοδρόμων με το οποίο συνδέονται οι δύο πόλεις (έδρα, προορισμός) και οι αριθμοί σε κάθε ακμή παριστάνουν δεκάδες χιλιόμετρα. Θεωρούμε ότι το κόστος της όποιας διαδρομής είναι ανάλογο της απόστασης και ζητούμε τον εντοπισμό της διαδρομής με το ελάχιστο συνολικό μήκος. εξασκηθείτε () Κόμβος Ελάχιστη Απόσταση Βέλτιστη Διαδρομή [] 9 [9] [] [] [9] [] []

24 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // εξασκηθείτε () Η επιχείρηση των ΑΦΩΝ Κωνσταντινίδη αποφασίζει να κατασκευάσει ένα τουριστικόσύμπλεγμα με ξενοδοχείο (κόμβος ), γήπεδο αντισφαίρισης (), κέντρο υγρού στίβου (), χώρο ιππασίας (), τεχνητή λίμνη (), γήπεδο γκολφ (), συγκρότημα κατοικιών () και καζίνο (). Η περιοχή που θα γίνει το σύμπλεγμα είναι τώρα κυρίως βοσκοτόπια, οπότεη δασική υπηρεσία ζήτησεένα ολοκληρωμένο σχέδιοαπό το οποίο να προκύπτει ότι ελαχιστοποιείται το πλήθος των δέντρων που θα χρειαστεί να κοπούν προκειμένουνα κατασκευαστούν τα μονοπάτια που θα συνδέουν τις εγκαταστάσεις. Στο σχήμα βλέπετε τα πιθανά μονοπάτια σύνδεσης. Τα μήκη είναι σε μέτρα, ενώυποθέτουμε ότι κατά μέσο όροτοπλήθοςτων δέντρων που κόβονται είναι ανάλογο του μήκους. 9 εξασκηθείτε () Το ελάχιστο ζευγνύον δέντρο είναι το κατωτέρω δέντρο με ακμές (όσοι είναι οι κόμβοι μείον ένα) κι έχει συνολικό μήκος =.

25 ΤΣΑΝΤΑΣ ΝΙΚΟΣ // εξασκηθείτε () Η επιχείρηση των ΑΦΩΝ Κωνσταντινίδη έχει εγκαταστήσει ένα σύστημα άρδευσης με το οποίο, μέσω ενός δικτύου αγωγών, το νερό που αντλείται από μια γεώτρηση (πηγή -κόμβος -) διοχετεύεται προς διάφορα σημεία (κόμβους). Με τον τρόπο αυτό ποτίζονται οι ενδιάμεσες καλλιέργειες, και το νερό που απομένει προωθείται προς ένα σημείο εξόδου (δέκτης -κόμβος 9-). Εκεί, όσο νερό φτάνει, διοχετεύεται σε διπλανό συγκρότημα αγροτικών καλλιεργειών. Στο σχήμα φαίνεται ο καθαρός όγκος νερού που μπορεί να φύγει και να φτάσει από κόμβο σε κόμβο (αφαιρέθηκε δηλαδή η ποσότητα η οποία χρησιμοποιείται για το ενδιάμεσο πότισμα. Είναι πολύ σημαντικό να υπολογιστεί η δυναμικότητα του νερού που μπορεί να φτάσει στον κόμβο 9 προκειμένου να διοχετευθεί στις διπλανές εκτάσεις. 9 9 εξασκηθείτε () Μονοπάτι Ροή ΣΥΝΟΛΟ

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/29/2009

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/29/2009 ΤΣΑΝΤΑΣ ΝΙΚΟΣ /9/9 Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση. Μέρος ΙI Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5 ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο

Διαβάστε περισσότερα

Παράδειγμα δικτύου. Ορολογία (1) Ορολογία (2) Ορολογία (3) Δίκτυο με δεδομένα δυναμικότητας ροής στις ακμές

Παράδειγμα δικτύου. Ορολογία (1) Ορολογία (2) Ορολογία (3) Δίκτυο με δεδομένα δυναμικότητας ροής στις ακμές http://users.uom.gr/~acg Στοιχεία από τη Θεωρία Δικτύων Παράδειγμα δικτύου Τα δίκτυα είναι παντού (όπως και η Επιχειρησιακή Έρευνα) Τα δίκτυα είναι παντού (συνέχεια) Ένα δίκτυο είναι μία συλλογή κόμβων

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου . Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Ακαδημαϊκό Έτος: ΣΗΜΕΙΩΣΕΙΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΥΕΝΑΣ ΓΙΑ ΤΟΥΣ ΦΟΙΤΗΤΕΣ ΤΟΥ Ε.Α.Π.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Ακαδημαϊκό Έτος: ΣΗΜΕΙΩΣΕΙΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΥΕΝΑΣ ΓΙΑ ΤΟΥΣ ΦΟΙΤΗΤΕΣ ΤΟΥ Ε.Α.Π. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ- Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0- ΣΗΜΕΙΩΣΕΙΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΥΕΝΑΣ ΓΙΑ ΤΟΥΣ ΦΟΙΤΗΤΕΣ ΤΟΥ

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα I

Επιχειρησιακή Έρευνα I Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 9: : Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE & Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός Προγραμματισμός

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1 KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)

Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks) Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # : Επιχειρησιακή έρευνα Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές. διαδρομής (1)

Στοχαστικές Στρατηγικές. διαδρομής (1) Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Από ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Η UCC είναι μια μικρή εταιρεία παραγωγής εντομοκτόνων. Σε

Διαβάστε περισσότερα

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 8: Ανάλυση δικτύων στα ΣΓΠ Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ

Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ Καταµερισµός των µετακινήσεων στο οδικό δίκτυο.. Εισαγωγή Το τέταρτο και τελευταίο στάδιο στη διαδικασία του αστικού συγκοινωνιακού σχεδιασµού είναι ο καταµερισµός των µετακινήσεων στο οδικό δίκτυο (λεωφόρους,

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

«Πρόβλημα μέγιστης ροής» Maximum flow problem. Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP

«Πρόβλημα μέγιστης ροής» Maximum flow problem. Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP «Πρόβλημα μέγιστης ροής» Maximum flow problem Κηρυττόπουλος Κωνσταντίνος PhD, Dipl. Eng., PMP Στόχος προβλημάτων ροής Βέλτιστη αξιοποίηση κλάδων ενός δικτύου, προσανατολισμένου ή μη, για την επίτευξη μέγιστης

Διαβάστε περισσότερα

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ

ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΕΟ 40 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΩΝ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΟΡΙΣΜΟΣ ΤΟΥ ΕΡΓΟΥ Έργο είναι μια ακολουθία μοναδικών, σύνθετων και αλληλοσυσχετιζόμενων δραστηριοτήτων που αποσκοπούν στην επίτευξη κάποιου συγκεκριμένου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

Πρόβλημα μέγιστης ροής - Maximum flow problem. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ

Πρόβλημα μέγιστης ροής - Maximum flow problem. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Πρόβλημα μέγιστης ροής - Maximum flow problem Κηρυττόπουλος Κωνσταντίνος π. Καθηγητής ΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές. διαδρομής (2)

Στοχαστικές Στρατηγικές. διαδρομής (2) Στοχαστικές Στρατηγικές 6 η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 018-019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα 1 Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα εύκολη, τη στιγμή που γνωρίζουμε ότι ένα σύνθετο δίκτυο

Διαβάστε περισσότερα

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 0 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ ο Η METRO WATER DISTRICT είναι μια εταιρεία η οποία λειτουργεί ως διαχειριστής

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

dz dz dy = = + = + + dx dy dx

dz dz dy = = + = + + dx dy dx ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 3 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΜΕΡΟΣ Α ΥΠΟΧΡΕΩΤΙΚΑ ΘΕΜΑΤΑ (8,33% ΑΝΑ ΘΕΜΑ) ΘΕΜΑ A. Να βρεθεί η παράγωγος της συνάρτησης z ως προς x όταν:

Διαβάστε περισσότερα

Πρόβλημα του ελάχιστα εκτεταμένου δένδρου - Minimum spanning tree. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ

Πρόβλημα του ελάχιστα εκτεταμένου δένδρου - Minimum spanning tree. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Πρόβλημα του ελάχιστα εκτεταμένου δένδρου - Minimum spanning tree Κηρυττόπουλος Κωνσταντίνος π. Καθηγητής ΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 5: Γραφήματα. Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης

Διαβάστε περισσότερα

Πρόβλημα συντομότερης διαδρομής - Shortest path problem. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ

Πρόβλημα συντομότερης διαδρομής - Shortest path problem. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Πρόβλημα συντομότερης διαδρομής - Shortest path problem Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017 Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017 Όλα τα γραφήματα είναι μη-κατευθυνόμενα, αν δεν αναφέρεται κάτι άλλο. ΕΓΘΑ : Σ. Κοσμαδάκης, «Εισαγωγή στα Γραφήματα, Θεωρία-Ασκήσεις».

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 23: Κλασική Ανάλυση Ευαισθησίας, Βασικές Έννοιες Γραφημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 5 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΘΕΜΑ 1: Αλγόριθμος Ford-Fulkerson

ΘΕΜΑ 1: Αλγόριθμος Ford-Fulkerson ΘΕΜΑ : Αλγόριθμος Ford-Fulkerson Α Να εξετάσετε αν ισχύει η συνθήκη συντήρησης της αρχικής ροής στο δίκτυο. Β Με χρήση του αλγορίθμου Ford-Fulkerson να βρεθεί η μέγιστη ροή που μπορεί να σταλεί από τον

Διαβάστε περισσότερα

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3 Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Λίβανος & Σ. Κ. 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (edge-separator) ενός γραφήματος =

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ 3 ΘΕΜΑ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΡΑΦΗΜΑΤΑ Επίκουρος Καθηγητής ΠΕΡΙΕΧΟΜΕΝΟ

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

Δίκτυα ΙΙ. Κεφάλαιο 7

Δίκτυα ΙΙ. Κεφάλαιο 7 Δίκτυα ΙΙ Κεφάλαιο 7 Στο κεφάλαιο αυτό παρουσιάζεται ο τρόπος επικοινωνίας σε ένα δίκτυο υπολογιστών. Το κεφάλαιο εστιάζεται στο Επίπεδο Δικτύου του OSI (το οποίο είδατε στο μάθημα της Β Τάξης). Οι βασικές

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017

Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017 Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

P = (J, B) T = (I, A) P = (J, B) G = (V, E) i 1 i i + 1

P = (J, B) T = (I, A) P = (J, B) G = (V, E) i 1 i i + 1 Θεωρία Γραφημάτων Διάλεξη 19: 14.12.2016 και 15.12.2016 Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Αγγελική Χαντζηθάνου & Σ. Κ. 19.1 Σχέση πλάτους μονοπατιού και δενδροπλάτους Πρόταση 19.1 Το πλέγμα Γ n n

Διαβάστε περισσότερα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,

Διαβάστε περισσότερα

Προβλήματα Μεταφορών (Transportation)

Προβλήματα Μεταφορών (Transportation) Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ

Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Η μέθοδος Simplex Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος

Διαβάστε περισσότερα

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης. Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 213 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Μια κατασκευαστική εταιρεία ετοιμάζει την ενεργειακή μελέτη ενός

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

3η Σειρά Γραπτών Ασκήσεων

3η Σειρά Γραπτών Ασκήσεων 1/48 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/48 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΥΛΗΣ ΚΑΙ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 2: ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΥΛΗΣ ΚΑΙ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ Ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΥΛΗΣ ΚΑΙ ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση 1. ΘΕΜΑ Β Όταν ποτίζουμε τα λουλούδια με το λάστιχο κήπου, για να πάει το νερό μακρύτερα

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΕΣΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ&

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα : Διαχείριση Εφοδιαστικής Αλυσίδας: Προβλήματα Δρομολόγησης Στόλου Οχημάτων- Μέρος ΙΙ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

Μαθησιακές δραστηριότητες με υπολογιστή

Μαθησιακές δραστηριότητες με υπολογιστή ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθησιακές δραστηριότητες με υπολογιστή Εννοιολογική χαρτογράφηση Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Τοπολογίες Δικτύων Εισαγωγή

ΚΕΦΑΛΑΙΟ 3: Τοπολογίες Δικτύων Εισαγωγή ΚΕΦΑΛΑΙΟ 3: Τοπολογίες Δικτύων 3.1. Εισαγωγή Υπάρχουν τέσσερις βασικοί τρόποι διασύνδεσης των μηχανημάτων που απαρτίζουν ένα δίκτυο: διασύνδεση διαύλου, αστέρα, δέντρου και δακτυλίου. Στις παραγράφους

Διαβάστε περισσότερα

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs) Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Γραφήµατα (Grphs) http://tos.it.tith.gr/~mos/thing_gr.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ Γράφημα (Grph) Oρισμός 1: Έστω το µη

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΜΕΡΟΣ Α ΥΠΟΧΡΕΩΤΙΚΑ ΘΕΜΑΤΑ (8,33% ΑΝΑ ΘΕΜΑ) ΘΕΜΑ A.1 Αν η συνάρτηση του οριακού κόστους μιας επιχείρησης είναι

Διαβάστε περισσότερα

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα ΔΕΝΔΡΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Ένα γράφημα G είναι δένδρο αν: 1. Είναι συνδεδεμένο και δεν έχει κύκλους.

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές. διαδρομής (3)

Στοχαστικές Στρατηγικές. διαδρομής (3) Στοχαστικές Στρατηγικές 6 η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ

ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΑΚΡΙΤΩΝ ΓΕΓΟΝΟΤΩΝ 2.1 Εισαγωγή Η μέθοδος που θα χρησιμοποιηθεί για να προσομοιωθεί ένα σύστημα έχει άμεση σχέση με το μοντέλο που δημιουργήθηκε για το σύστημα. Αυτό ισχύει και

Διαβάστε περισσότερα