ΚΕΦΑΛΑΙΟ Συνδυαστικά Κυκλώµατα. 3.2 Σχεδιασµός Συνδυαστικής Λογικής 3.3 ιαδικασία Ανάλυσης 3.4 ιαδικασία Σχεδιασµού.
|
|
- Ἀπολλωνία Παπαντωνίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Περιεχόµενα ΚΕΦΑΛΑΙΟ 3 Συνδυαστικά Κυκλώµατα 3.1 Συνδυαστικά Κυκλώµατα 3.2 Σχεδιασµός Συνδυαστικής Λογικής 3.3 ιαδικασία Ανάλυσης 3.4 ιαδικασία Σχεδιασµού Συνδυαστικά Κυκλώµατα Έξοδος οποιαδήποτε στιγµή εξαρτάταιµόνο από τις τιµές στην είσοδο την ίδια στιγµή 3.1 Ακολουθιακά Κυκλώµατα Ακολουθιακά Κυκλώµατα: αποθηκεύουν ουν τιµές (bits), και η έξοδος εξαρτάται από την είσοδο στο παρων και παρελθόν (κεφ. 6) Ορισµός Κυκλώµατος πίνακας αλήθειας µε 2 n συνδυασµούς εισόδου και m τιµές εξόδους για κάθε συνδυασµό Έξοδος: m συναρτήσεις, το καθένα είναι συνάρτηση n µεταβλητών εισόδου Σχεδιασµός Συνδυαστικής Λογ. Combinational Logic Design Σχεδιασµού:Ιεραρχικός Σχεδιασµός 1/8 Εισαγωγή Mεθοδολογίες Ανάλυσης και Σχεδιασµού Βασικά συνδυαστικά κυκλώµατα κωδικοποιητές, αποκωδικοποιητές, πολυπλέκτες, αποπλεκτες, αθροιστές, αφαιρέτες (ππροσηµασµένοι αριθµοί) Ιεραρχία, Πάνω προς Κάτω, CAD, HDL,Synthesis Γλώσσες Περιγραφής Υλικού(ΗDL): VHDL 5 6 1
2 Σχεδιασµού:Ιεραρχικός Σχεδιασµός 2/8 Σχεδιασµού:Ιεραρχικός Σχεδιασµός 3/8 7 8 Σχεδιασµού:Ιεραρχικός Σχεδιασµός 4/8 Σχεδιασµού:Ιεραρχικός Σχεδιασµός 5/ Σχεδιασµού:Ιεραρχικός Σχεδιασµός 6/8 Σχεδιασµού:Ιεραρχικός Σχεδιασµός 7/
3 Σχεδιασµού:Ιεραρχικός Σχεδιασµός 8/8 3.2 Ιεραρχία Απλοποίηση (simplification) Πχ για 9input odd: 10 αντι 32 NAND σχήµατα Φύλλα : βασικά µπλοκ προσχεδιασµένα µε γνωστή συµπεριφορά (βασικά blocks, βιβλιοθήκη) - primitive and predefined blocks Επαναχρησιµοποίηση (reuse) Πάνω προς Κάτω/Κάτω προς Πάνω Σχεδιασµός και CAD 3.2 Hardware Description Languages Εµείς περισσότερο κάτω προς πάνω CAD: εργαλεία για computer aided design παρέχουν/περιέχουν µοντέλλα συµπεριφοράς για βασικές πύλες και κυκλώµατα από βιβλιοθήκη λογική, ηλετρονική, χρόνος αναµετάδοσης, µέγεθος επαλήθευση µε προσοµοίωση υλοποίηση µε synthesizers HDL (vhdl και verilog): γλώσσες προγραµµατισµού για λειτουργικότητες στο υλικό Παρέχουν εναλλακτικό τρόπο περιγραφής λειτουργικότητας ψηφιακών συστηµάτων: σχήµατα ή HDL (ή καιταδυο) Τυποποίηση ευρείας χρήσεως στην βιοµηχανία Ροή Λογικής Σύνθεσης (Logic Synthesis Flow) 3.4 Μεθοδολογία Σχεδιασµού ic fpga Στόχος: από περιγραφή προβλήµατος παραγωγή λογικού διαγράµµατος ή boolean εξισώσεις καθορισµός σηµάτων εισόδου και εξόδου πίνακας αλήθειας που ορίζει σχέση σηµάτων εισόδου και εξόδου (όχι πάντοτε δεδοµένο- κατανόηση) απλοποιηµένες εκφράσεις για κάθε έξοδο αλγεβρική επεξεργασία, k-map, ιεραρχία, εάν πολλές λύσεις επιλογή βάση κριτηρίων απόδοσης σχεδιασµός λογικού διαγράµµατος Υλοποίηση του διαγράµµατος σε µια τεχνολογία Αποσφαλµάτωση του σχεδιασµού vlsi
4 3.4 Παράδειγµα 1/5 3.4 Παράδειγµα (<3) 2/5 Σχεδιάστε ένα συνδυαστικό λογικό κύκλωµα που έχει 3 εισόδους και µια έξοδο. Η έξοδοςείναι1 όταν η δυαδική τιµή στηνείσοδοείναιµικρότερη του 3 (αλλιώς είναι 0). Υλοποιήστε το κύκλωµα µόνο µε πύλεςnand. X2 X1 X0 F Παράδειγµα (<3) 3/5 3.4 Παράδειγµα (<3) 4/5 X2 X1 X0 F X X X 0 F = X 2 X 1 +X 2 X 0 22 X 2 X 1 X 2 X Παράδειγµα (<3) 5/5 F 3.4 Παράδειγµα:Μετατροπή κωδικών 4bit ΒCD σε 4bit excess-3 (συν 3) 1/5 (X) ΒCD =(X+3) excess-3 πχ (5) ΒCD =(8) excess-3, 0101 σε
5 3.4 ΒCD 2 Excess-3 2/ ΒCD 2 Excess-3 3/ ΒCD 2 Excess-3 4/ ΒCD 2 Excess-3 5/ x x x x x x x x x x x x x x x x x x x x x x x x 3.4 K-maps για ΒCD2EXCS Αναγνώριση κοινών όρων (2 vs 3-level υλοποίηση) W= A + BC + BD X = B C+B D+BC D Y=CD+C D Z=D
6 3.4 Αναγνώριση κοινών όρων (2 vs 3-level υλοποίηση) 3.4 ΒCD2EXCS-3 3-levelΥλοποίηση W= A + BC + BD = A + B (C+D) X = B C+B D+BC D =B (C+D)+BC D Y=CD+C D = C D Z=D Σχεδίαση 4-ων bit σύγκριτης 3.4 Σχεδίαση 4-ων bit σύγκριτης Είσοδος: ύο δυανίσµατα Α(3:0) και Β(3:0). Σύνολο 8 σήµατα εισόδου Έξοδος: Τιµή 1 εάν κάθε bit του Α στη θέση i είναι ίσο µε τοbit του Βστηθέσηi, αλλιώς τιµή 0. ηµιουργία πίνακα αλήθειας και απλοποίηση (µέσω πινάκων) συνάρτησης µε 8 µεταβλητές είναι µη-συµφέρουσα. Ε i = Α i Β i + Α i Β i Ο συγκριτής έχει τιµή 1 όταν όλα τα Ε i είναι 0. Ε = Ε 0 +Ε 1 +Ε 2 +Ε 3 Εφόσον συγκρίνουµε κάθε αντίστοιχο bit στη θέση i, τότε µπορούµε εύκολα να σχεδιάσουµε ένα ιεραρχικό κύκλωµα µε πολλά επίπεδα Βασικό κύκλωµα: Ε i = 0 αν Α i και Β i έχουν την ίδια τιµή. Ε i = 1 αν Α i και Β i έχουν διαφορετική τιµή Ε i = Α i Β i + Α i Β i Σχεδιάστε το συγκριτή µε πύλεςxnor BCD σε αποκωδικοποιητή 7 γραµµών (sevensegment decoder) 3.4 BCD σε αποκωδικοποίητη 7 γραµµών (sevensegment decoder) Χρήση στης ψηφιακές συσκευές µε αριθµητική οθόνη Κάθε γραµµή ανάβει όταν στέλνουµε ένα σήµα (δυαδικό 1) a = A C+A BD+B C D +AB C b = A B +A C D +A CD+AB C c = A B+A D+B C D+AB C d = A CD +A B C+B C D +AB C +A BC D e = A CD +B C D f = A BC +A C D +A BD +AB C g = A CD +A B C+A BC +AB C 35 Ονοµάζεται επίσης και µετατροπέας διότι µετατρέπει ένα δεκαδικό κώδικα σε ένα 7-bit κώδικα. 36 6
4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά
ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ένα συνδυαστικό κύκλωµα µπορεί να περιγραφεί από: Φεβ-05. n-είσοδοι
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 3 -i: Σχεδιασµός Συνδυαστικών Κυκλωµάτων Περίληψη Αρχές σχεδιασµού Ιεραρχία σχεδιασµού Σχεδιασµός
9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 7: Συνδυαστικά Ολοκληρωµένα Κυκλώµατα ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Αρχές σχεδιασµού
Συνδυαστικά Κυκλώματα
3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,
Εισαγωγή. Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά: Οι έξοδοι είναι συνάρτηση των εισόδων και της κατάστασης των στοιχείων
Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων
Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Ύλη Λογικού Σχεδιασµού Ι
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)
ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Σχεδιασμός και Ανάλυση Συνδυαστικών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Σχεδιασμός Συνδυαστικών Κυκλωμάτων 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Σχεδιασμός και Ανάλυση Συνδυαστικών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Αρχές
Περιεχόµενα. Στοιχειώδης Λογικές Συναρτήσεις. Αποκωδικοποίηση (Decoding) Ενεργοποίηση Συνάρτησης (Enabling)
Περιεχόµενα Κεφάλαιο 4: Συνδυαστικές Συναρτήσεις και Κυκλώµατα Συναρτήσεις και µονάδες συναρτήσεων Στοιχειώδες λογικές συναρτήσεις Αποκωδικοποίησης Κωδικοποίηση Επιλογή (πολυπλέκτης) Chapter 4 Chapter
ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ
Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Μάθηµα 4: Συνδυαστική Λογική ιδάσκων: Καθηγητής Ν. Φακωτάκης 4.1 Συνδυαστικά κυκλώµατα Λογικά κυκλώµατα για ψηφιακό
Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21
Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση
2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 5: Συνδυαστικά Κυκλώματα και Ακολουθιακά κυκλώματα Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2018-2019 Ροή Σχεδίασης Κυκλωμάτων και Εργαλεία CAD ΗΥ220 - Βασίλης Παπαευσταθίου 1 Transistor: Δομική μονάδα κυκλωμάτων Τα ολοκληρωμένα κυκλώματα
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2017-2018 Ροή Σχεδίασης Κυκλωμάτων και Εργαλεία CAD ΗΥ220 - Γιώργος Καλοκαιρινός & Βασίλης Παπαευσταθίου 1 Transistor: Δομική μονάδα κυκλωμάτων Τα
Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης
5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο
6.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
Εισαγωγή στη γλώσσα περιγραφής υλικού VHDL. Γενικά χαρακτηριστικά, σύνταξη και τύποι. Ψηφιακή Σχεδίαση µε CAD ΙΙ - ιάλεξη 1 -
Εισαγωγή στη γλώσσα περιγραφής υλικού VHDL Γενικά χαρακτηριστικά, σύνταξη και τύποι Ψηφιακή Σχεδίαση µε CAD ΙΙ - ιάλεξη 1 - Περίγραµµα διάλεξης Τι είναι η VHDL? Πλεονεκτήµατα της VHDL στη σχεδίαση κυκλωµάτων
Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ
Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή
Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:
Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΚΩΔΙΚΟΠΟΙΗΤΗΣ ΠΟΛΥΠΛΕΚΤΗΣ ΑΠΟΠΛΕΚΤΗΣ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1) Κωδικοποιητής Ο κωδικοποιητής
Μοντέλα. χαρακτηριστικά χωρίς να συνοδεύεται από λεπτοµέρειες.
Γλώσσες Περιγραφής Μοντέλα Ένα µοντέλο ενός κυκλώµατος είναι µία αναπαράσταση που παρουσιάζει χαρακτηριστικά χωρίς να συνοδεύεται από λεπτοµέρειες. Τα τυπικά µοντέλα έχουν καλά ορισµένη σύνταξη. Τα αυτόµατα
i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη
Ψηφιακή Λογική και Σχεδίαση
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ
Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής
Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 12: Σύνοψη Θεμάτων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 υαδικός Αθροιστής, Πολυπλέκτες και Αποκωδικοποιητές Εβδοµάδα: 5 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Στόχοι
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων
Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ
Ενότητα 6 ΑΝΑΛΥΣΗ & ΣΥΝΘΕΣΗ ΣΥΝΔΥΑΣΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΠΟΛΛΩΝ ΕΠΙΠΕΔΩΝ Γενικές Γραμμές Ανάλυση Συνδυαστικής Λογικής Σύνθεση Συνδυαστικής Λογικής Λογικές Συναρτήσεις Πολλών Επιπέδων Συνδυαστικά
5.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD
Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης
Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία
Μάθημα 0: Εισαγωγή. Λευτέρης Καπετανάκης. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011
ΤΛ22 Ψηφιακά Κυκλώματα Ι Μάθημα : Εισαγωγή Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2 Περιεχόμενα Μαθήματος Εισαγωγή στη σχεδίαση των ψηφιακών κυκλώματων Εισαγωγή
C D C D C D C D A B
Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με
7 η Θεµατική Ενότητα : Εισαγωγή στις Γλώσσες Περιγραφής Υλικού
7 η Θεµατική Ενότητα : Εισαγωγή στις Γλώσσες Περιγραφής Υλικού Εισαγωγή Η χειρονακτική σχεδίαση ενός ψηφιακού συστήµατος είναι εξαιρετικά δύσκολη και επιρρεπής σε λάθη Συστήµατα που ξεπερνούς τις µερικές
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική
Συνδυαστική λογική και βασικά λογικά κυκλώματα. URL:
DeÔtero Ex mhno FoÐthshc Συνδυαστική λογική και βασικά λογικά κυκλώματα Ge rgioc Q. Alexandrìpouloc Lèktorac P.D. 47/8 e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg Tm ma Epist
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 17: Αναδιατασσόµενη Λογική Προγραµµατιζόµενο Υλικό
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 17: Αναδιατασσόµενη Λογική Προγραµµατιζόµενο Υλικό ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Προγραµµατιζόµενες
ΑΣΚΗΣΗ 7 ΚΩΔΙΚΕΣ Η ΟΘΟΝΗ 7 ΤΜΗΜΑΤΩΝ - ΚΩΔΙΚΟΠΟΙΗTΕΣ ( ENCODERS )
ΑΣΚΗΣΗ ΚΩΔΙΚΕΣ Η ΟΘΟΝΗ ΤΜΗΜΑΤΩΝ - ΚΩΔΙΚΟΠΟΙΗTΕΣ ( ENCOERS ).. ΣΚΟΠΟΣ Η κατανόηση των κωδίκων των ψηφίων του δεκαδικού αριθμητικού συστήματος, της λειτουργίας των κωδικοποιητών και των εφαρμογών τους και
Πανεπιστήµιο Κύπρου DEPARTMENT OF COMPUTER SCIENCE
Πανεπιστήµιο Κύπρου DEPARTMENT OF OMPUTER SIENE S 121 Ψηφιακά Εργαστήρια LAB EXERISE 4 Sequential Logic Χρίστος ιονυσίου Σωτήρης ηµητριάδης Άνοιξη 2002 Εργαστήριο 4 Sequential ircuits A. Στόχοι Ο σκοπός
Πτυχιακή Εργασία Σχεδίαση κυκλωμάτων επικοινωνίας με απλές οθόνες, με τη γλώσσα VHDL και υλοποίηση στις αναπτυξιακές πλακέτες LP-2900 και DE2.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Πτυχιακή Εργασία Σχεδίαση κυκλωμάτων επικοινωνίας με απλές οθόνες, με τη γλώσσα VHDL και υλοποίηση στις αναπτυξιακές
ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX)
ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX) 8.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των πολυπλεκτών και αποπλεκτών και της χρήσης αυτών των ολοκληρωμένων κυκλωμάτων (Ο.Κ.)
Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και
ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ
Τίτλος: «Σχεδίαση και προσοµοίωση παράλληλης αριθµητικής λογικής µονάδας (ALU) για την επεξεργασία δυαδικών αριθµών εύρους 4-bit, µε το πρόγραµµα Multisim» ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ
ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ Οι έξοδοί τους είναι συναρτήσεις αποκλειστικά των εισόδων τους Χαρακτηρίζονται από μία καθυστέρηση στη διάδοση του σήματος της τάξης των ns Συνδιαστικά Κυκλώματα O ΣΥΓΚΡΙΤΗΣ Συγκρίνει
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Αθροιστές. Ημιαθροιστής
Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που
ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ
ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : TEΣT ΑΞΙΟΛΟΓΗΣΗΣ ΓΝΩΣΕΩΝ ΣΤΑ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΣΠΟΥΔΑΣΤΗΣ : Λιασένκο Ρομάν ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ : Τόλιου Κατερίνα NEA
PLD. Εισαγωγή. 5 η Θεµατική Ενότητα : Συνδυαστικά. PLAs. PLDs FPGAs
5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI και Εισαγωγή Οι προγραµµατιζόµενες διατάξεις είναι ολοκληρωµένα µε εσωτερικές πύλες οι οποίες µπορούν να υλοποιήσουν οποιαδήποτε συνάρτηση αν υποστούν
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 18: Διαδικασία Σχεδίασης Ψηφιακών Συστηµάτων - Επανάληψη
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 18: Διαδικασία Σχεδίασης Ψηφιακών Συστηµάτων - Επανάληψη ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Μονάδες Μνήμης και Διατάξεις Προγραμματιζόμενης Λογικής
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Μονάδες Μνήμης και Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Μονάδες Μνήμης - Προγραμματιζόμενη Λογική Μια μονάδα μνήμης είναι ένα
Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ
Ενότητα 8 Η ΠΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Γενικές Γραμμές Πύλες XOR και XNOR λοποιήσεις με AND-OR-INV Κώδικας Ισοτιμίας (Parity) Άρτια και Περιττή Συνάρτηση Κυκλώματα ανίχνευσης λαθών Συγκριτές
ΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( DECODERS )
6.1. ΣΚΟΠΟΣ ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών ΑΣΚΗΣΗ 6 ΑΠΟΚΩΔΙΚΟΠΟΙΗΕΣ ( ECOERS ) Η κατανόηση της λειτουργίας των αποκωδικοποιητών και των εφαρμογών τους. 6.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Ο
σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.
Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του
ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ
ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Αντικείμενο της άσκησης: Μεθοδολογία ανάλυσης και σχεδίασης συνδυαστικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB. Συνδυαστικά
Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων
Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων Καθηγητής Αντώνιος Γαστεράτος Τμήμα Ε.ΔΙ.Π. Μηχανικών Δρ. Αθανάσιος Παραγωγής Ψωμούλης και Διοίκησης, Δ.Π.Θ. Τμήμα Μηχανικών Παραγωγής
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 4: Ελαχιστοποίηση και Λογικές Πύλες ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Βελτιστοποίηση
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 2 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 26 ΔΙΑΛΕΞΗ 8: Σχεδιασµός Συνδυαστικών Κυκλωµάτων Ι (Κεφάλαιο 4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Συναρτήσεις
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή Εισαγωγή Η σχεδίαση ενός ψηφιακού συστήµατος ως ακολουθιακή µηχανή είναι εξαιρετικά δύσκολη Τµηµατοποίηση σε υποσυστήµατα µε δοµικές µονάδες:
Κυκλωμάτων» Χειμερινό εξάμηνο
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Εισαγωγή στα Συστήματα Ολοκληρωμένων Κυκλωμάτων Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής http://diceslab.cied.teiwest.gr E-mail: pkitsos@teimes.gr
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 121 ΕΡΓΑΣΤΗΡΙΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΝΗΜΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΗ ΛΟΓΙΚΗ ΥΠΕΥΘΥΝΟΣ ΕΡΓΑΣΤΗΡΙΩΝ: ΧΡΥΣΟΣΤΟΜΟΣ ΧΡΥΣΟΣΤΟΜΟΥ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2001 ΕΠΛ 121 ΕΡΓΑΣΤΗΡΙΑ ΨΗΦΙΑΚΩΝ
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 00 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Δυαδική λογική Πύλες AND, OR, NOT, NAND,
Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).
Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων Τµήµα Επιστήµης Υπολογιστών Χειµερινό Εξάµηνο
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων Τµήµα Επιστήµης Υπολογιστών Χειµερινό Εξάµηνο 2006-2007 Εκφώνηση Εργαστηρίου Στο εργαστήριο του µαθήµατος σας ζητείται να σχεδιάσετε, να υλοποιήσετε και να επαληθεύσετε
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Λειτουργία Πολυπλέκτης (Mul plexer) Ο
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος B) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008
ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 Οκτ-8 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου
ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα
ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών
Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Ψηφιακά Κυκλώματα ( ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά κυκλώματα Οι δύο λογικές τιμές, αντιστοιχούν σε ηλεκτρικές τάσεις Υλοποιούνται με τρανζίστορ ή διόδους: ελεγχόμενοι διακόπτες
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΛΓΕΒΡΑ BOOLE 2017, Δρ. Ηρακλής Σπηλιώτης Γενικοί ορισμοί Αλγεβρική δομή είναι ένα σύνολο στοιχείων και κάποιες συναρτήσεις με πεδίο ορισμού αυτό το σύνολο. Αυτές οι συναρτήσεις
Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου
Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Βασικές Συνδυαστικές Συναρτήσεις και. Διδάσκουσα: Μαρία Κ. Μιχαήλ
ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 29 Οκτ-9 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό μρ Εξάμηνο 29 Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Πλήρης Αθροιστής, Αποκωδικοποιητής και Πολυπλέκτης ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λύσεις
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Ακολουθιακή Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωμα Έξοδοι Στοιχεία Μνήμης Κατάσταση
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
4.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας
Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες
Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία
ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ
ΑΣΚΗΣΗ 4 ΠΡΟΒΛΗΜΑΤΑ ΛΟΓΙΚΗΣ ΣΧΕΔΙΑΣΗΣ 4.1 ΣΚΟΠΟΣ Σκοπός αυτής της εργαστηριακής άσκησης είναι να παρουσιάσει τις βασικές αρχές της σχεδίασης λογικών (ψηφιακών) κυκλωμάτων για πρακτικές εφαρμογές. Στα προηγούμενα
ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 8: Σύγχρονα ακολουθιακά κυκλώµατα (µέρος Α ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Κυκλώµατα οδηγούµενα από
ΕΙΣΑΓΩΓΙΚΟ ΕΓΧΕΙΡΙ ΙΟ ΓΙΑ ΣΧΕ ΙΑΣΜΟ ΜΕ ΧΡΗΣΗ ΤΗΣ ΓΛΩΣΣΑΣ VHDL
ΕΙΣΑΓΩΓΙΚΟ ΕΓΧΕΙΡΙ ΙΟ ΓΙΑ ΣΧΕ ΙΑΣΜΟ ΜΕ ΧΡΗΣΗ ΤΗΣ ΓΛΩΣΣΑΣ VHDL Προετοιµασία: Παπαδόπουλος Γιώργος Σούρδης Γιάννης Για το µάθηµα Οργάνωσης Υπολογιστών (ΑΡΥ301), 2002 ΕΙΣΑΓΩΓΗ ΣΤΗ STRUCTURAL VHDL Η VHDL είναι
Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 8//28 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα
Ψηφιακή Σχεδίαση Ενότητα 11:
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 11: Μνήμη και Προγραμματίσιμη Λογική Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών
ΑΣΚΗΣΗ 8 η -9 η ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΗΣ ΛΟΓΙΚΗΣ ΜΟΝΑΔΑΣ ΤΕΣΣΑΡΩΝ ΔΥΑΔΙΚΩΝ ΨΗΦΙΩΝ
ΑΣΚΗΣΗ 8 η -9 η ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΗΣ ΛΟΓΙΚΗΣ ΜΟΝΑΔΑΣ ΤΕΣΣΑΡΩΝ ΔΥΑΔΙΚΩΝ ΨΗΦΙΩΝ ΘΕΩΡΙΑ Αντικείμενο της άσκησης είναι ο λογικός σχεδιασμός, και η εξομοίωση μίας αριθμητικήςλογικής μονάδας τεσσάρων δυαδικών
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1
ΗΜΥ 20: Σχεδιασμός Ψηφιακών Συστημάτων 5//200 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Σχεδιασμός Ακολουθιακών Κυκλωμάτων Αρχή: Μια λίστα/περιγραφή
1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Άθροιση + + + + a +b 2c+s + Κρατούµενο προηγούµενης βαθµίδας κρατούµενο άθροισµα Μεταφέρεται στην επόµενη βαθµίδα σηµαντικότητας