ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) Μάρτιος Ψηφιακή Επεξεργασία Σήµατος και Ασαφής Λογική

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) Μάρτιος Ψηφιακή Επεξεργασία Σήµατος και Ασαφής Λογική"

Transcript

1 ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005

2 Albert Einstein Lecture to Prussian Acaemy 9 Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005

3 Μάρτιος Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική

4 Α. Γενικά Ασαφή σύνολα Fuzzy set Crisp set Βαθός συετοχής φωτεινότητα φ00 Βαθός συετοχής φωτεινότητα Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 4

5 Συναρτήσεις συετοχής -Χαρακτηριστικές ορφές ασαφών συνόλων Τριγωνική Τραπεζοειδής 0 0 Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 5

6 (συν.) άλλες ορφές f (x;a,c ) - f (x;a,c ) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 6

7 Β. Πως περιγράφονται τα ασαφή σύνολα A ~ N Α(x) Α(x ) Α(xN) x x xn i Α (x x i i ) Ασαφές Σύνολο ε ένα στοιχείο ονοάζεται singleton 0 0 x είναι ο βαθός συετοχής membership function (το σύβολο + δεν σηαίνει άθροισα) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 7

8 Γ. Πράξεις στα ασαφή σύνολα (Zaeh) Ενωση Α Β(x) Α(x) Β(x) max{ Α(x), Β(x)} Τοή Α Β(x) Α(x) Β(x) min{ Α(x), Β(x)} Συπλήρωα ( x) Α (x) Α Οι πράξεις αυτές πορούν να ορισθούν και ε άλλους τρόπους. πχ. Α Β(x) Α(x) Β(x) (x) (x) + (x) Α Β Α Β Α Β (x) (x) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 8

9 Τοή,ένωση, συπλήρωα - γραφικά Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 9

10 υαδική λογική ασαφής λογική Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 0

11 Ασαφείς κανόνες IF-THEN rules Είναι ένας τρόπος επεξεργασίας Αποτελείται από ένα σύνολο συνθηκών (υποθέσεων) στην είσοδο(anteceent) και ία συνθήκη (δράση-απόφαση ) στην έξοδο (consequent). H εύρεση των κανόνων συνδέεται ε εθόδους οαδοποίησης (clustering) IF (x,a ) THEN (y,b ) IF (x,a ) AND (x,a ) THEN (y,b ) IF (x,a ) AND (x,a ) THEN (y,b 3 ) συνήθως: AND minimum, x x OR maximum Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005

12 Συνεπαγωγή (inference) Eιναι η διαδικασία που δίνει αριθητικές τιές στους ασαφείς κανόνες Οι τεχνικές συνεπαγωγής περιλαβάνουν και την συνολική εκτίηση των κανόνων στην έξοδο Οι πλέον γνωστές τεχνικές είναι:. max-min (Mamani) διακριτές τιές. max-prouct (Correlation prouct)- διακριτές τιές 3. Γ. max-min (Mamani) ασαφές σύνολο 4.. max-prouct (Correlation prouct)- ασαφές σύνολο 5. Ε. Sugeno Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005

13 . max-min (Mamani)-διακριτές τιές Α Α Β Α Α Β Input (i) Input (j) y Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 3

14 . max-prouct (Correlation prouct)- διακριτές τιές Α Α Β Α Α Β Input (i) Input (j) y* Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 4

15 3. max-min (Mamani)-ασαφή σύνολα Α Input (i) Input (j) Α Β Input (i) Α Input (j) Α Β y* Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 5

16 4. max-prouct (Correlation prouct)- ασαφή σύνολα Α Input (i) Input (j) Α Β Input (i) Α Α Input (j) Β y* Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 6

17 5. «Sugeno» συνεπαγωγή Α Α w z Α Α w Input (i) Input (j) z y*σw i z i Παρατήρηση: Στη έθοδο Sugeno ΕΝ απαιτείται διαδικασία αποσαφήνισης (efuzzification) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 7

18 max-min (Mamani) συνεπαγωγή - παράδειγα Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 8

19 συνεπαγωγή Sugeno -παράδειγα Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 9

20 Αποσαφήνιση (efuzzification) Α. Μaximum (z*) (z) για κάθε z z* z B. Κέντρο βάρους (Centroi) z (z) z z (z) z Γ. Μέση τιή-των εγίστων (συνήθως σε συετρικά σύνολα) z (z) z (z) z* z z Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 0

21 Αποσαφήνιση - Παράδειγα «άθροιση» Κέντρο βάρους (Centroi) z (z) z z (z) z z 3 (0.3z)zz + (0.3)zz + zz z 3 (0.3z)z + (0.3)z + z Μέση τιή- (Weighte average) (0.3.5) + (0.5 5) + ( 6.5) z Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005

22 Καθορισός των παραέτρων (tuning) Οι παράετροι συνήθως είναι αυτές που καθορίζουν την ορφή στα«ασαφή» σύνολα εισόδου - εξόδου Οι έθοδοι που χρησιοποιούνται βασίζονται στις γνωστές τεχνικές όπως: α) Νευρωνικά δίκτυα β) Γενετικοί αλγόριθοι γ) Βάθωση δ) ANFIS matlab(aaptive Neuro-fuzzy Inference System). Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005

23 Ασαφές σύστηα - ΣΥΝΟΨΗ Ασαφοποίηση Fuzzification Συνεπαγωγή Inference Αποσαφήνιση Defuzzification Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 3

24 Μάρτιος Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική

25 Β. Αλγόριθος Fuzzy C-Means (fcm) Οαδοποίηση - clustering v X k U k n σηεία, c κέντρα U ik η τιή συετοχής του X k στο κέντρο V i ο βήα: U k U ik c i U ik υπολογισός των U ik c i ik ik όπου : γιά k,,.. n 0 < U ik X n k i ik X k < n v Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 5

26 Fuzzy C-Means (fcm) - Αλγόριθος v X k ο βήα: υπολογισός των κέντρων V i U k U k V i n k n U k m ik U X m ik k i K c J m υπολογισός του «κόστους» n c k i U m ik X k X i v Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 6

27 Πίνακας διαερισού Partition matrix Παράδειγα (3 σηεία κέντρα) 0.9 { U ik } Σύγκλιση τερατισός του αλγορίθου fcm J(n+)-J(n) ε ή {Uik(n + )} {Uik(n)} ε Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 7

28 Παράδειγα fcm n4,c x x x x 3 4 {,3} {.5,3.} {.3,.8} {3,} ο βήα:υπολογισός των U ik Θέτουε αυθαίρετα {U (0) ik } 0 Αρχικοί υπολογισοί ο βήα: υπολογισός των κέντρων V i UΧ + UX + U3X3 + U4X4 X + X + X3 V U + U + U3 + U4 + + X X X {, } {.6,3} U Χ + UX U + U + U + U X3 + U + U X X V 3 4 {3,} Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 8

29 Μάρτιος Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Παράδειγα fcm fcm (συνέχεια) η επανάληψη -ο βήα:υπολογισός των U ik η επανάληψη -ο βήα:υπολογισός των U ik η επανάληψη 0.0 ) ( 3) (3.65 3) (.6) (3.47 ) (.8 3) ( ) (.8.6) (.3.66 ) (3. 3) ( ) (3..6) (.5.8 ) (3 3) ( 0.6 3) (3.6) ( } {U () ik Οοίως:

30 η επανάληψη ο βήα: υπολογισός των κέντρων V i η επανάληψη (συνέχεια) UΧ + UX + U3X3 + U4X X X X3... U + U + U + U V 3 4 {.6,3} UΧ + UX + U3X3 + U4X X X X3 + X4... U + U + U + U V 3 4 {3,} Έλεγχος σύγκλισης () (0) () (0) {Uik Uik } max ικ ik i,k Εάν η τιή αυτή είναι ικανοποιητική σταατά η διαδικασία. ιαφορετικά προχωρούε σε η επανάληψη Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

31 B. Μία πρώτη προσέγγιση στην επεξεργασία Μονόχρωης Εικόνας Από την εργασία S.K.Pal an R.A. King 98 Μίαεικόναπουπαριστάνεταιε την ορφή πίνακα: IMAGE f(n,n x x ) x M x πορεί να παρασταθεί σαν ένα ασαφές σύνολο όπου κάθε pixel έχει ένα βαθό συετοχής ij στη φωτεινότητα : 3 N x x x x 3 M N L L L L L x x x x n n 3n M N n L L L L L x x x x N N 3N M N N X 3 N /x /x /x M /x 3 N 3 N /x /x /x M /x 3 N L L L L L n n 3n Nn /x /x /x M /x n n 3n Nn L L L L L N N 3N NN /x /x /x M /x N N 3N NN Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 3

32 Μία επεξεργασία βασισένη στη θεώρηση αυτή είναι η αύξηση του contrast, και περιγράφεται ε τον τελεστή INT. Η επίδραση του τελεστή INT σε ένα σύνολο Α θα δώσει ένα άλλο σύνολο Α' ε λιγότερη ασάφεια. Ο INT πορεί να οριστεί ως εξής: [ ( x) ], ( ( x) ) ( x) [ ], ( x) ( x) 0.5 ' mn mn Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 3

33 CONTRAST ENHANCEMENTε τον τελεστή INT παράδειγα Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

34 CONTRAST ENHANCEMENT ε τον τελεστή INT (συν) εάν ( ) 0.5 εάν > > 0.5 Αποτέλεσα ετά από εφαρογή του τελεστή ΙΝΤ Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

35 Εάν η περιοχή τιών της εικόνας δεν είναι εταξύ 0 και, ή εάν η σχέση εταξύ gray scale και δεν πρέπει να είναι γραική χρησιοποιείται ο εξής ετασχηατισός: n n G(x n n ) Fe ( x x ) max F n n Στη συνέχεια εφαρόζεται ο τελεστής ΙΝΤ εάν ( ) 0.5 εάν > > 0.5 Και στο τέλος γίνεται η αντίστροφη διεργασία x n n x max F ( (G)) F e SET F, F e, α F F e α IN G() T r () G - ( ) OUT Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

36 CONTRAST ENHANCEMENT ε τοντελεστήint (ο παράδειγα) α β γ δ ε (α) Η αρχική εικόνα, (β) το αποτέλεσα από το histogram equalization, το αποτέλεσα του αλγορίθου για (γ) F e, F 55, r, (δ) F e, F 5, r και (ε) F e, F 49.5, r. Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

37 Rule base contrast enhancement Τροποιείται το ιστόγραα ως εξής:. Ασαφοποιηση των τιών των pixels. Συνεπαγωγή (IF σκοτεινό THEN g min κλπ) 3. Αποσαφήνιση (Sugeno) σκοτεινό gmin + γκρίζο gmi + g + + σκοτεινό γκρίζο φωτεινό φωτεινό g max σκοτεινό γκρίζο φωτεινό g min g mi g max φωτεινότητα g φωτεινότητα g Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

38 B3.Οι ασαφείς κανόνες αναφέρονται στις τιές των pixel Βασικό φίλτρο Από τις εργασίες: F. Russo και G. Ramponi Μετρούενο Μέγεθος: διαφορές του κεντρικού pixel g mn από τα γειτονικά του g ij. x ij g ij -g mn Ηέξοδοςy mn αποτελεί ία «διόρθωση» της αρχικής τιής του pixel g mn : g mn g mn +y mn Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

39 Ασαφή σύνολα εισόδου:mn,mp εξόδου:sν, SP και Ζ. MN MP SN ZE SP -L+ L- -L+ L- Συνεπαγωγή: IF x m-,n- is MP.. AND x m+,n+ is MP THEN y mn is SP IF x m-,n- is MN.. AND x m+,n+ is MN THEN y mn is SN ELSE y mn is ZE Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

40 os κανόνας P P P P P P P P THEN SP Σε διάγραα: ος κανόνας N N N N N N N N THEN SN Else THEN Z Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

41 Basic Ege Extractor ηέξοδος: P q y Τα ασαφή σύνολα: D(ifference), E (equal), L (low) και H (high) Οι κανόνες st rule D D D E o D D D THEN o H n rulee E E o o o o THEN H 3r rule o D E D E E D o THEN o H 4th ruleo D o o o o E THEN H Else rule THEN L Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 4

42 Χάρτης ακών Ακές ετά από κατωφλιοποίηση Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος 005 4

43 B4. Οι ασαφείς κανόνες αναφέρονται σε παραέτρους (αυρόασπρη εικόνα) α)οντέλο σήατος x(i,j)s(i,j)+n(i,j) β)επιθυητό φιλτράρισα: οάδα : οογενής περιοχή +Uniform θόρυβος οάδα : οογενής περιοχή + Normal θόρυβος οάδα 3: οογενής περιοχή + Exp. Θόρυβος mipoint filter mean filter meian filter οάδα 4:ακή (λεπτοέρεια) + Uniform or Gaussianθόρυβος ientity filter οάδα 5:ακή (λεπτοέρεια) + Impulsive θόρυβος meian filter γ) παράετροι : K(i,j)σ (i,j)/( σ n + σ (i,j)) Q α (i,j) I(i,j) x(i,j)-meian(i,j) / σ n local statistics tail behavior impulse etection Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

44 δ) Ασαφή σύνολα ε)κανόνες If K is small an Q a is small then x(i,j) οαδα If K is small an Q a is meium then x(i,j) οαδα If K is small an Q a is Large then x(i,j) οαδα3 If K is Large an I is small then x(i,j) οαδα4 If K is large an I is Large then Εξοδος του φίλτρου: y(i, j) 5 k k k x(i,j) οαδα5 (i, j) ω k k (i, j) (i, j) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

45 B.5 Εγχρωη εικόνα- φιλτράρισα παράετροι: α) απόκλιση v( X) β) υναικό, "άθροισα δυναικού" i P( ) K Nh i h ιαχωρισός σε 3 οάδες (classes) n (X i X) Ασαφή σύνολα (fuzzy sets). N N g( X) N X - X -p X K( X) ( π ) / exp -X p N N i P( X i ) ( ) first class v(x), g(x) large. secon class v(x) large,g(x) small. thir class v(x) small Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

46 Κανόνες Rule:IF (v,large) AND (g, Large) THEN (Class) Rule:IF (v,large) AND (g, Small) THEN (Class) Rule3:IF (v,small) THEN (Class3) min( L (v), L (g)) min( L (v), S (g)) 3 S (v) first class secon class thir class pixel is selecte as the filter output (VMF) /3 of the total number is average all the pixels are selecte an average. X Vector Μeian N/3 points Averager N points Averager Defuzzification output(x) 3 m m 3 m (X) y m m (X) (X) g(x) v(x) Fuzzy Inference output(x) Το fuzzy φίλτρο σε διάγραα βαθίδων Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

47 (α) (β) α)εικόνα ε θόρυβο: gaussian (0,6) an impulsive (%) β)η έξοδοςτουπροτεινοένου fuzzy filter Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

48 Ερωτήσεις εργασίες. Nα βρεθούν παραλλαγές του fcm (από το διαδίκτυο web of science). Να υλοποιηθεί ο τελεστής ΙΝΤ 3. Να υλοποιηθεί η διαδικασία Rule base contrast enhancement και να συγκριθεί ε κλασσικές εθόδου 4. Να εκτελεσθεί ένα βήα του αλγορίθου fcm για το σύνολο των σηείων: x(,) ψ(,), z(3,3) ω(3,4) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

49 ΒΙΒΛΙΟΓΡΑΦΙΑ Matlab: Zaeh,L.A.,"Fuzzy sets" Information an Control, Vol. 8, pp , 965 Zaeh,L.A.,"Outline of a new approach to the analysis of complex systems an ecision processes" IEEE Transactions on Systems, Man, an Cybernetics, Vol.3, No., pp.8-44, Jan 973 Dubois D. an Prae H., "Fuzzy sets an Systems, theory an applications" Acaemic, New York, 980 Bezec, J., " Pattern recognition with fuzzy abjective function algorithms" Plenum Press, New York, 98 Terano T., Asai K., an Sugeno M., "Fuzzy system theory an its applications" Acaemic Press, San Diego, CA, 99 B.Kosko "Neural Networks an Fuzzy systems" Prentice Hall, Inc., Englewoo Cliffs,NJ,99 F.Russo "Nonlinear Fuzzy Filters: An overview" Proc. ECCTD96, Trieste, Sept 0-3, 996 Τ. Ross " Fuzzy Logic with Engineering Applications" Mc Graw Hill, Inc., Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

50 ΒΙΒΛΙΟΓΡΑΦΙΑ (συν) Kaufmann, Arnol an Gupta, Maan M., Introuction to Fuzzy Arithmetic: Theory an Applications, New York: Van Nostran Reinhol Company Lt., pp. Klir, George J. an Folger, Tina A., Fuzzy Sets, Uncertainty, an Information, Englewoo Cliffs, NJ: Prentice Hall, pp. Kosko, Bart A., Neural Networks an Fuzzy Systems, Prentice-Hall, 990. Mamani, E.H. an Gaines, B.R., Fuzzy Reasoning an its Applications, New York: Acaemic Press, pp. Negoita, Constantin Virgil, Fuzzy Systems, Cybernetics an Systems Series, Abacus Press, pp. Sugeno, Michio, Inustrial Applications of Fuzzy Control, New York: North- Hollan, pp. Togai, M., Reasoning with Uncertainty for Rule-base Expert Systems, John Wiley & Sons, in progress. Zimmermann, Hans J., Fuzzy Set Theory an its Applications, Boston MA: Kluwer-Nijhoff Publishing, pp L.Zaeh, FuzzyLogicComputing with wors IEEE Trans on Fuzzy Systems, Vol4, No.,996 (pp03-) Ψηφιακή Επεξεργασία Σήατος και Ασαφής Λογική Μάρτιος

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ 1/64. και Ασαφής Λογική

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ 1/64. και Ασαφής Λογική ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ /64 Albert Einstein Lecture to Prussian Academy 9 ΔΠΜΣ ΗΕΠ /64 ΔΠΜΣ ΗΕΠ 3/64 ΔΠΜΣ ΗΕΠ 4/64 Α. Γενικά Ασαφή σύνολα Fuzzy set Crisp

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ 1/100. και Ασαφής Λογική

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ. ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ 1/100. και Ασαφής Λογική ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ /00 Albert Einstein Lecture to Prussian Academy 9 ΔΠΜΣ ΗΕΠ /00 Lotfi A. Zadeh ΔΠΜΣ ΗΕΠ 3/00 ΔΠΜΣ ΗΕΠ 4/00 Α. Γενικά Ασαφή σύνολα Fuzzy

Διαβάστε περισσότερα

ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic)

ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ - ΕΙΚΟΝΑΣ ΚΑΙ ΑΣΑΦΗΣ ΛΟΓΙΚΗ (fuzzy logic) ΔΠΜΣ ΗΕΠ /00 Albert Einstein Lecture to Prussian Academy 9 ΔΠΜΣ ΗΕΠ /00 Lotfi A. Zadeh ΔΠΜΣ ΗΕΠ 3/00 ΔΠΜΣ ΗΕΠ 4/00 Α. Γενικά Ασαφή σύνολα Fuzzy

Διαβάστε περισσότερα

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017 Θέμα μεταπτυχιακής διατριβής: Λογισμικά μελέτης και σχεδίασης ρομποτικών συστημάτων - συγκρτική μελέτη και εφαρμογές. 1) Μελέτη των δημοφιλών λογισμικών σχεδίασης ρομποτικών συστημάτων VREP και ROS. 2)

Διαβάστε περισσότερα

Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού ANFIS (Adaptive Network based Fuzzy Inference System)

Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού ANFIS (Adaptive Network based Fuzzy Inference System) ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών DEMOCRITUS UNIVERSITY OF THRACE SCHOOL OF ENGINEERING Department of Civil Engineering Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. Ασαφή Συστήματα. 1.1 Ασαφή Σύνολα. x A. 1, x

ΚΕΦΑΛΑΙΟ 1. Ασαφή Συστήματα. 1.1 Ασαφή Σύνολα. x A. 1, x ΚΕΦΑΛΑΙΟ 1 Ασαφή Συστήματα Η τεχνολογική πρόοδος των τελευταίων ετών επέβαλλε τη δημιουργία συστημάτων ικανών να εκτελέσουν προσεγγιστικούς συλλογισμούς, παρόμοιους με αυτούς του ανθρώπινου εγκέφαλου.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Μετασχηματισμοί έντασης και χωρικό φιλτράρισμα Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθµου Least Mean Square (LMS)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθµου Least Mean Square (LMS) ΒΕΣ 6 Προσαροστικά Συστήατα στις Τηλεπικοινωνίες Προσαροστικοί Αλγόριθοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Παραλλαγές του αλγόριθου Least Mean Square (LMS) Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo

Διαβάστε περισσότερα

Βασικές Έννοιες Ασαφών Συνόλων

Βασικές Έννοιες Ασαφών Συνόλων Ασάφεια (Fuzziness) Έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. "Ο Νίκος είναι ψηλός Το πρόβλημα οφείλεται στην αντίληψη που έχει

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Ασαφής Λογική (Fuzzy Logic)

Ασαφής Λογική (Fuzzy Logic) Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Ασαφής Λογική (Fuzzy Logic) Χρήστος Μακρόπουλος Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο Κατ αρχάς λίγη ιστορία.. Αζερμπαϊτζάν, Τεχεράνη,

Διαβάστε περισσότερα

Ασαφής Λογική (Fuzzy Logic)

Ασαφής Λογική (Fuzzy Logic) Ασαφής Λογική (Fuzzy Logic) Ασάφεια: έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. Π.χ. "Ο Νίκος είναι ψηλός": δεν προσδιορίζεται με

Διαβάστε περισσότερα

Ασαφής Λογική και Αναγνώριση Προτύπων

Ασαφής Λογική και Αναγνώριση Προτύπων Ασαφής Λογική και Αναγνώριση Προτύπων Ορισός Έστω Χ ένα τυπικό σύνολο αντικειένων, που το καλούε σύπαν, του οποίου τα στοιχεία τα συβολίζουε ε. Η σχέση του περιέχεσθε για ένα τοπικό υποσύνολο του Α του

Διαβάστε περισσότερα

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση

Εισαγωγή. 1. Παράµετρος, εκτιµητής, εκτίµηση Εκτίηση Σηείου Εκτίηση Σηείου Εισαγωγή Σε πολλές περιπτώσεις στη στατιστική έχουε συναντήσει προβλήατα για τα οποία απαιτείται να εκτιηθεί ια παράετρος. Η έθοδος που ακολουθεί στις περιπτώσεις αυτές κανείς

Διαβάστε περισσότερα

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P) ( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX Σε αυτό το εγχειρίδιο θα περιγράψουμε αναλυτικά τη χρήση του προγράμματος MATLAB στη λύση ασαφών συστημάτων (FIS: FUZZY INFERENCE SYSTEM

Διαβάστε περισσότερα

Κεφάλαιο 14. Ασάφεια. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Κεφάλαιο 14. Ασάφεια. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Κεφάλαιο 4 Ασάφεια Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ασάφεια (Fuzziness) Έννοια που σχετίζεται µε την ποσοτικοποίηση της πληροφορίας και

Διαβάστε περισσότερα

Ασαφής Λογική. Βελτιστοποίηση Συστημάτων & Υδροπληροφορική. Χρήστος Μακρόπουλος & Ανδρέας Ευστρατιάδης

Ασαφής Λογική. Βελτιστοποίηση Συστημάτων & Υδροπληροφορική. Χρήστος Μακρόπουλος & Ανδρέας Ευστρατιάδης Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Ασαφής Λογική Χρήστος Μακρόπουλος & Ανδρέας Ευστρατιάδης Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο, Μάρτιος 2011 1 Ιστορία.. L. A.

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn 2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)

Διαβάστε περισσότερα

Advances in Digital Imaging and Computer Vision

Advances in Digital Imaging and Computer Vision Advances in Digital Imaging and Computer Vision Lecture and Lab 4 th part 12/3/2018 Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Βασικές έννοιες επεξεργασίας Φιλτράρισμα στο χωρικό

Διαβάστε περισσότερα

Εκτίµηση άγνωστων κατανοµών πιθανότητας

Εκτίµηση άγνωστων κατανοµών πιθανότητας KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Εκτίηση άγνωστων κατανοών πιθανότητας ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 coas Tsaatsous Εισαγωγή Παραετρικές έθοδοι Μη παραετρικές

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Μηχανικών Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ Ζ.Γ.3 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 7 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Υπολογιστική Νοημοσύνη

Διαβάστε περισσότερα

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1

Διαβάστε περισσότερα

Ασαφής Λογική & Έλεγχος

Ασαφής Λογική & Έλεγχος Τεχνητή Νοηοσύνη 7 σαφής Λογική & Έλεγχος Φώτης Κόκκορας ΤΕΙ Θεσσαλίας Τήα Μηχανικών Πληροφορικής (Fuzzy Logic Fuzzy Control) Η σαφής Λογική (Fuzzy Logic)......δεν είναι καθόλου...ασαφής ή ανακριβής, όπως

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως

Διαβάστε περισσότερα

Μηχανουργική Τεχνολογία ΙΙ

Μηχανουργική Τεχνολογία ΙΙ Μηχανουργική Τεχνολογία ΙΙ Χαρακτηριστικά διεργασιών - Παραμετροποίηση-Μοντελοποίηση Associate Prof. John Kechagias Mechanical Engineer, Ph.D. Παραμετροποίηση - Μοντελοποίηση Στο κεφάλαιο αυτό γίνεται

Διαβάστε περισσότερα

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

Εργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017

Εργαστήριο ADICV1. Image Boundary detection and filtering. Κώστας Μαριάς 13/3/2017 Εργαστήριο ADICV1 Image Boundary detection and filtering Κώστας Μαριάς 13/3/2017 Boundary Detection 2 Γείτονες και περίγραμμα εικόνας Ορίζουμε ως V το σύνολο των τιμών εντάσεων εικόνας για να ορίσουμε

Διαβάστε περισσότερα

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Σημειακή επεξεργασία και μετασχηματισμοί Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

Επεξεργασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #08

Επεξεργασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #08 Επεξεργασία εικόνας Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #08 1 Επεξεργασία εικόνας Βασικό ανάγνωσµα: Η ενότητα 12.4 από το ϐιβλίο των Van Loan και Fan. Επεξεργασία εικόνας Μ. ρακόπουλος

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques) Αναγνώριση Προτύπων Μη παραμετρικές τεχνικές Αριθμητικά Παραδείγματα (Non Parametric Techniques) Καθηγητής Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern

Διαβάστε περισσότερα

Μαθηµατικά-ΙIΙ (Θεωρία),

Μαθηµατικά-ΙIΙ (Θεωρία), ΑΝΑΛΥΤΙΚΟ ΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΑ Μαθηµατικά-Ι (Θεωρία), Μαθηµατικά-ΙΙ (Θεωρία), Μαθηµατικά-ΙIΙ (Θεωρία), Μαθηµατικά-ΙIΙ (Εργαστήριο για τα Μαθηµατικά Ι, ΙΙ, ΙΙΙ), Ασαφής Λογική (Θεωρία & Εφαρµογές).

Διαβάστε περισσότερα

A research on the influence of dummy activity on float in an AOA network and its amendments

A research on the influence of dummy activity on float in an AOA network and its amendments 2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI

Διαβάστε περισσότερα

ιαπανεπιστηµιακό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών Σπουδών στα Προηγµένα Συστήµατα Υπολογιστών και Επικοινωνιών Γιαννάκης Περικλής

ιαπανεπιστηµιακό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών Σπουδών στα Προηγµένα Συστήµατα Υπολογιστών και Επικοινωνιών Γιαννάκης Περικλής ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ιαπανεπιστηιακό ιατηατικό Πρόγραα Μεταπτυχιακών Σπουδών στα Προηγένα Συστήατα Υπολογιστών και Επικοινωνιών ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ER-Tree (Extended R*-Tree)

ER-Tree (Extended R*-Tree) 1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley

Διαβάστε περισσότερα

Mantel & Haenzel (1959) Mantel-Haenszel

Mantel & Haenzel (1959) Mantel-Haenszel Mantel-Haenszel 2008 6 12 1 / 39 1 (, (, (,,, pp719 730 2 2 2 3 1 4 pp730 746 2 2, i j 3 / 39 Mantel & Haenzel (1959 Mantel N, Haenszel W Statistical aspects of the analysis of data from retrospective

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11. Ελεγξιμότητα (μέρος 2ο) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ)

ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ) -- ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ (ΦΙΛΤΡΑΡΙΣΜΑ) 3. Εισαγωγή Η βελτίωση εικόνας είναι συνήθως διαδικασία φιλτραρίσµατος δηλ. συνέλιξης µε συγκεκριµµένη διδιάσταση µάσκα και στοχεύει στην ανάδειξη χαρακτηριστικών ή ελάττωση

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

1η εργασία για το μάθημα «Αναγνώριση προτύπων»

1η εργασία για το μάθημα «Αναγνώριση προτύπων» 1η εργασία για το μάθημα «Αναγνώριση προτύπων» Σημειώσεις: 1. Η παρούσα εργασία είναι η πρώτη από 2 συνολικά εργασίες, η κάθε μια από τις οποίες θα βαθμολογηθεί με 0.4 μονάδες του τελικού βαθμού του μαθήματος.

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης

DIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α Ευφυής Έλεγχος 4

ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α Ευφυής Έλεγχος 4 ο ό Α αφ ο ι α ι οί οι Α αφο ο ι Α αφ ο α ά ο ι αβ Α αφ α Α αφ ί α ό Α αφο ο ι ά ι Α αφ ο α ια ι α ι ο ι ά αι,, ό ι ι ά ι ά α α 4 Α αφ ο ι / ι ό φο α ια ο οί ια ά α ο ία φ ά ί αι Α αφή ογι ή (Fuzzy Logic),

Διαβάστε περισσότερα

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης

DIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση

Διαβάστε περισσότερα

Research on model of early2warning of enterprise crisis based on entropy

Research on model of early2warning of enterprise crisis based on entropy 24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Advances in Digital Imaging and Computer Vision

Advances in Digital Imaging and Computer Vision Advances in Digital Imaging and Computer Vision Lecture and Lab XXX Introduction to Python Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Image Processing and Computer Vision with

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΠΡΟΒΛΕΨΗ ΠΩΛΗΣΕΩΝ ΜΕ ΧΡΗΣΗ ΝΕΥΡΟ- ΑΣΑΦΩΝ ΤΕΧΝΙΚΩΝ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΠΡΟΒΛΕΨΗ ΠΩΛΗΣΕΩΝ ΜΕ ΧΡΗΣΗ ΝΕΥΡΟ- ΑΣΑΦΩΝ ΤΕΧΝΙΚΩΝ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΠΡΟΒΛΕΨΗ ΠΩΛΗΣΕΩΝ ΜΕ ΧΡΗΣΗ ΝΕΥΡΟ- ΑΣΑΦΩΝ ΤΕΧΝΙΚΩΝ Επιβλέπων καθηγητής : Σκιαδάς Χρήστος Επιμέλεια : Παναγάκης Νικόλαος ΧΑΝΙΑ 2006 ΕΥΧΑΡΙΣΤΗΡΙΟ

Διαβάστε περισσότερα

X g 1990 g PSRB

X g 1990 g PSRB e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,

Διαβάστε περισσότερα

Σύστημα Ασαφούς Λογικής για την Πρόβλεψη της Μέσης Ημερήσιας Ηλιακής Ακτινοβολίας

Σύστημα Ασαφούς Λογικής για την Πρόβλεψη της Μέσης Ημερήσιας Ηλιακής Ακτινοβολίας 194 2 Συνέδριο Τεχνολογίας και Αυτοματισμού Σύστημα Ασαφούς Λογικής για την Πρόβλεψη της Μέσης Ημερήσιας Ηλιακής Ακτινοβολίας Δρ. A. I. Ντούνης, Σπ. Δάβαρη 18, 19400 Κορωπί, Τηλ./Fax: 6624541 Β. Μπράχος,

Διαβάστε περισσότερα

DEIM Forum 2016 G7-5 152-8565 2-12-1 152-8565 2-12-1 889-1601 5200 E-mail: uragaki.k.aa@m.titech.ac.jp,,,.,,,,,,, 1. 1. 1,,,,,,.,,,,, 1. 2 [1],,,,, [2] (, SPM),,,,,,,. [3],, [4]. 2 A,B, A B, B A, B, 2,,,

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός

Νευρωνικά ίκτυα και Εξελικτικός Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα RBF (Radial Basis Functions) δίκτυα Παρεµβολή συνάρτησης Θεώρηµα Cover ιαχωρισµός προτύπων Υβριδική Εκµάθηση Σύγκριση µε MLP Εφαρµογή: Αναγνώριση

Διαβάστε περισσότερα

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Feasible Regions Defined by Stability Constraints Based on the Argument Principle Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #7: Ευφυής Ελεγκτής Μέρος Α Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΑΣΑΦΗΣ ΛΟΓΙΚΗ. Οικονόμου Παναγιώτης Δρ. Ε. Παπαγεωργίου 1

ΑΣΑΦΗΣ ΛΟΓΙΚΗ. Οικονόμου Παναγιώτης Δρ. Ε. Παπαγεωργίου 1 ΑΣΑΦΗΣ ΛΟΓΙΚΗ Ασαφή Σύνολα Συναρτήσεις Συμμετοχής Λεκτικοί Κανόνες Πράξεις Ασαφών Συνόλων Ασαφής Συνεπαγωγές Αποασαφοποίηση Παραδείγματα Ασαφών Συστημάτων Οικονόμου Παναγιώτης 1 Ασάφεια Έννοια που σχετίζεται

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΦΥΣΙΚΩΝ ΠΟΡΩΝ» ΤΜΗΜΑ ΔΑΣΟΛΟΓΙΑΣ & ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΦΥΣΙΚΩΝ ΠΟΡΩΝ Μεταπτυχιακή Διατριβή με

Διαβάστε περισσότερα

Probabilistic Approach to Robust Optimization

Probabilistic Approach to Robust Optimization Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων

ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΔΙΑΧΕΙΡΙΣΗ

Διαβάστε περισσότερα

Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς

Εργαστήριο ADICV2. Image filtering. Κώστας Μαριάς Εργαστήριο ADICV2 Image filtering Κώστας Μαριάς Image Filtering ADICV Kostas Marias TEI Crete 2017 2 Matlab Σκοπός εργαστηρίου Θα φτιάξουμε ένα ΦΙΛΤΡΟ ΜΕΣΗΣ ΤΙΜΗΣ (mean FILTER) σε matlab Στη συνέχεια θα

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation 3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction

Διαβάστε περισσότερα

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 19 εκεµβρίου 2018 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 3: Διακριτός και Ταχύς Μετασχηματισμός Fourier (DTF & FFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας Σ. Φωτόπουλος Ψηφιακή Επεξεργασία Εικόνας ΚΕΦ.3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ /76 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά συνέλιξη y(n, n ) = x(n, n )*

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #5: Ασαφής Συλλογισμός. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #5: Ασαφής Συλλογισμός. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #5: Ασαφής Συλλογισμός Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Εφαρμογές της Ασαφούς Λογικής σε Θέματα Τεχνολογίας Σκυροδέματος Applications of Fuzzy Logic in Concrete Technology Matters

Εφαρμογές της Ασαφούς Λογικής σε Θέματα Τεχνολογίας Σκυροδέματος Applications of Fuzzy Logic in Concrete Technology Matters Εφαρμογές της Ασαφούς Λογικής σε Θέματα Τεχνολογίας Σκυροδέματος Applications of Fuzzy Logic in Concrete Technology Matters Αναστάσιος Σαπαλίδης Τμήμα Πολ. Μηχανικών ΔΠΘ, Ξάνθη, e-mail: anassapa@civil.duth.gr

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT 1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: GP401 Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M.

Διαβάστε περισσότερα

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of

Διαβάστε περισσότερα

Aσαφής αριθμητική. Έστω A a 1, a ] και B b 1, b ] δύο διαστήματα εμπιστοσύνης στον άξονα των πραγματικών αριθμών,. a b, a ]. Επομένως τα κάτω και άνω

Aσαφής αριθμητική. Έστω A a 1, a ] και B b 1, b ] δύο διαστήματα εμπιστοσύνης στον άξονα των πραγματικών αριθμών,. a b, a ]. Επομένως τα κάτω και άνω σαφής αριθμητική Σύνοψη Το παρόν κεφάλαιο πραγματεύεται την ασαφή αριθμητική σύμφωνα με την οποία τα κυρτά κανονικά ασαφή σύνολα θεωρούνται ασαφείς αριθμοί. Αρχικά γίνεται εισαγωγή στην αριθμητική διαστημάτων

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB (το παρόν αποτελεί τροποποιηµένη έκδοση του οµόνυµου εγχειριδίου του κ. Ν. Μαργαρη) 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1.1.1 ΠΡΟΣΘΕΣΗ» 3+5 8 % Το σύµβολο

Διαβάστε περισσότερα

ΑΠΟΤΙΜΗΣΗ ΣΕΙΣΜΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ (FUZZY LOGIC)

ΑΠΟΤΙΜΗΣΗ ΣΕΙΣΜΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ (FUZZY LOGIC) 9 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 03», Μάρτιος 2003. ΑΠΟΤΙΜΗΣΗ ΣΕΙΣΜΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΑΣΑΦΟΥΣ ΛΟΓΙΚΗΣ (FUZZY LOGIC) ΜΑΝΤΑΣ ΑΛΕΞΑΝΔΡΟΣ-ΓΕΩΡΓΙΟΣ Περίληψη Αντικείμενο

Διαβάστε περισσότερα

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers)

Μπαεσιανοί Ταξινοµητές (Bayesian Classifiers) KE 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μπαεσιανοί Ταξινοητές Bayesan Classfers ΤήαΕπιστήης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήιο Πελοποννήσου 7 Ncolas Tsapatsouls Εισαγωγή Θεωρία Bayes και

Διαβάστε περισσότερα

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp

Διαβάστε περισσότερα

Razor. [1], [2] (typical) LSI V/F. Razor. (Timing Fault: TF) [7] Razor [3], [4], [5] DVFS - Dynamic Voltage and Frequency Scaling [6]

Razor. [1], [2] (typical) LSI V/F. Razor. (Timing Fault: TF) [7] Razor [3], [4], [5] DVFS - Dynamic Voltage and Frequency Scaling [6] ,a),.,.,.,,,,.,. [], [] (typial) LSI (Timing Fault: TF) TF Razor [], [], [] DVFS - Dynami Voltage an Frequeny Saling [] TF (V) (F) TF TF Grauate Shool of Information Siene an Tehnology, The University

Διαβάστε περισσότερα

Παρουσίαση του μαθήματος

Παρουσίαση του μαθήματος Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Συνάρτηση Μεταφοράς Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση

ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση ΕΡΓΑΣΤΗΡΙΟ 6 ο : Ταξινομήσεις εικόνων μη επιβλεπόμενη ταξινόμηση Μια από τις σημαντικότερες τεχνικές αυτοματοποιημένης ερμηνείας εικόνων, είναι η ταξινόμηση. Με τον όρο ταξινόμηση εννοείται η διαδικασία

Διαβάστε περισσότερα