ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ 1/100. και Ασαφής Λογική

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ 1/100. και Ασαφής Λογική"

Transcript

1 ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ /00

2 Albert Einstein Lecture to Prussian Academy 9 ΔΠΜΣ ΗΕΠ /00

3 Lotfi A. Zadeh ΔΠΜΣ ΗΕΠ 3/00

4 ΔΠΜΣ ΗΕΠ 4/00

5 Α. Γενικά Ασαφή σύνολα Fuzzy set Crisp set Βαθός συετοχής φωτεινότητα φ00 Βαθός συετοχής φωτεινότητα ΔΠΜΣ ΗΕΠ 5/00

6 κίτρινο πορτοκαλί κόκκινο ενεξεδί πλέ ΔΠΜΣ ΗΕΠ 6/00

7 (αντι)παράδειγα ΔΠΜΣ ΗΕΠ 7/00

8 ΔΠΜΣ ΗΕΠ 8/00

9 τελικά.. ευχάριστα Ένα ασαφές σύνολο ορίζεται ε την συνάρτηση συετοχής: f(τ) Τ ΔΠΜΣ ΗΕΠ 9/00

10 Μπορεί ένα στοιχείο να ανήκει σε δύο σύνολα??? ευχάριστα ζεστά Τ ΔΠΜΣ ΗΕΠ 0/00

11 Συναρτήσεις συετοχής Χαρακτηριστικές ορφές ασαφών συνόλων Τριγωνική Τραπεζοειδής 0 0 ΔΠΜΣ ΗΕΠ /00

12 (συν.) άλλες ορφές f (x;a,c ) - f (x;a,c ) ΔΠΜΣ ΗΕΠ /00

13 Β. Πως παριστάνονται τα ασαφή σύνολα A ~ N Α(x) Α(x ) Α(xN) x x xn i Α (x x i i ) Ασαφές Σύνολο ε ένα στοιχείο ονοάζεται singleton 0 0 x είναι ο βαθός συετοχής membership function (το σύβολο + δεν σηαίνει άθροισα) ΔΠΜΣ ΗΕΠ 3/00

14 Γ. Πράξεις στα ασαφή σύνολα (Zadeh) Ενωση Α Β(x) Α(x) Β(x) max{ Α (x), Β (x)} Τοή Α Β(x) Α(x) Β(x) min{ Α (x), Β (x)} Συπλήρωα Α ( x) Α (x) Οι πράξεις αυτές πορούν να ορισθούν και ε άλλους τρόπους. πχ. Α Β Α Β (x) (x) Α Α (x) (x) (x) + Β Β (x) Α (x) (x) Β ΔΠΜΣ ΗΕΠ 4/00

15 Τοή,ένωση, συπλήρωα - γραφικά ΔΠΜΣ ΗΕΠ 5/00

16 Ασαφείς κανόνες IF-THEN rules Είναι ένας τρόπος επεξεργασίας Αποτελείται από ένα σύνολο συνθηκών (υποθέσεων) στην είσοδο(antecedent) και ία συνθήκη (δράση-απόφαση ) στην έξοδο (consequent). H εύρεση των κανόνων συνδέεται ε εθόδους οαδοποίησης (clustering) IF (x,a ) THEN (y,b ) IF (x,a ) AND (x,a ) THEN (y,b ) IF (x,a ) AND (x,a ) THEN (y,b 3 ) συνήθως: AND minimum, x x OR maximum ΔΠΜΣ ΗΕΠ 6/00

17 Συνεπαγωγή (inference) Eιναι η διαδικασία που δίνει αριθητικές τιές στους ασαφείς κανόνες Οι τεχνικές συνεπαγωγής περιλαβάνουν και την συνολική εκτίηση των κανόνων στην έξοδο Οι πλέον γνωστές τεχνικές είναι:. max-min (Mamdani) διακριτές τιές. max-product (Correlation product)- διακριτές τιές 3. max-min (Mamdani) ασαφές σύνολο 4. max-product (Correlation product)- ασαφές σύνολο 5. Sugeno ΔΠΜΣ ΗΕΠ 7/00

18 . max-min (Mamdani)-διακριτές τιές Α Α Β Α Α Β Input (i) Input (j) y ΔΠΜΣ ΗΕΠ 8/00

19 . max-product (Correlation product)- διακριτές τιές Α Α Β Α Α Β Input (i) Input (j) y* ΔΠΜΣ ΗΕΠ 9/00

20 3. max-min (Mamdani)-ασαφή σύνολα Α Input (i) Input (j) Α Β Input (i) Α Input (j) Α Β y* ΔΠΜΣ ΗΕΠ 0/00

21 4. max-product (Correlation product)- ασαφή σύνολα Α Input (i) Input (j) Α Β Input (i) Α Α Input (j) Β y* ΔΠΜΣ ΗΕΠ /00

22 5. «Sugeno» συνεπαγωγή Α Α w z Α Α w Input (i) Input (j) z y*σw i z i Παρατήρηση: Στη έθοδο Sugeno ΔΕΝ απαιτείται διαδικασία αποσαφήνισης (defuzzification) ΔΠΜΣ ΗΕΠ /00

23 max-min (Mamdani) συνεπαγωγή - παράδειγα ΔΠΜΣ ΗΕΠ 3/00

24 max-min - ο παράδειγα ΔΠΜΣ ΗΕΠ 4/00

25 συνεπαγωγή Sugeno -παράδειγα ΔΠΜΣ ΗΕΠ 5/00

26 Αποσαφήνιση (defuzzyfication) Α. Μaximum (z*) (z) για κάθε z z* z B. Κέντρο βάρους (Centroid) z (z) z dz (z) dz Γ. Μέση τιή-των εγίστων (συνήθως σε συετρικά σύνολα) z (z) z (z) z* z z ΔΠΜΣ ΗΕΠ 6/00

27 Αποσαφήνιση - Παράδειγα «άθροιση» Κέντρο βάρους (Centroid) z (z) z dz (z) dz z 3 (0.3z)zdz + (0.3)zdz + zdz z 3 (0.3z)dz + (0.3)dz + dz Μέση τιή- (Weighted average) (0.3.5) + (0.5 5) + ( 6.5) z ΔΠΜΣ ΗΕΠ 7/00

28 Καθορισός των παραέτρων (tuning) Οι παράετροι συνήθως είναι αυτές που καθορίζουν την ορφή στα«ασαφή» σύνολα εισόδου - εξόδου Οι έθοδοι που χρησιοποιούνται βασίζονται στις γνωστές τεχνικές όπως: α) Νευρωνικά δίκτυα β) Γενετικοί αλγόριθοι γ) Βάθωση δ) ANFIS matlab(adaptive Neuro-fuzzy Inference System). ΔΠΜΣ ΗΕΠ 8/00

29 Ασαφές σύστηα - ΣΥΝΟΨΗ Ασαφοποίηση Fuzzification Συνεπαγωγή Inference Αποσαφήνιση Defuzzification ΔΠΜΣ ΗΕΠ 9/00

30 Ένα ερώτηα!! ΔΠΜΣ ΗΕΠ 30/00

31 ΔΠΜΣ ΗΕΠ 3/00

32 Β Fuzzy γεωετρία Πως θα βρούε περίετρο και εβαδό?? εβαδό ΔΠΜΣ ΗΕΠ 3/00

33 περίετρος συπαγότητα C() 4π εβαδόν (περίετρος) ΔΠΜΣ ΗΕΠ 33/00

34 Β Μέτρηση της ασάφειας σε εικόνα Η ασάφεια είναι 0 εάν όλατα i είναι 0 ή (π.χ. binary image). Η έγιστη τιή βρίσκεται όταν όλα τα i 0.5 ΔΠΜΣ ΗΕΠ 34/00

35 Κατωφλιοποίηση ε ελαχιστοποίηση της ασάφειας Το βέλτιστο κατώφλιο βρίσκεται ε ετακίνηση της S-function και έτρηση της «ασάφειας» ΔΠΜΣ ΗΕΠ 35/00

36 αρχική εικόνα ελαχιστοποίηση ασάφειας ΔΠΜΣ ΗΕΠ 36/00

37 B3 Βελτίωση του Contrast Από την εργασία S.K.Pal and R.A. King 98 Μία εικόνα που παριστάνεται ε την ορφή πίνακα: IMAGE g(n,n ) x x x M x 3 N x x x 3 M x N L L L L L x x x x n n 3n M N n L L L L L x x x x N N 3N M N N ΔΠΜΣ ΗΕΠ 37/00

38 Ασαφοποίηση : gray levels X 3 N /x /x /x M /x 3 N 3 N /x /x /x M /x 3 N L L L L L n n 3n Nn /x /x /x M /x n n 3n Nn L L L L L N N 3N NN /x /x /x M /x N N 3N NN ΔΠΜΣ ΗΕΠ 38/00

39 Τροποποίηση της συνάρτησης συετοχής αύξηση του contrast τελεστής INT Η επίδραση του τελεστή INT σε ένα σύνολο Α θα δώσει ένα άλλο σύνολο Α' ε λιγότερη ασάφεια. Ο INT πορεί να οριστεί ως εξής: [ ( x) ], ( ( x) ) ( x) [ ], ( x) ( x) 0.5 ' mn mn ΔΠΜΣ ΗΕΠ 39/00

40 Αποσαφήνιση : Gray levels x n n x max F d ( (G)) F e ΔΠΜΣ ΗΕΠ 40/00

41 Συνοψη της διαδικασίας του τελεστού ΙΝΤ. ασαφοποίηση n n ( ) Fe x x max F d n n G( xn n ). εφαρογή του τελεστού ΙΝΤ εάν ( ) 0.5 εάν > > αντίστροφη διεργασία x n n x max F d ( ( G)) F e SET F d, F e, α F d F e α IN G() T r () G - ( ) OUT ΔΠΜΣ ΗΕΠ 4/00

42 Βελτίωση του contrast ε τον τελεστή INT (ο παράδειγα) α β γ δ ε (α) Η αρχική εικόνα, (β) το αποτέλεσα από το histogram equalization, το αποτέλεσα του αλγορίθου για (γ) F e, F d 55, r, (δ) F e, F d 5, r και (ε) F e, F d 49.5, r. ΔΠΜΣ ΗΕΠ 4/00

43 B4. Βελτίωση του contrast «ε κανόνες» Τροποιείται το ιστόγραα ως εξής:. Ασαφοποίηση των τιών των pixels. Συνεπαγωγή (πχ. IF σκοτεινό THEN g min κλπ) 3. Αποσαφήνιση (Sugeno) σκοτεινό gmin + γκρίζο gmid + g + + σκοτεινό γκρίζο φωτεινό φωτεινό g max σκοτεινό γκρίζο φωτεινό g min g mid g max φωτεινότητα g φωτεινότητα g ΔΠΜΣ ΗΕΠ 43/00

44 Β5 Fuzzy edge detection Απλή προσέγγιση Με υπολογισό του «degree of edginess» (Tizhoosh, 997) ΔΠΜΣ ΗΕΠ 44/00

45 Edge detection ε «κανόνες» ΔΠΜΣ ΗΕΠ 45/00

46 Χάρτης ακών Ακές ετά από κατωφλιοποίηση ΔΠΜΣ ΗΕΠ 46/00

47 B6 Φιλτράρισα ε ασαφή λογική Μετρούενο Μέγεθος: διαφορές του κεντρικού pixel g mn από τα γειτονικά του g ij. x ij g ij -g mn Ηέξοδοςy mn αποτελεί ία «διόρθωση» τηςαρχικήςτιήςτουpixel g mn : g mn g mn +y mn ΔΠΜΣ ΗΕΠ 47/00

48 σύνολα εισόδου: MN (medium negative), MP (medium positive) εξόδου: SΝ (small negative), SP (small positive) και Ζ(zero) MN MP SN Z SP -L+ L- -L+ L- Συνεπαγωγή: IF x m-,n- is MP.. AND x m+,n+ is MP THEN y mn is SP IF x m-,n- is MN.. AND x m+,n+ is MN THEN y mn is SN ELSE y mn is ZE ΔΠΜΣ ΗΕΠ 48/00

49 os κανόνας P P P P P P P P THEN SP Σε διάγραα: ος κανόνας N N N N N N N N THEN SN Else THEN Z ΔΠΜΣ ΗΕΠ 49/00

50 B7. Οι ασαφείς κανόνες αναφέρονται σε παραέτρους (αυρόασπρη εικόνα) α)οντέλο σήατος x(i,j)s(i,j)+n(i,j) β)επιθυητό φιλτράρισα: οάδα : οογενής περιοχή +Uniform θόρυβος οάδα : οογενής περιοχή + Normal θόρυβος οάδα 3: οογενής περιοχή + Exp. Θόρυβος midpoint filter mean filter median filter οάδα 4:ακή (λεπτοέρεια) + Uniform or Gaussianθόρυβος identity filter οάδα 5:ακή (λεπτοέρεια) + Impulsive θόρυβος median filter γ) παράετροι : K(i,j)σ (i,j)/( σ n + σ (i,j)) Q α (i,j) I(i,j) x(i,j)-median(i,j) / σ n local statistics tail behavior impulse detection ΔΠΜΣ ΗΕΠ 50/00

51 δ) Ασαφή σύνολα ε)κανόνες If K is small and Q a is small then x(i,j) οαδα If K is small and Q a is medium then x(i,j) οαδα If K is small and Q a is Large then x(i,j) οαδα3 If K is Large and I is small then x(i,j) οαδα4 If K is large and I is Large then Εξοδος του φίλτρου: y(i, j) 5 k k k x(i,j) οαδα5 (i, j) ω k k (i, j) (i, j) ΔΠΜΣ ΗΕΠ 5/00

52 B8 Εγχρωη εικόνα - φιλτράρισα παράετροι: α) απόκλιση v( X) β) Δυναικό, "άθροισα δυναικού" i P( ) K Nh i h Διαχωρισός σε 3 οάδες (classes) n (X i X) Ασαφή σύνολα (fuzzy sets). N N g( X) N X - X -p X K( X) ( π ) / exp -X p N N i P( X i ) ( ) first class v(x), g(x) large. second class v(x) large,g(x) small. third class v(x) small ΔΠΜΣ ΗΕΠ 5/00

53 Κανόνες Rule:IF (v,large) AND (g, Large) THEN (Class) Rule:IF (v,large) AND (g, Small) THEN (Class) Rule3:IF (v,small) THEN (Class3) min( L (v), L (g)) min( L (v), S (g)) 3 S (v) first class second class third class pixel is selected as the filter output (VMF) /3 of the total number is averaged all the pixels are selected and averaged. X Vector Μedian N/3 points Averager N points Averager Defuzzification output(x) 3 m m 3 m (X) y m m (X) (X) g(x) v(x) Fuzzy Inference output(x) Το fuzzy φίλτρο σε διάγραα βαθίδων ΔΠΜΣ ΗΕΠ 53/00

54 (α) (β) α)εικόνα ε θόρυβο: gaussian (0,6) and impulsive (%) β)η έξοδοςτουπροτεινοένου fuzzy filter ΔΠΜΣ ΗΕΠ 54/00

55 ΔΠΜΣ ΗΕΠ 55/00

56 Γ Οαδοποίηση clustering- Εισαγωγικά ΔΠΜΣ ΗΕΠ 56/00

57 Παράδειγα οαδοποίηση τροχοφόρων Vehicle Top speed km/h Air resistance Weight Kg V V V V V V V V V ΔΠΜΣ ΗΕΠ 57/00

58 Οάδες - Clusters Lorries 500 Weight [kg] Medium market cars Sports cars Top speed [km/h] ΔΠΜΣ ΗΕΠ 58/00

59 Ορολογία Object or data point feature space 3500 label 3000 Lorries feature Weight [kg] cluste r Medium market cars Sports cars Top speed [km/h] feature ΔΠΜΣ ΗΕΠ 59/00

60 Αλγόριθος K-Means παράδειγα Διαχωρισός ( κλάσσεις) frequency intensities 475Hz 557Hz Ok? Yes Yes Yes Yes Yes No No No No No ΔΠΜΣ ΗΕΠ 60/00

61 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz ΔΠΜΣ ΗΕΠ 6/00

62 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Βήα Τυχαία επιλογή κέντρων Κάθε σηείο (data point * και o) ανατίθεται στο πλησιέστερο κέντρο ΔΠΜΣ ΗΕΠ 6/00

63 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Βήα Υπολογίζουε τα νέα κέντρα και Κάθε σηείο (data point * και o) ανατίθεται πάλι στο πλησιέστερο κέντρο ΔΠΜΣ ΗΕΠ 63/00

64 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Επανάληψη ΔΠΜΣ ΗΕΠ 64/00

65 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Επανάληψη3 ΔΠΜΣ ΗΕΠ 65/00

66 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Επανάληψη4 Ο αλγόριθος τερατίζεται διότι δεν υπάρχει καία αλλαγή ΔΠΜΣ ΗΕΠ 66/00

67 Πίνακας διαερισού Partition matrix Κέντρο Κέντρο ΔΠΜΣ ΗΕΠ 67/00

68 Τι ελαχιστοποιήσαε?? κλάσσεις δεδοένα v J c i J i c i k,x C k X i k V i v X k ΔΠΜΣ ΗΕΠ 68/00

69 Γ Αλγόριθος Fuzzy C-Means fcm n σηεία, c κέντρα U ik ητιήσυετοχής του X k στο κέντρο V i ΔΠΜΣ ΗΕΠ 69/00

70 fcm τα βήατα v X k U k ο βήα: υπολογισός των U ik U k u ik c d i ik d ik όπου : d ik X i X k c uik γιά k,,..n 0 < uik < n i k n v ΔΠΜΣ ΗΕΠ 70/00

71 fcm τα βήατα v X k ο βήα: υπολογισός των κέντρων V i U k U k V i n k n u k m ik u X m ik k i K c v ΔΠΜΣ ΗΕΠ 7/00

72 FCM - σύνοψη Xdata Nxp U partition matrix u M u C L O L u u N M CN V Centroids [ V, V,..., V C ] Objective function J(t) J(t ) < ε CONTINUE STOP Επαναληπτική διαδικασία ΔΠΜΣ ΗΕΠ 7/00

73 παράδειγα Διαχωρισός ( κλάσεις) ΔΠΜΣ ΗΕΠ 73/00

74 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Βήα Τυχαία επιλογή κέντρων Κάθε σηείο (data point * και o) λαβάνει ία τιή συετοχής ανάλογα ε την απόσταση από τα κέντρα ΔΠΜΣ ΗΕΠ 74/00

75 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Βήα Υπολογίζονται τα καινούρια κέντρα και στη συνέχεια οι καινούριες τιές συετοχής ΔΠΜΣ ΗΕΠ 75/00

76 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Επανάληψη ΔΠΜΣ ΗΕΠ 76/00

77 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Επανάληψη 5 ΔΠΜΣ ΗΕΠ 77/00

78 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Επανάληψη 0 ΔΠΜΣ ΗΕΠ 78/00

79 Tiles data: o whole tiles, * cracked tiles, x centres 0 log(intensity) 557 Hz log(intensity) 475 Hz Επανάληψη 3- τερατισός ΔΠΜΣ ΗΕΠ 79/00

80 Πίνακας διαερισού (Partition matrix) U ik Κέντρο Κέντρο Τι άθροισα έχουν οι στήλες?? ΔΠΜΣ ΗΕΠ 80/00

81 Πίνακας διαερισού (Partition matrix) Κέντρα c u M u C L O L u u N M CN v v 3 v Δεδοένα Ν X k ΔΠΜΣ ΗΕΠ 8/00

82 Τι ελαχιστοποιήσαε?? συνάρτηση «κόστους» - Objective function J c n i k u m ik X k V i τερατισός του αλγορίθου fcm J(n+)-J(n) ε ή {Uik(n + )} {Uik(n)} ε ΔΠΜΣ ΗΕΠ 8/00

83 fcmdemo ΔΠΜΣ ΗΕΠ 83/00

84 Cluster Validity αξιοπιστία εγκυρότητα οαδοποίησης Άλλα έτρα c N PC(c) ( ij ) N i j PC(c) trace U ik U ik N CE(c) XB(c) N c c N i j N i j ( ) Nmin ij ij { T } V j ij X ln( j V i V i ij ) Ισοδύναα: ΔΠΜΣ ΗΕΠ 84/00

85 Cluster Validity -Πίνακας διαερισού και. ασάφεια U ik U ik U ik U ik * U T ik U ik * U T ik U ik * U T ik 0 0 trace/ Trace/ Τrace/3 ΔΠΜΣ ΗΕΠ 85/00

86 Ελάχιστη ασάφεια βέλτιστη οαδοποίηση (σωστός αριθός κλάσεων) Τα δεδοένα (4 κλάσεις) Δείκτης ασάφειας PC Αριθός κλάσεων c X_data[repmat([,],00,);repmat([,],00,); repmat([,],00,); repmat([,],00,)]; X_dataX_data+0.7*rand(400,);[N,p]size(X_data); plot(x_data(:,),x_data(:,),'o') Fuziness[] for k:0;[prot,u]fcm(x_data,k);fuziness(k)trace(u*u')/n ; end figure; plot(fuziness,'.-'),grid ΔΠΜΣ ΗΕΠ 86/00

87 FCM D Example - Eνα πρόβληα.. compact groups spurious patterns FCM sensitivity to noisy data ΔΠΜΣ ΗΕΠ 87/00

88 Η λύση- Conditional fcm Ας δούε τον U ij u ik c c j f k ( ) d d ik ij όπου : d uik fk γιά k,,..n 0 < uik < N i k ik Τι αλλάζει?? X i N X k Κέντρο Κέντρο f f ΔΠΜΣ ΗΕΠ 88/00

89 Mountain clustering- Subtractive clustering Βρίσκει τον αριθό των κλάσεων Χρησιοποιείται και βοηθητικά στον fcm, και ανεξάρτητα υλοποίηση ΔΠΜΣ ΗΕΠ 89/00

90 Mountain clustering - Subtractive clustering D k K j e u k r u a j Για κάθε δεδοένο j θεωρούε ία Gaussian συνάρτηση. Σε κάθε σηείο k του χώρου δηιουργείται ένα βουνό σαν άθροισα των επί έρους Gaussian συναρτήσεων. ΔΠΜΣ ΗΕΠ 90/00

91 Επίδραση της «ακτίνας» r a Δεδοένα Μεγάλη «ακτίνα» ικρή «ακτίνα» Πολύ ικρή «ακτίνα» ΔΠΜΣ ΗΕΠ 9/00

92 Αφαίρεση του έγιστου «βουνού» D ' k D k D c e u k u r a c ΔΠΜΣ ΗΕΠ 9/00

93 συνέχεια (διαδοχική αφαίρεση και των υπολοίπων) ΔΠΜΣ ΗΕΠ 93/00

94 Ένα παράδειγα (δορυφορική εικόνα) Mountain clustering fcm ΔΠΜΣ ΗΕΠ 94/00

95 FCM - παράδειγα - υπολογισοί ΔΠΜΣ ΗΕΠ 95/00

96 x x x x 3 4 {,3} {3,} Παράδειγα fcm n4,c {.5,3.} {.3,.8} ο βήα:υπολογισός των U ik Θέτουε αυθαίρετα {U (0) ik } 0 Αρχικοί υπολογισοί ο βήα: υπολογισός των κέντρων V i UΧ + UX + U3X3 + U4X4 X + X + X3 V U + U + U3 + U4 + + X X X {, } {.6,3} U Χ + UX U + U + U + U X3 + U + U X X V 3 4 {3,} ΔΠΜΣ ΗΕΠ 96/00

97 Ψηφιακή Επεξεργασία Εικόνας ΔΠΜΣ ΗΕΠ Σ. Φωτόπουλος ΠΑΝ. ΠΑΤΡΩΝ 97/00 Παράδειγα fcm fcm (συνέχεια) η επανάληψη -ο βήα:υπολογισός των U ik η επανάληψη -ο βήα:υπολογισός των U ik η επανάληψη 0.0 ) ( 3) (3 d.65 3) (.6) (3 d.47 ) (.8 3) (.3 d 0. 3) (.8.6) (.3 d.66 ) (3. 3) (.5 d 0.3 3) (3..6) (.5 d.8 ) (3 3) ( d 0.6 3) (3.6) ( d d d d d d d d d d d d d d d d d } {U () ik Οοίως:

98 η επανάληψη οβήα: υπολογισός των κέντρων V i η επανάληψη (συνέχεια) UΧ + UX + U3X3 + U4X X X X3... U + U + U + U V 3 4 {.6,3} UΧ + UX + U3X3 + U4X X X X3 + X4... U + U + U + U V 3 4 {3,} Έλεγχος σύγκλισης () (0) () (0) {Uik Uik } max ικ ik i,k Εάν η τιή αυτή είναι ικανοποιητική σταατά η διαδικασία. Διαφορετικά προχωρούε σε η επανάληψη ΔΠΜΣ ΗΕΠ 98/00

99 ΒΙΒΛΙΟΓΡΑΦΙΑ Matlab: Zadeh,L.A.,"Fuzzy sets" Information and Control, Vol. 8, pp , 965 Zadeh,L.A.,"Outline of a new approach to the analysis of complex systems and decision processes" IEEE Transactions on Systems, Man, and Cybernetics, Vol.3, No., pp.8-44, Jan 973 Dubois D. and Prade H., "Fuzzy sets and Systems, theory and applications" Academic, New York, 980 Bezdec, J., " Pattern recognition with fuzzy abjective function algorithms" Plenum Press, New York, 98 Terano T., Asai K., and Sugeno M., "Fuzzy system theory and its applications" Academic Press, San Diego, CA, 99 B.Kosko "Neural Networks and Fuzzy systems" Prentice Hall, Inc., Englewood Cliffs,NJ,99 F.Russo "Nonlinear Fuzzy Filters: An overview" Proc. ECCTD96, Trieste, Sept 0-3, 996 Τ. Ross " Fuzzy Logic with Engineering Applications" Mc Graw Hill, Inc., 995 ΔΠΜΣ ΗΕΠ 99/00

100 Lofti Zadeh Fuzzy Sets in Info &control,vol.8 (965) pp 9-44 Kaufmann, Arnold and Gupta, Madan M., Introduction to Fuzzy Arithmetic: Theory and Applications, New York: Van Nostrand Reinhold Company Ltd., pp. Klir, George J. and Folger, Tina A., Fuzzy Sets, Uncertainty, and Information, Englewood Cliffs, NJ: Prentice Hall, pp. Kosko, Bart A., Neural Networks and Fuzzy Systems, Prentice-Hall, 990. Mamdani, E.H. and Gaines, B.R., Fuzzy Reasoning and its Applications, New York: Academic Press, pp. Negoita, Constantin Virgil, Fuzzy Systems, Cybernetics and Systems Series, Abacus Press, pp. Sugeno, Michio, Industrial Applications of Fuzzy Control, New York: North-Holland, pp. Togai, M., Reasoning with Uncertainty for Rule-based Expert Systems, John Wiley & Sons, in progress. Zimmermann, Hans J., Fuzzy Set Theory and its Applications, Boston MA: Kluwer- Nijhoff Publishing, pp L.Zadeh, FuzzyLogicComputing with words IEEE Trans on Fuzzy Systems, Vol4, No.,996 (pp03-) ΔΠΜΣ ΗΕΠ 00/00

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ 1/64. και Ασαφής Λογική

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ 1/64. και Ασαφής Λογική ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ /64 Albert Einstein Lecture to Prussian Academy 9 ΔΠΜΣ ΗΕΠ /64 ΔΠΜΣ ΗΕΠ 3/64 ΔΠΜΣ ΗΕΠ 4/64 Α. Γενικά Ασαφή σύνολα Fuzzy set Crisp

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) Μάρτιος Ψηφιακή Επεξεργασία Σήµατος και Ασαφής Λογική

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) Μάρτιος Ψηφιακή Επεξεργασία Σήµατος και Ασαφής Λογική ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 Albert Einstein Lecture to Prussian Acaemy 9 Ψηφιακή Επεξεργασία Σήατος και Ασαφής

Διαβάστε περισσότερα

ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic)

ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ /00 Albert Einstein Lecture to Prussian Academy 9 ΔΠΜΣ ΗΕΠ /00 Lotfi A. Zadeh ΔΠΜΣ ΗΕΠ 3/00 ΔΠΜΣ ΗΕΠ 4/00 Α. Γενικά Ασαφή σύνολα Fuzzy

Διαβάστε περισσότερα

Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού ANFIS (Adaptive Network based Fuzzy Inference System)

Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού ANFIS (Adaptive Network based Fuzzy Inference System) ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών DEMOCRITUS UNIVERSITY OF THRACE SCHOOL OF ENGINEERING Department of Civil Engineering Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού

Διαβάστε περισσότερα

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017 Θέμα μεταπτυχιακής διατριβής: Λογισμικά μελέτης και σχεδίασης ρομποτικών συστημάτων - συγκρτική μελέτη και εφαρμογές. 1) Μελέτη των δημοφιλών λογισμικών σχεδίασης ρομποτικών συστημάτων VREP και ROS. 2)

Διαβάστε περισσότερα

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση Εκτίηση Σηείου Εκτίηση Σηείου Εισαγωγή Σε πολλές περιπτώσεις στη στατιστική έχουε συναντήσει προβλήατα για τα οποία απαιτείται να εκτιηθεί ια παράετρος. Η έθοδος που ακολουθεί στις περιπτώσεις αυτές κανείς

Διαβάστε περισσότερα

Ασαφής Λογική & Έλεγχος

Ασαφής Λογική & Έλεγχος Τεχνητή Νοηοσύνη 7 σαφής Λογική & Έλεγχος Φώτης Κόκκορας ΤΕΙ Θεσσαλίας Τήα Μηχανικών Πληροφορικής (Fuzzy Logic Fuzzy Control) Η σαφής Λογική (Fuzzy Logic)......δεν είναι καθόλου...ασαφής ή ανακριβής, όπως

Διαβάστε περισσότερα

Εκτίµηση άγνωστων κατανοµών πιθανότητας

Εκτίµηση άγνωστων κατανοµών πιθανότητας KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Εκτίηση άγνωστων κατανοών πιθανότητας ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 coas Tsaatsous Εισαγωγή Παραετρικές έθοδοι Μη παραετρικές

Διαβάστε περισσότερα

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn 2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)

Διαβάστε περισσότερα

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers)

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers) KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μπαεσιανοί Ταξινοητές Bayesan Classfers ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 Ncolas Tsapatsouls Εισαγωγή Θεωρία Bayes και

Διαβάστε περισσότερα

Ασαφής Λογική και Αναγνώριση Προτύπων

Ασαφής Λογική και Αναγνώριση Προτύπων Ασαφής Λογική και Αναγνώριση Προτύπων Ορισός Έστω Χ ένα τυπικό σύνολο αντικειένων, που το καλούε σύπαν, του οποίου τα στοιχεία τα συβολίζουε ε. Η σχέση του περιέχεσθε για ένα τοπικό υποσύνολο του Α του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. Ασαφή Συστήματα. 1.1 Ασαφή Σύνολα. x A. 1, x

ΚΕΦΑΛΑΙΟ 1. Ασαφή Συστήματα. 1.1 Ασαφή Σύνολα. x A. 1, x ΚΕΦΑΛΑΙΟ 1 Ασαφή Συστήματα Η τεχνολογική πρόοδος των τελευταίων ετών επέβαλλε τη δημιουργία συστημάτων ικανών να εκτελέσουν προσεγγιστικούς συλλογισμούς, παρόμοιους με αυτούς του ανθρώπινου εγκέφαλου.

Διαβάστε περισσότερα

Βασικές Έννοιες Ασαφών Συνόλων

Βασικές Έννοιες Ασαφών Συνόλων Ασάφεια (Fuzziness) Έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. "Ο Νίκος είναι ψηλός Το πρόβλημα οφείλεται στην αντίληψη που έχει

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθµου Least Mean Square (LMS)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθµου Least Mean Square (LMS) ΒΕΣ 6 Προσαροστικά Συστήατα στις Τηλεπικοινωνίες Προσαροστικοί Αλγόριθοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθου Least Mean Square (LMS) Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX Σε αυτό το εγχειρίδιο θα περιγράψουμε αναλυτικά τη χρήση του προγράμματος MATLAB στη λύση ασαφών συστημάτων (FIS: FUZZY INFERENCE SYSTEM

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση

Διαβάστε περισσότερα

Κεφάλαιο 14. Ασάφεια. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Κεφάλαιο 14. Ασάφεια. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Κεφάλαιο 4 Ασάφεια Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ασάφεια (Fuzziness) Έννοια που σχετίζεται µε την ποσοτικοποίηση της πληροφορίας και

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Ασαφής Λογική. Βελτιστοποίηση Συστημάτων & Υδροπληροφορική. Χρήστος Μακρόπουλος & Ανδρέας Ευστρατιάδης

Ασαφής Λογική. Βελτιστοποίηση Συστημάτων & Υδροπληροφορική. Χρήστος Μακρόπουλος & Ανδρέας Ευστρατιάδης Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Ασαφής Λογική Χρήστος Μακρόπουλος & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο, Μάρτιος 2011 1 Ιστορία.. L. A.

Διαβάστε περισσότερα

ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α Ευφυής Έλεγχος 4

ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α Ευφυής Έλεγχος 4 ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α 4 Α αφ ο ι / ι ό φο α ια ο οί ια ά α ο ία φ ά ί αι Α αφή ογι ή (Fuzzy Logic),

Διαβάστε περισσότερα

Ασαφής Λογική (Fuzzy Logic)

Ασαφής Λογική (Fuzzy Logic) Ασαφής Λογική (Fuzzy Logic) Ασάφεια: έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. Π.χ. "Ο Νίκος είναι ψηλός": δεν προσδιορίζεται με

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Μετασχηματισμοί έντασης και χωρικό φιλτράρισμα Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ασαφής Λογική (Fuzzy Logic)

Ασαφής Λογική (Fuzzy Logic) Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Ασαφής Λογική (Fuzzy Logic) Χρήστος Μακρόπουλος Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο Κατ αρχάς λίγη ιστορία.. Αζερμπαϊτζάν, Τεχεράνη,

Διαβάστε περισσότερα

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques) Αναγνώριση Προτύπων Μη παραμετρικές τεχνικές Αριθμητικά Παραδείγματα (Non Parametric Techniques) Καθηγητής Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern

Διαβάστε περισσότερα

Εργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017

Εργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017 Εργαστήριο ADICV1 Image Boundary detection and filtering Κώστας Μαριάς 13/3/2017 Boundary Detection 2 Γείτονες και περίγραμμα εικόνας Ορίζουμε ως V το σύνολο των τιμών εντάσεων εικόνας για να ορίσουμε

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

ΑΣΑΦΗΣ ΛΟΓΙΚΗ. Οικονόμου Παναγιώτης Δρ. Ε. Παπαγεωργίου 1

ΑΣΑΦΗΣ ΛΟΓΙΚΗ. Οικονόμου Παναγιώτης Δρ. Ε. Παπαγεωργίου 1 ΑΣΑΦΗΣ ΛΟΓΙΚΗ Ασαφή Σύνολα Συναρτήσεις Συμμετοχής Λεκτικοί Κανόνες Πράξεις Ασαφών Συνόλων Ασαφής Συνεπαγωγές Αποασαφοποίηση Παραδείγματα Ασαφών Συστημάτων Οικονόμου Παναγιώτης 1 Ασάφεια Έννοια που σχετίζεται

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Research on model of early2warning of enterprise crisis based on entropy

Research on model of early2warning of enterprise crisis based on entropy 24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός.

ΕΡΓΑΣΙΑ 2 (Παράδοση:.) Λύση Ι. Το πεδίο ορισµού Α, θα προκύψει από την απαίτηση ο παρονοµαστής να είναι διάφορος του µηδενός. ΕΡΓΑΣΙΑ (Παράδοση:.) Σηείωση: Οι ασκήσεις είναι βαθολογικά ισοδύναες Άσκηση Να προσδιορίσετε τα όρια: sin( ) I. lim, II. lim sin, III. lim ( ln ) sin z Όπου χρειαστεί να θεωρήσετε γνωστό ότι lim z z Ι.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11. Ελεγξιμότητα (μέρος 2ο) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ER-Tree (Extended R*-Tree)

ER-Tree (Extended R*-Tree) 1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley

Διαβάστε περισσότερα

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Component Analysis, PCA)

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Component Analysis, PCA) ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Coponent Analysis, PCA) καθ. Βασίλης Μάγκλαρης aglaris@netode.ntua.gr www.netode.ntua.gr

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης

Διαβάστε περισσότερα

Μηχανουργική Τεχνολογία ΙΙ

Μηχανουργική Τεχνολογία ΙΙ Μηχανουργική Τεχνολογία ΙΙ Χαρακτηριστικά διεργασιών - Παραμετροποίηση-Μοντελοποίηση Associate Prof. John Kechagias Mechanical Engineer, Ph.D. Παραμετροποίηση - Μοντελοποίηση Στο κεφάλαιο αυτό γίνεται

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Μηχανικών Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ Ζ.Γ.3 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 7 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Υπολογιστική Νοημοσύνη

Διαβάστε περισσότερα

Μαθηµατικά-ΙIΙ (Θεωρία),

Μαθηµατικά-ΙIΙ (Θεωρία), ΑΝΑΛΥΤΙΚΟ ΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΑ Μαθηµατικά-Ι (Θεωρία), Μαθηµατικά-ΙΙ (Θεωρία), Μαθηµατικά-ΙIΙ (Θεωρία), Μαθηµατικά-ΙIΙ (Εργαστήριο για τα Μαθηµατικά Ι, ΙΙ, ΙΙΙ), Ασαφής Λογική (Θεωρία & Εφαρµογές).

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Feasible Regions Defined by Stability Constraints Based on the Argument Principle Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων

ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΔΙΑΧΕΙΡΙΣΗ

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Σημειακή επεξεργασία και μετασχηματισμοί Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται

Διαβάστε περισσότερα

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. 1/45 Τι είναι ο SIFT-Γενικά Scale-invariant feature transform detect and

Διαβάστε περισσότερα

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 3: Διακριτός και Ταχύς Μετασχηματισμός Fourier (DTF & FFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής

Διαβάστε περισσότερα

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50

Μη γραμμικά Φίλτρα. Μεταπτυχιακό Πρόγραμμα. Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ 1/50 Μη γραμμικά Φίλτρα Σ. Φωτόπουλος ΜΗ ΓΡΑΜΜΙΚΑ ΦΙΛΤΡΑ /50 Φίλτρα διάμεσης τιμής (median,order statistic) Μη γραμμικά φίλτρα μέσης τιμής Μορφολογικά φίλτρα Ομομορφικά φίλτρα Πολυωνυμικά φίλτρα Σ. Φωτόπουλος

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB (το παρόν αποτελεί τροποποιηµένη έκδοση του οµόνυµου εγχειριδίου του κ. Ν. Μαργαρη) 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1.1.1 ΠΡΟΣΘΕΣΗ» 3+5 8 % Το σύµβολο

Διαβάστε περισσότερα

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση

ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση Μια από τις σημαντικότερες τεχνικές αυτοματοποιημένης ερμηνείας εικόνων, είναι η ταξινόμηση. Με τον όρο ταξινόμηση εννοείται η διαδικασία

Διαβάστε περισσότερα

Anomaly Detection with Neighborhood Preservation Principle

Anomaly Detection with Neighborhood Preservation Principle 27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός

Νευρωνικά ίκτυα και Εξελικτικός Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα RBF (Radial Basis Functions) δίκτυα Παρεµβολή συνάρτησης Θεώρηµα Cover ιαχωρισµός προτύπων Υβριδική Εκµάθηση Σύγκριση µε MLP Εφαρµογή: Αναγνώριση

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική

Διαβάστε περισσότερα

Επεξεργασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #08

Επεξεργασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #08 Επεξεργασία εικόνας Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #08 1 Επεξεργασία εικόνας Βασικό ανάγνωσµα: Η ενότητα 12.4 από το ϐιβλίο των Van Loan και Fan. Επεξεργασία εικόνας Μ. ρακόπουλος

Διαβάστε περισσότερα

substructure similarity search using features in graph databases

substructure similarity search using features in graph databases substructure similarity search using features in graph databases Aleksandros Gkogkas Distributed Management of Data Laboratory intro Θα ενασχοληθούμε με το πρόβλημα των ερωτήσεων σε βάσεις γραφημάτων.

Διαβάστε περισσότερα

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων Clustering Αλγόριθµοι Οµαδοποίησης Αντικειµένων Εισαγωγή Οµαδοποίηση (clustering): οργάνωση µιας συλλογής από αντικείµενα-στοιχεία (objects) σε οµάδες (clusters) µε βάση κάποιο µέτρο οµοιότητας. Στοιχεία

Διαβάστε περισσότερα

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6ο: Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση

ΕΡΓΑΣΤΗΡΙΟ 6ο: Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση ΕΡΓΑΣΤΗΡΙΟ 6ο: Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση Μια από τις σημαντικότερες τεχνικές αυτοματοποιημένης ερμηνείας εικόνων, είναι η ταξινόμηση. Με τον όρο ταξινόμηση εννοείται η διαδικασία

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1

Διαβάστε περισσότερα

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Probabilistic Approach to Robust Optimization

Probabilistic Approach to Robust Optimization Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,

Διαβάστε περισσότερα

Advances in Digital Imaging and Computer Vision

Advances in Digital Imaging and Computer Vision Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό

Διαβάστε περισσότερα

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 19 εκεµβρίου 2018 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί

Διαβάστε περισσότερα

Advances in Digital Imaging and Computer Vision

Advances in Digital Imaging and Computer Vision Advances in Digital Imaging and Computer Vision Lecture and Lab XXX Introduction to Python Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Image Processing and Computer Vision with

Διαβάστε περισσότερα

ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ

ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ Εισαγωγή Τεχνικές διαχωριστικής ομαδοποίησης: Ν πρότυπα k ομάδες Ν>>k Συνήθως k καθορίζεται από χρήστη Διαχωριστικές τεχνικές: επιτρέπουν πρότυπα να μετακινούνται από ομάδα σε

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P) ( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j

Διαβάστε περισσότερα

1η εργασία για το μάθημα «Αναγνώριση προτύπων»

1η εργασία για το μάθημα «Αναγνώριση προτύπων» 1η εργασία για το μάθημα «Αναγνώριση προτύπων» Σημειώσεις: 1. Η παρούσα εργασία είναι η πρώτη από 2 συνολικά εργασίες, η κάθε μια από τις οποίες θα βαθμολογηθεί με 0.4 μονάδες του τελικού βαθμού του μαθήματος.

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: GP401 Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M.

Διαβάστε περισσότερα

A research on the influence of dummy activity on float in an AOA network and its amendments

A research on the influence of dummy activity on float in an AOA network and its amendments 2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI

Διαβάστε περισσότερα

A Finite Precision of Private Information Precision of Private Information Approaching Infinity 0 θ1 * θ Session Cost of Action A First 20 Last 20 Rounds Rounds Information in Stage 2 First 20 Last

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά.

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Αλληλεπίδραση μαθήματος: εδάφουςκατασκευών

Διαβάστε περισσότερα

DEIM Forum 2016 G7-5 152-8565 2-12-1 152-8565 2-12-1 889-1601 5200 E-mail: uragaki.k.aa@m.titech.ac.jp,,,.,,,,,,, 1. 1. 1,,,,,,.,,,,, 1. 2 [1],,,,, [2] (, SPM),,,,,,,. [3],, [4]. 2 A,B, A B, B A, B, 2,,,

Διαβάστε περισσότερα

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System Typical and guaranteed specifications vary versus frequency; see detailed data sheets for specification

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ

Διαβάστε περισσότερα

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΦΥΣΙΚΩΝ ΠΟΡΩΝ» ΤΜΗΜΑ ΔΑΣΟΛΟΓΙΑΣ & ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΦΥΣΙΚΩΝ ΠΟΡΩΝ Μεταπτυχιακή Διατριβή με

Διαβάστε περισσότερα

Prepolarized Microphones-Free Field

Prepolarized Microphones-Free Field Prepolarized Microphones-Free Field MP0 / MP3 / MP / MP / MP / MP / MP8 MP0 MP3 MP MP MP MP MP8 Standards (IEC7) I I I.3 ~ 0k 3 ~ 0k 0 ~.k 0 ~.k 0 ~ 70k 0 ~ k 0 ~ k Open-circuit Sensitivity (mv/pa) (±db)

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ ΚΕΦΑΛΑΙΟ 18 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΜΕΣΕΣ ΤΙΜΕΣ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Στο κεφάλαιο αυτό θα ας απασχολήσουν έλεγχοι στατιστικών υποθέσεων που αναφέρονται στις έσες τιές και αναλογίες πληθυσών

Διαβάστε περισσότερα

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα