ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ
|
|
- Ισίδωρα Καλάρης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τίτλος: «Σχεδίαση και προσοµοίωση παράλληλης αριθµητικής λογικής µονάδας (ALU) για την επεξεργασία δυαδικών αριθµών εύρους 4-bit, µε το πρόγραµµα Multisim» ΦΟΙΤΗΤΡΙΑ : ΒΟΥΛΓΑΡΙ ΟΥ ΜΑΡΙΑ, ΑΕΜ: 2109 ΕΠΙΒΛΕΠΩΝ : ΚΑΛΟΜΟΙΡΟΣ ΙΩΑΝΝΗΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ
2 Εισαγωγή Βάση της εργασίας αποτέλεσε ο προσοµοιωτής Multisim: ένα περιβάλλον λογισµικού που επιτρέπει τη σχεδίαση και την προσοµοίωση της λειτουργίας των ηλεκτρονικών κυκλωµάτων. Σκοπός της παρούσας εργασίας είναι η σχεδίαση και προσοµοίωση µιας παράλληλης αριθµητικής λογικής µονάδας (ALU) για την επεξεργασία δυαδικών αριθµών εύρους 4-bit µε το πρόγραµµα Multisim. Συγκεκριµένα θα εκτελεί τις λογικές πράξεις AND και XOR αλλά και τις αριθµητικές ADD και SUBTRACT.
3 Πύλη XOR Η πύλη XOR εκτελεί την λογική πράξη XOR (αποκλειστικό Η ) µεταξύ των εισόδων της. Ο πίνακας αληθείας της λογικής πύλης ΧOR φαίνεται στο εξής σχήµα:
4 Πύλη XOR
5 Πύλη AND Η πύλη AND εκτελεί την λογική πράξη AND (ΚΑΙ) µεταξύ των εισόδων της. c = a*b Ο πίνακας αληθείας της λογικής πύλης AND φαίνεται στο εξής σχήµα:
6 Πύλη AND
7 Πλήρης αθροιστής Ο πλήρης αθροιστής είναι ένα συνδυαστικό κύκλωµα που εκτελεί την πρόσθεση δύο δυαδικών ψηφίων λαµβάνοντας υπόψη και την ύπαρξη κρατουµένου προηγούµενης τάξης. Το παρακάτω block διάγραµµα αναφέρεται σε έναν πλήρη 2-bits. Οι δύο είσοδοι x,y παριστάνουν τα bit της ίδιας τάξης που θα προστεθούν ενώ το Cin παριστάνει το κρατούµενο από την προηγούµενη αµέσως λιγότερη σηµαντική θέση. Οι έξοδοι S και C παριστάνουν το αποτέλεσµα και το πιθανό κρατούµενο αντίστοιχα.
8 Πλήρης Αθροιστής
9 Πλήρης Αθροιστής 4-bit Για την πρόσθεση αριθµών των τεσσάρων bits όπου και χρειαζόµαστε εµείς χρησιµοποιούµε το κύκλωµα του παράλληλου πλήρη αθροιστή µε διάδοση κρατουµένου. Ο αθροιστής αυτός προσθέτει δύο ψηφιολέξεις Α3Α2Α1Α0 και Β3Β2Β1Β0.Αποτελείται από τέσσερις πλήρεις αθροιστές που ο καθένας αθροίζει δύο bits.
10 υαδικός Αφαιρέτης Η πράξη της αφαίρεσης µπορεί να γίνει µε αθροιστές χρησιµοποιώντας το συµπλήρωµα ως προς 2 του αφαιρετέου. Με τον τρόπο αυτό µπορούµε να χρησιµοποιήσουµε το ίδιο κύκλωµα τόσο για την πράξη της πρόσθεσης όσο και για την πράξη της αφαίρεσης.
11 Κύκλωµα Πρόσθεσης/Αφαίρεσης Το τελικό κύκλωµα θα υλοποιεί τη πράξη της πρόσθεσης ή της αφαίρεσης ανάλογα µε την τιµή που θα δίνουµε εµείς στο κρατούµενο εισόδου. Συγκεκριµένα όταν το Cin θα παίρνει την τιµή 0 θα εκτελεί την πράξη της πρόσθεσης και αντίστοιχα όταν τι Cin θα παίρνει την τιµή 1 θα εκτελεί την πράξη της αφαίρεσης.
12 Κύκλωµα Πρόσθεσης/Αφαίρεσης
13 ALU Αυτά τα 3 κυκλώµατα που σχεδιάσαµε θα αποτελέσουν και την ALU. Θα δηµιουργήσουµε µια νέα βαθµίδα µε όνοµα ALU η οποία θα έχει 10 εισόδους (Α0,Α1,Α2,Α3,Β0,Β1,Β2,Β3,Μ0,Μ1) και 5 εξόδους (S0,S1,S2,S3,Cout). Το Α0.Β3 αποτελούν τις δύο ψηφιολέξεις µας και τα Μ0 Μ1 είναι οι είσοδοι όπου ανάλογα µε τις τιµές τους θα εκτελείται και η αντίστοιχη πράξη. Τα αποτελέσµατα θα εµφανίζονται στην έξοδο S0..S3 και το Cout θα εµφανίζει το πιθανό κρατούµενο που θα προκύψει από την πράξη της πρόσθεσης ή της αφαίρεσης.
14 ALU Αφού συνδεθούν σωστά οι είσοδοι της ALU θα πρέπει να τοποθετήσουµε µια πύλη AND. Η πύλη αυτή µας εξυπηρετεί στην επιλογή πράξης. Απαραίτητο για την σωστή λειτουργία της ALU είναι και ένας αποκωδικοποιητής 2:4. Εµείς συγκεκριµένα θα χρησιµοποιήσουµε τον 74ls139
15 Αποµονωτές/buffers Λόγω του ότι η αριθµητική λογική µονάδα θα εκτελεί παραπάνω από µία πράξεις είναι απαραίτητοι 3 αποµονωτές (buffers). Συνδέοντας τις εξόδους του αποκωδικοποιητή µε τις γραµµές ελέγχου των buffer οδηγούµε στην έξοδο της ALU ένα αποτέλεσµα κάθε φορά.
16 Κύκλωµα ALU
17 Τελικό κύκλωµα Εφόσον σχεδιάσαµε σε αυτό το επίπεδο και την αριθµητική λογική µονάδα(alu) είµαστε στο στάδιο στο οποίο µπορούµε να δούµε µε παραδείγµατα πως λειτουργεί το κύκλωµά µας. Η τελική του µορφή είναι η παρακάτω (top level).
18 Παράδειγµα XOR Παράδειγµα: Για την λογική πράξη XOR ανάµεσα στο «0010» και «1100»:
19 Παράδειγµα AND Για την λογική πράξη AND ανάµεσα στους αριθµούς «0101» και «0011»:
20 Παράδειγµα Πρόσθεσης Για την πρόσθεση ανάµεσα στους αριθµούς «0010» και «1011»:
21 Παράδειγµα Αφαίρεσης Για την πράξη της αφαίρεσης ανάµεσα στους αριθµούς «1010» και «0110»
22 Συµπεράσµατα Βάση της παρούσας εργασίας αποτέλεσε το λογισµικό Multisim, ένα περιβάλλον λογισµικού που επιτρέπει τη σχεδίαση αλλά και την προσοµοίωση της λειτουργίας των ηλεκτρονικών κυκλωµάτων. Έτσι, αναφερθήκαµε: στη σχεδίαση και προσοµοίωση της παράλληλης αριθµητικής λογικής µονάδας (ALU) στις λογικές πύλες XOR και AND, στον πλήρη αθροιστή, στη διάδοση κρατούµενων. δυαδικό αφαιρετή. Κατ αυτόν τον τρόπο δόθηκε σχηµατικά και ανά βήµα η δηµιουργία του κυκλώµατος, ενώ τρέχοντας το πρόγραµµα είδαµε πως µπορούµε να προχωρήσουµε στην προσοµοίωση της λειτουργίας του κυκλώµατος, µε πραγµατικές εισόδους και εξόδους. Η προσοµοίωση δείχνει ότι το κύκλωµα λειτουργεί κανονικά.
4.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας
Αθροιστές. Ημιαθροιστής
Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που
5.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD
Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:
Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.
Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη
"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch
"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Καραγιάννη Ελένη 1, Καραγιαννάκη Μαρία-Ελένη 2, Βασιλειάδης Αθανάσιος 3, Κωστουλίδης Αναστάσιος-Συμεών 4, Μουτεβελίδης Ιωάννης-Παναγιώτης 5,
a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3
ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται
1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Άθροιση + + + + a +b 2c+s + Κρατούµενο προηγούµενης βαθµίδας κρατούµενο άθροισµα Μεταφέρεται στην επόµενη βαθµίδα σηµαντικότητας
9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί
w x y Υλοποίηση της F(w,x,y,z) με πολυπλέκτη 8-σε-1
Άσκηση 1 Οι λύσεις απαντήσεις που προτείνονται είναι ενδεικτικές και θα πρέπει να προσθέσετε Α) Αρχικά σχεδιάζουμε τον πίνακα αληθείας της λογικής έκφρασης: w x y z x G1 =x y G2 =z w F = G1 G2 Είσοδοι
ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ 4 ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΛΟΓΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης: Λογική και μεθοδολογία σχεδίασης αριθμητικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB.. Αθροιστές. Σχεδίαση
Ψηφιακή Λογική και Σχεδίαση
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ
9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας. "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch
9 ο Μαθητικό Συνέδριο Πληροφορικής Κεντρικής Μακεδονίας Θεσσαλονίκη, 25-28 Απριλίου 2017, ΝΟΗΣΙΣ "My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch Κωνσταντίνος Παρασκευόπουλος Καθηγητής Πληροφορικής
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου
Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 12
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 12 17 Οκτωβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση
! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 3 η Εργαστηριακή Άσκηση Σχεδίαση και Υλοποίηση μίας ALU δύο εισόδων VHDL Εργαστήριο_2 2012-2013 1 Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
ΑΣΚΗΣΗ 8 η -9 η ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΗΣ ΛΟΓΙΚΗΣ ΜΟΝΑΔΑΣ ΤΕΣΣΑΡΩΝ ΔΥΑΔΙΚΩΝ ΨΗΦΙΩΝ
ΑΣΚΗΣΗ 8 η -9 η ΣΧΕΔΙΑΣΗ ΑΡΙΘΜΗΤΙΚΗΣ ΛΟΓΙΚΗΣ ΜΟΝΑΔΑΣ ΤΕΣΣΑΡΩΝ ΔΥΑΔΙΚΩΝ ΨΗΦΙΩΝ ΘΕΩΡΙΑ Αντικείμενο της άσκησης είναι ο λογικός σχεδιασμός, και η εξομοίωση μίας αριθμητικήςλογικής μονάδας τεσσάρων δυαδικών
Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 υαδικός Αθροιστής, Πολυπλέκτες και Αποκωδικοποιητές Εβδοµάδα: 5 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Στόχοι
Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων
Ψηφιακά Συστήματα 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Εισαγωγή. Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά: Οι έξοδοι είναι συνάρτηση των εισόδων και της κατάστασης των στοιχείων
2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη
i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/
7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ
7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΗΜΙΑΘΡΟΙΣΤΗΣ ΠΛΗΡΗΣ ΑΘΡΟΙΣΤΗΣ ΗΜΙΑΦΑΙΡΕΤΗΣ ΠΛΗΡΗΣ ΑΦΑΙΡΕΤΗΣ ΠΑΡΑΛΛΗΛΟΣ
Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης
5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει
Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής
Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).
4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά
6.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους
ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ
Τµήµα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρµατης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Μάθηµα 4: Συνδυαστική Λογική ιδάσκων: Καθηγητής Ν. Φακωτάκης 4.1 Συνδυαστικά κυκλώµατα Λογικά κυκλώµατα για ψηφιακό
Σχεδίαση Βασικών Κυκλωµάτων. Χρ. Καβουσιανός. Επίκουρος Καθηγητής
Σχεδίαση Βασικών Κυκλωµάτων Χρ. Καβουσιανός Επίκουρος Καθηγητής Εισαγωγή Τα αριθµητικά κυκλώµατα χρησιµοποιούνται ευρέως στην σχεδίαση συστηµάτων. Data Paths Επεξεργαστές ASICs Κυρίαρχες Αριθµητικές Πράξεις:
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή Εισαγωγή Η σχεδίαση ενός ψηφιακού συστήµατος ως ακολουθιακή µηχανή είναι εξαιρετικά δύσκολη Τµηµατοποίηση σε υποσυστήµατα µε δοµικές µονάδες:
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική
Ύλη Λογικού Σχεδιασµού Ι
4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.tua.gr/ml232/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.tua.gr URL: http://users.tua.gr/leo Λογικές Πράξεις Λογικές Συναρτήσεις
Ιωάννης Καλόµοιρος ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Τεύχος 1 ο. Σύντοµη εισαγωγή στα ψηφιακά κυκλώµατα και στις οικογένειες κυκλωµάτων της τυπικής λογικής
Ιωάννης Καλόµοιρος (Document version 1.0) Αναπλ. Καθηγητής ΤΕΙ Κεντρικής Μακεδονίας ΠΡΟΗΓΜΕΝΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Τεύχος 1 ο Σύντοµη εισαγωγή στα ψηφιακά κυκλώµατα και στις οικογένειες κυκλωµάτων της τυπικής
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 4 η Εργαστηριακή Άσκηση Περιγραφή Κυκλωμάτων με Ακολουθιακές Εντολές Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας
Μελέτη και σχεδίαση µιας υποτυπώδους κεντρικής µονάδας επεξεργασίας στα 32 µπιτ.
ΤΕΙ ΚΡΗΤΗΣ / ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Μελέτη και σχεδίαση µιας υποτυπώδους κεντρικής µονάδας επεξεργασίας στα 32 µπιτ mode mode(0) ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Εµµανουήλ Καπαρού Επιβλέπων : ρ Μηχ Νικόλαος
Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Ψηφιακά Κυκλώματα ( ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά κυκλώματα Οι δύο λογικές τιμές, αντιστοιχούν σε ηλεκτρικές τάσεις Υλοποιούνται με τρανζίστορ ή διόδους: ελεγχόμενοι διακόπτες
Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).
Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται
Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1
Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση υαδική Πρόσθεση
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 9: Σχεδιασµός Συνδυαστικών Κυκλωµάτων ΙΙ (Κεφάλαιο 5) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη
Ψηφιακά Συστήματα. 3. Λογικές Πράξεις & Λογικές Πύλες
Ψηφιακά Συστήματα 3. Λογικές Πράξεις & Λογικές Πύλες Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση
Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Παράρτηµα Γ Τα Βασικά της Λογικής Σχεδίασης ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες
ΚΕΦΑΛΑΙΟ Συνδυαστικά Κυκλώµατα. 3.2 Σχεδιασµός Συνδυαστικής Λογικής 3.3 ιαδικασία Ανάλυσης 3.4 ιαδικασία Σχεδιασµού.
Περιεχόµενα ΚΕΦΑΛΑΙΟ 3 Συνδυαστικά Κυκλώµατα 3.1 Συνδυαστικά Κυκλώµατα 3.2 Σχεδιασµός Συνδυαστικής Λογικής 3.3 ιαδικασία Ανάλυσης 3.4 ιαδικασία Σχεδιασµού 1 2 3.1 Συνδυαστικά Κυκλώµατα Έξοδος οποιαδήποτε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Σχεδίαση Ψηφιακών Συστημάτων. Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ψηφιακών Συστημάτων Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ
ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ : Κ. ΠΕΚΜΕΣΤΖΗ
ΠΡΑΞΕΙΣ ΜΕ ΠΡΟΣΗΜΑΣΜΕΝΟΥΣ ΑΡΙΘΜΟΥΣ ΚΥΚΛΩΜΑΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΠΑΡΑΣΤΑΣΗ ΑΡΙΘΜΩΝ Συμπλήρωμα ως προς 2 Booth, Modified Booth Reduntant αριθμητικά συστήματα Signed Digit αριθμητική Κανονική
1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί
σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.
Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του
1 Περίληψη Η εργασία έγινε στα πλαίσια του μαθήματος των Ψηφιακών Ηλεκτρονικών Συστημάτων με σκοπό αρχικά την εκμάθηση της γλώσσας VHDL (Very High Spe
Εργασία στα Ψηφιακά Ηλεκτρονικά Συστήματα 2013-2014 Θέμα: Κατασκευή και Ανάλυση Μετρητή 4-bit και Πλήρους Αθροιστή σε περιβάλλον VHDL Ονοματεπώνυμο: Αλέξανδρος Γεώργιος Μουντογιαννάκης Σχολή: Τμήμα Επιστήμης
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)
3. ΛΟΓΙΚΕΣ ΠΡΑΞΕΙΣ & ΛΟΓΙΚΕΣ ΠΥΛΕΣ
3. ΛΟΓΙΚΕΣ ΠΡΞΕΙΣ & ΛΟΓΙΚΕΣ ΠΥΛΕΣ 3. ΛΟΓΙΚΕΣ ΠΡΞΕΙΣ 3.. Εισαγωγή ντίθετα προς τις μαθηματικές πράξεις και τις μεταβλητές τους, στην λογική διαδικασία χρησιμοποιούμε τις λογικές μεταβλητές οι οποίες μπορούν
Η κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].
Κανονική μορφή συνάρτησης λογικής 5. Η κανονική μορφή μιας λογικής συνάρτησης (ΛΣ) ως άθροισμα ελαχιστόρων, από τον πίνακα αληθείας προκύπτει ως εξής: ) Παράγουμε ένα [A] όρων από την κάθε σειρά για την
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης
ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
Δυαδικό Σύστημα Αρίθμησης
Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,
Ψηφιακά Συστήματα. 1. Συστήματα Αριθμών
Ψηφιακά Συστήματα 1. Συστήματα Αριθμών Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L.,
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014
ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: Θεωρητική Μάθημα: Ψηφιακά Ηλεκτρονικά Τάξη: Β Αρ. Μαθητών: 8 Κλάδος: Ηλεκτρολογία Ημερομηνία:
Σελίδα 1 από 12. Απαντήσεις στο φυλλάδιο 55. Ερώτηση 1 η : Ένα υπολογιστικό σύστηµα αποτελείται από:
Σελίδα 1 από 12 Απαντήσεις στο φυλλάδιο 55 Ερώτηση 1 η : Ένα υπολογιστικό σύστηµα αποτελείται από: (α) Κεντρική Μονάδα Επεξεργασίας. (β) Κύρια Μνήµη. (γ) Μονάδες εισόδου. (δ) Μονάδες εξόδου. (ε) Βοηθητική
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το ανωτέρω διάγραμμα καταστάσεων,
Πρόσθεση/Αφαίρεση. Εφαρµογές της πράξης, υλοποίηση και βελτιστοποιήσεις. Γκέκας Γεώργιος: 2423 Μαραγκός Παναγιώτης: 2472
Πρόσθεση/Αφαίρεση Γκέκας Γεώργιος: 2423 Μαραγκός Παναγιώτης: 2472 Εφαρµογές της πράξης, υλοποίηση και βελτιστοποιήσεις Που χρησιµοποιείται Όχι µόνο στις αµιγείς αριθµητικές πράξεις της πρόσθεσης και αφαίρεσης
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ Πύλες - Άλγεβρα Boole 1 ΕΙΣΑΓΩΓΗ Α)Ηλεκτρονικά κυκλώµατα Αναλογικά κυκλώµατα Ψηφιακά κυκλώµατα ( δίτιµα ) V V 2 1 V 1 0 t t Θετική λογική: Ο V 1 µε V 1 =
Συνδυαστικά Λογικά Κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική
Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων
Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Οργάνωση Η/Υ Ενότητα 3η: Αριθμητικές Πράξεις και Μονοπάτι Επεξεργασίας Δεδομένων Άσκηση 1: Δείξτε πώς μπορούμε να υλοποιήσουμε ένα
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Ο κύκλος της πληροφορίας Η σηµασία της πληροφορίας Ο υπολογιστής (επεξεργασία-αποθήκευση) 2 Παράσταση δεδοµένων Αριθµητικά συστήµατα εκαδικό σύστηµα 3 υαδικό
Κεφάλαιο 4. Λογική Σχεδίαση
Κεφάλαιο 4 Λογική Σχεδίαση 4.1 Εισαγωγή Λογικές συναρτήσεις ονομάζουμε εκείνες για τις οποίες μπορούμε να αποφασίσουμε αν είναι αληθείς ή όχι. Χειριζόμαστε τις λογικές προτάσεις στην συγγραφή λογισμικού
Συνδυαστικά Κυκλώματα
3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,
Μετατροπή δυαδικών αριθμών
Κεφάλαιο 2o Συνδυαστικά κυκλώματα 2.1 Το δυαδικό σύστημα μέτρησης και η δυαδική λογική 2.1.1 Θεωρητικό Υπόβαθρο Οποιοσδήποτε αριθμός μπορεί να εκφραστεί σε σύστημα μέτρησης με βάση τον αριθμό β, με μια
Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων
Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων Καθηγητής Αντώνιος Γαστεράτος Τμήμα Ε.ΔΙ.Π. Μηχανικών Δρ. Αθανάσιος Παραγωγής Ψωμούλης και Διοίκησης, Δ.Π.Θ. Τμήμα Μηχανικών Παραγωγής
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ & ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ Θεωρητικό Μέρος Οι σειριακές λειτουργίες είναι πιο
ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ
Λ Ο Γ Ι Κ Η Σ Χ Ε Ι ΑΣ Η ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ ΣΠ. ΛΟΥΒΡΟΣ, Ν. ΣΚΛΑΒΟΣ ΤΜΗΜΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & ΙΚΤΥΩΝ ΠΑΡΑΡΤΗΜΑ ΝΑΥΠΑΚΤΟΥ ΝΑΥΠΑΚΤΟΣ 2005 ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Λ Ο Γ Ι Κ Η Σ Χ Ε Ι Α Σ Η ΒΙΒΛΙΟ ΕΡΓΑΣΤΗΡΙΟΥ
Σ ή. : υαδικά. Ε ό. ή Ενότητα
1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 2 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 26 ΔΙΑΛΕΞΗ 8: Σχεδιασµός Συνδυαστικών Κυκλωµάτων Ι (Κεφάλαιο 4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Συναρτήσεις
C D C D C D C D A B
Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
PLD. Εισαγωγή. 5 η Θεµατική Ενότητα : Συνδυαστικά. PLAs. PLDs FPGAs
5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI και Εισαγωγή Οι προγραµµατιζόµενες διατάξεις είναι ολοκληρωµένα µε εσωτερικές πύλες οι οποίες µπορούν να υλοποιήσουν οποιαδήποτε συνάρτηση αν υποστούν
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΣΥΝΔΙΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ Οι έξοδοί τους είναι συναρτήσεις αποκλειστικά των εισόδων τους Χαρακτηρίζονται από μία καθυστέρηση στη διάδοση του σήματος της τάξης των ns Συνδιαστικά Κυκλώματα O ΣΥΓΚΡΙΤΗΣ Συγκρίνει
Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα
Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ
e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού
7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης
7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι