Περιεχόμενα διάλεξης
|
|
- Λυκούργος Βονόρτας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 5η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 3, σελ. Περιεχόμενα διάλεξης Ιδιότητες οπτικών ινών Διασπορά (Dispersio) Τρόπων (Iermodal Dispersio) Χρωματική (Iramodal (Chromaic) Dispersio) Πόλωσης (Polarizaio Mode Dispersio) Γ. Έλληνας, Διάλεξη 3, σελ. Page
2 Διασπορά Γ. Έλληνας, Διάλεξη 3, σελ. 3 Είδη διασποράς Τρόπων (σε πολύτροπες ίνες) Διαφορετικοί τρόποι διαδίδονται με διαφορετική ταχύτητα στην ίνα Χρωματική (σε ιδανικές μονότροπες ίνες) Διαφορετικές συχνότητες διαδίδονται με διαφορετική ταχύτητα στην ίνα Πόλωσης (σεπραγματικέςμονότροπεςίνες) Διαφορετικές πολώσεις διαδίδονται με διαφορετική ταχύτητα στην ίνα Γ. Έλληνας, Διάλεξη 3, σελ. 4 Page
3 Sigal Degradaio i Opical fibers: Dispersio If aeuaio was he oly source of sigal degradaio, i would o prove o be oo derimeal, due o he exisece of opical amplifiers: 0 0 Ipu bi sream fiber Uforuaely, real fibers also have dispersio Oupu bi sream: aeuaed OPTICAL AMPLIFIER 0 0 Origial bi sream Γ. Έλληνας, Διάλεξη 3, σελ. 5 Wha comes ou, is o wha goes i p IN () p OUT () fiber p () p( - τ) No chage i pulse shape Aeuaio oly Reducio i pulse eergy Aeuaio & dispersio Reducio i pulse eergy Pulse spreadig τ τ τ Γ. Έλληνας, Διάλεξη 3, σελ. 6 Page 3
4 Sigal Degradaio i Opical fibers: Dispersio We ca (ormally) cosider he fiber o be a liear sysem, wih a impulse respose as show: p i () p ou () δ () p i () h() p i () = δ (), hece p ou () = h() p ou () σ = mea arrival ime σ = rms pulse spread Γ. Έλληνας, Διάλεξη 3, σελ. 7 Cosider he oupu pulse p ou () σ Mea ime of pulse arrival = p ou ( ) d E FWHM = Δτ Eergy coe E = area uder pulse E = p ( ) d E E ou σ is roo mea square spread of pulse aroud mea arrival ime I gives a measure of he dispersio σ = = ( ) p ou p ou ( ) d ( ) d A aleraive measure is he full widh a half maximum (FWHM) Γ. Έλληνας, Διάλεξη 3, σελ. 8 Page 4
5 Sigal Degradaio i Opical fibers: Dispersio p i () h() p ou () m σ m σ σ If a pulse wih a rms pulse widh of σ is applied o a fiber, he he oupu pulse spread will be give by: σ + = σ σ Γ. Έλληνας, Διάλεξη 3, σελ. 9 Dispersio leads o pulse spreadig ad overlappig Γ. Έλληνας, Διάλεξη 3, σελ. 0 Page 5
6 Dispersio leads o pulse spreadig ad overlappig I a digial sysem, overlappig pulses lead o iersymbol ierferece (ISI). For example, he rasmied sequece 0 migh be deeced as, i.e. bi errors sar o occur. For a bi duraio T, he pulse spread Δτ should, as a rule of humb, be cofied o: Δτ < T/4 Hece he bi rae is limied o: B T < 4Δτ Γ. Έλληνας, Διάλεξη 3, σελ. Physical Causes of Dispersio There are wo major ypes of dispersio i opical fibers: Iermodal - oly occurs i mulimode (MM) fibers, o i sigle mode (SM) - domia source of dispersio for MM fibers Iramodal - occurs i boh SM & MM fibers - domiaes i sigle-mode (SM) fibers - cosiss of: Maerial dispersio Waveguide dispersio Γ. Έλληνας, Διάλεξη 3, σελ. Page 6
7 Wha are words worh? o disperse? ier? ira? o separae bewee wihi Γ. Έλληνας, Διάλεξη 3, σελ. 3 Διασπορά τρόπων Γ. Έλληνας, Διάλεξη 3, σελ. 4 Page 7
8 Iermodal Dispersio Ligh is rasmied alog a mulimode opical fiber by several modes (ray pahs). Each pah has a differe grazig agle associaed wih i. The disaces ravelled by he various pahs are differe, ad hece he rasi imes hrough he fiber also differ. A pulse of ligh, eve if i is moochromaic, will have a spread of delays ad he received pulse will have a wider FWHM. Γ. Έλληνας, Διάλεξη 3, σελ. 5 Iermodal dispersio i sep-idex mulimode fibers Cosider wors case sceario for sep-idex MM fiber: A shores pah φ c loges pah B Noe: he above picure ad he aalysis o follow assumes meridioal rays Γ. Έλληνας, Διάλεξη 3, σελ. 6 Page 8
9 Iermodal dispersio i sep-idex mulimode fibers Alog he fiber 3 Meridioal ray Fiber axis, 3 (a) A meridioal ray always crosses he fiber axis. Fiber axis 3 Skew ray (b) A skew ray does o have o cross he fiber axis. I zigzags aroud he fiber axis. Ray pah alog he fiber Raypahprojeced o o a plae ormal o fiber axis Illusraio of he differece bewee a meridioal ray ad a skew ray. Numbers represe reflecios of he ray. 999 S.O. Kasap Γ. Έλληνας, Διάλεξη 3, σελ. 7 Iermodal dispersio i sep-idex mulimode fibers Cosider ime delay bewee loges ad shores pahs hrough he fiber: si φ c = / {Sell s law for criical agle} L L φ c Also, L s = L L si φ c = L L / Boh rays have same velociy: v = c/ τ s = L s /v = L s /c τ L = L L /c = L s. ( /c ) L S Γ. Έλληνας, Διάλεξη 3, σελ. 8 Page 9
10 Διασπορά τρόπων στις ίνες βηματικού δ.δ. Προσεγγιστικός υπολογισμός με χρήση γεωμετρικής οπτικής (ίνες μεγάλων διαστάσεων) L L τ f = (7) τs = (8) c csiφc (7),(8) L Δ τ = τs τ f = (9) c siφc Νόμος Sell si φc = (0) (0) L (9) Δ τ = () c Δ= () Κανονικοποιημένη μεταβολή δ.δ. 0 θ a φ c φ () L () Δ τ = Δ (3) c Γ. Έλληνας, Διάλεξη 3, σελ. 9 Μέγιστη επιτρεπτή διαφορική καθυστέρηση Συνθήκη για αμελητέα αλληλοπαρεμβολή συμβόλων: Δτ = T b (4) όπου Tb η διάρκεια ενός δυφίου, που συνδέεται με το ρυθμό σηματοδοσίας βάσει της σχέσης R = b (5) T b Μέγιστη επιτρεπτή διαφορική καθυστέρηση μεταξύ τρόπων: (5) (3) c (4) RbΔτ = RbL= (6) Δ Γ. Έλληνας, Διάλεξη 3, σελ. 0 Page 0
11 Αριθμητικό παράδειγμα Ι Αριθμητικά δεδομένα =.46 Δ = % Λύση (ίνα με ντύμα) = ( Δ ) =.45 c RL b = = Δ Mb 0 km s Γ. Έλληνας, Διάλεξη 3, σελ. Αριθμητικό παράδειγμα ΙΙ Λύση (ίνα χωρίς ντύμα) RL b = = c = Δ Mb 0.3 km s Συμπέρασμα: Είναι πολύ πιο εύκολη η σύζευξη φωτός σε ίναχωρίςντύμααλλάομέγιστοςεπιτρεπτός ρυθμός σηματοδοσίας υπερβολικά μικρός! Γ. Έλληνας, Διάλεξη 3, σελ. Page
12 Iermodal dispersio ca be miimized by usig graded idex fiber O O O' O'' 999 S.O. Kasap, Opoelecroics (Preice Hall) Mulimode sep idex fiber. Ray pahs are differe so ha rays arrive a differe imes Graded idex fiber. Ray pahs are differe bu so are he velociies alog he pahs so ha all rays arrive a approx. he same ime Γ. Έλληνας, Διάλεξη 3, σελ. 3 Iermodal dispersio ca be miimized by usig graded idex fiber Ray pahs i graded idex fiber ca be explaied by cosiderig a sack of hi layers of varyig refracive idex: (a) TIR (b) TIR decreases sep by sep from oe layer o ex upper layer; very hi layers. Coiuous decrease i gives a ray pah chagig coiuously. (a) A ray i hily sraifed medium becomes refraced as i passes from oe layer o he ex upper layer wih lower ad eveually is agle saisfies TIR (b) I a medium where decreases coiuously he pah of he rays beds coiuously. 999 S.O. Kasap, Opoelecroics (Preice Hall) Γ. Έλληνας, Διάλεξη 3, σελ. 4 Page
13 Iermodal dispersio i sep-idex mulimode fibers Hece he emporal pulse spread per ui legh for iermodal dispersio i a mulimode fiber is: δ τ L = c This derivaio is based o ray heory, so i makes o allowace for he wavelegh of he ligh. However, jus as aeuaio is wavelegh depede, so is dispersio. Γ. Έλληνας, Διάλεξη 3, σελ. 5 Χρωματική Διασπορά Γ. Έλληνας, Διάλεξη 3, σελ. 6 Page 3
14 Iramodal dispersio Opical sources are o moochromaic: opical power wavelegh λ So we have o cosider iramodal dispersio ime Γ. Έλληνας, Διάλεξη 3, σελ. 7 Iramodal (chromaic) dispersio Maerial Dispersio: Occurs because refracive idex is a oliear fucio of wavelegh (Fig. A). Group velociy of a specific mode is a fucio of he refracive idex, which causes he various specral compoes of a give mode o ravel a differe speeds accordig o heir wavelegh Is sigifica i sigle-mode fibers, ad is made worse by LEDs (which have a bigger specral widh ha laser diodes). Γ. Έλληνας, Διάλεξη 3, σελ. 8 Page 4
15 Iramodal (chromaic) dispersio Fig.A Refracive idex versus wavelegh for silica Γ. Έλληνας, Διάλεξη 3, σελ. 9 Iramodal (chromaic) dispersio 999 S.O. Kasap, Opoelecroics Ipu Claddig v g(λ) Emier Core v g (λ ) Very shor ligh pulse Oupu Iesiy Iesiy Iesiy Specrum, Δλ Spread, Δ λ λ λo λ 0 All exciaio sources are iherely o-moochromaic ad emi wihi a specrum Δλ, of waveleghs. Waves i he guide wih differe free space waveleghs ravel a differe group velociies due o he wavelegh depedece of. The waves arrive a he ed of he fiber a differe imes ad hece resul i a broadeed oupu pulse. Γ. Έλληνας, Διάλεξη 3, σελ. 30 Page 5
16 Iramodal (chromaic) dispersio Waveguide Dispersio: Occurs because oly abou 80% of he opical power is cofied o he core of a sigle-mode fiber. The ligh propagaig i he claddig ravels faser. I is isigifica i mulimode fibers, whils for sigle mode, maerial dispersio is he domia coribuio. {See Fig.B}. Eve if here was o maerial dispersio, waveguide dispersio would sill exis; i is caused by he core-claddig srucure of he fiber iself. Γ. Έλληνας, Διάλεξη 3, σελ. 3 Waveguide Dispersio Wih icreasig wavelegh, more of he opical field (i.e. power) peeraes io he claddig: y y Claddig λ > λc λ > λ vg Core vg > vg E(y) Claddig As more of he field is carried by he claddig, he group velociy icreases. Γ. Έλληνας, Διάλεξη 3, σελ. 3 Page 6
17 Dispersio for SMFs 0 0 Dispersio (ps/(m.km)) 0-0 Fig.B: Dispersio for a silica sigle-mode fiber -0 Γ. Έλληνας, Διάλεξη 3, σελ. 33 Dispersio Hece for sigle-mode fiber, miimum dispersio is obaied a 30 m However, miimum aeuaio is a 550 m. The uis of dispersio are: ps/(m.km) Pulse spreadig (i ps) becomes worse wih icreasig disace (km) ad wih icreasig specral widh of opical source (m) D σ L σ λ D = dispersio, σ = rms pulse spread, σ λ = rms specral widh of source, L = fiber legh = Γ. Έλληνας, Διάλεξη 3, σελ. 34 Page 7
18 Προσέγγιση LP 0 όπου x ρ w iβ z E = Ae e A w β Πλάτος Εύρος δέσμης Σταθερά διάδοσης Γ. Έλληνας, Διάλεξη 3, σελ. 35 Σταθερά διάδοσης Η σταθερά διάδοσης εξαρτάται από τη συχνότητα. Με ανάπτυγμα σε σειρά Taylor β βω ( ) = ω (7) = 0! d β β = (8) dω Γ. Έλληνας, Διάλεξη 3, σελ. 36 Page 8
19 Διάδοση παλμού Ένας παλμός δημιουργείται στην είσοδο της ίνας E (,0) = f( ) (9) E z E e β ω i ( ) z x( ω, ) = x( ω,0) () x x π x Το φάσμα του παλμού βρίσκεται με μετασχηματισμό Fourier iω Ex( ω,0) = Ex(,0) e d (0) Η διάδοση μιας συχνότητας περιγράφεται από τη σχέση Μετά τη διάδοση, το ΗΠ στο σημείο z βρίσκεται με αντίστροφο μετασχηματισμό Fourier iω E (, z) = E ( ω, z) e dω () Γ. Έλληνας, Διάλεξη 3, σελ. 37 Προσέγγιση ης τάξης Κρατώ τους δύο πρώτους όρους της σειράς Taylor β ( ω) β + βω (3) 0 (),(3) (9) iβ0z iω( βz) iβ0z Ex z = e Ex ω e dω f βz e π = () (, ) (,0) ( ) Χρόνος διάδοσης παλμού L τ = υ g (4) όπου όρισα την ταχύτητα ομάδας υ g = β (5) Γ. Έλληνας, Διάλεξη 3, σελ. 38 Page 9
20 Διαφορική καθυστέρηση Ι Για παλμό εύρους ζώνης Δω (4) (5) (8) dτ d L dβ Δ τ = Δ ω = Δ ω = L Δ ω = Lβ Δω (6) dω dω υ g dω όπου το β ονομάζεται παράμετρος διασποράς της ταχύτητας ομάδας Γ. Έλληνας, Διάλεξη 3, σελ. 39 Διαφορική καθυστέρηση ΙΙ Εναλλακτική έκφραση, για εύρος ζώνης εκφρασμένο σε μ.κ. Δλ (4) dτ d Δ τ = Δ λ = LΔ λ = DLΔλ dλ dλ υ g (7) όπου όρισα την παράμετρο διασποράς d D= dλ υ g (8) Γ. Έλληνας, Διάλεξη 3, σελ. 40 Page 0
21 Σύνδεση D, β d dβ dβ dω D= dλ υ g dλ dω dλ (5) (8) = = (9 ) a π c ω = λ dω πc = dλ λ (9 b) (9 c) (9 b ),(9 c ) π c (9 a) D= β (30) λ Γ. Έλληνας, Διάλεξη 3, σελ. 4 Μέγιστη επιτρεπτή διαφορική καθυστέρηση (5),(7) (4) Δτ= T R DLΔλ= (3) b b Γ. Έλληνας, Διάλεξη 3, σελ. 4 Page
22 Αριθμητικό παράδειγμα Αριθμητικά δεδομένα Λύση (πολύτροπο laser) ( = μ ) D λ Δ λ = 4 m RL b = ps.3 m = m km Gb DΔλ = 50 km s δηλ. ένα σήμα.5 Gb/s πάει <<00 km. Γ. Έλληνας, Διάλεξη 3, σελ. 43 Μηχανισμοί χρωματικής διασποράς Παράμετρος χρωματικής διασποράς : D= D + D M W (3) D D M W Διασπορά υλικού Διασπορά κυματοδηγού Τα D, D έχουν αντίθετα πρόσημα και μηδενίζονται για λ =.3 μm M W ZD Γ. Έλληνας, Διάλεξη 3, σελ. 44 Page
23 Βελτίωση χρωματικής διασποράς Γ. Έλληνας, Διάλεξη 3, σελ. 45 Συμπεράσματα Οι μονότροπες οπτικές ίνες επιτρέπουν τη μετάδοση σημάτων με ψηλούς ρυθμούς μετάδοσης σε μεγάλες αποστάσεις Η εξασθένιση κι η χρωματική διασπορά θέτουν άνω όρια στο ρυθμό σηματοδοσίας και την απόσταση μετάδοσης Οπτικοί ενισχυτές, ίνες με μικρή χρωματική διασπορά κι εξισωτές διασποράς χρησιμοποιούνται για την καταπολέμηση των παραπάνω Γ. Έλληνας, Διάλεξη 3, σελ. 46 Page 3
Περιεχόμενα διάλεξης
5η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 5, σελ. Περιεχόμενα διάλεξης Ιδιότητες οπτικών ινών Διασπορά (Dispersio) Τρόπων (Iermodal Dispersio) Χρωματική (Iramodal (Chromaic) Dispersio) Πόλωσης (Polarizaio
θ r θ i n 2 HMY 333 Φωτονική Διάλεξη 03 - Γεωμετρική Οπτική& Οπτικές Ίνες Εφαρμογή της γεωμετρικής οπτικής στις οπτικές ίνες
Uiversiy of Cyprus Πανεπιστήµιο Κύπρου Uiversiy of Cyprus Πανεπιστήµιο Κύπρου Εάν το μήκος κύματος του φωτός είναι μικρό σχετικά με το αντικείμενο μέσω του οποίου διαδίδεται, μπορούμε να αντιπροσωπεύσουμε
6η Διάλεξη Οπτικές ίνες
6η Διάεξη Οπτικές ίνες Γ. Έηνας, Διάεξη 6, σε. Χρματική Διασπορά Γ. Έηνας, Διάεξη 6, σε. Pae Χρματική Διασπορά Οι οπτικές πηγές δεν είναι μονοχρματικές: Οπτική Ισχύς Μήκος κύματος Χρόνος Ώστε πρέπει να
HMY 333 Φωτονική Διάλεξη 07. Ταχύτητα φάσης, ταχύτητα ομάδας και διασπορά. n 2 n O
Uiersiy of Cyrus Πανεπιστήμιο Κύπρου Uiersiy of Cyrus Πανεπιστήμιο Κύπρου HMY 333 Φωτονική Διάλεξη 7 Ταχύτητα φάσης, ταχύτητα ομάδας και διασπορά Σε ένα μέσο διασποράς, όπως οι οπτικές ίνες, η μορφή του
Διασπορά Ι ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. Ηρακλής Αβραμόπουλος. EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά Ι Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση μαθήματος
Περιεχόμενα διάλεξης
7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια
Περιεχόμενα διάλεξης
4η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 4, σελ. 1 Περιεχόμενα διάλεξης Ηλεκτρομαγνητικά κύματα Κυματική Εξίσωση Ακριβής Λύση Οπτικών Ινών Ταξινόμηση Τρόπων Αριθμός Τρόπων Γ. Έλληνας, Διάλεξη 4, σελ.
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά Ι Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση μαθήματος
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
Ανάλυση της κυματοδήγησης στις οπτικές ίνες με την ηλεκτρομαγνητική θεωρία
Ανάλυση της κυματοδήγησης στις οπτικές ίνες με την ηλεκτρομαγνητική θεωρία Τρόποι διάδοσης ηλεκτρομαγνητικών κυμάτων Στο κενό, τα ηλεκτρομαγνητικά κύματα διαδίδονται έχοντας το ηλεκτρικό πεδίο Ε και το
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Περιεχόμενα διάλεξης
7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Τηλεπικοινωνίες οπτικών ινών
Τηλεπικοινωνίες οπτικών ινών Ενότητα 2: Οπτικές ίνες Βλάχος Κυριάκος Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Ο σκοπός της ενότητας είναι η εξοικείωση του σπουδαστή με την
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Homework 4 (Lectures 17-21) / Κατ Οίκον Εργασία 4 (Διαλέξεις 17-21)
Homework 4 (Lecures 17-1) / Κατ Οίκον Εργασία 4 (Διαλέξεις 17-1) Due Dae / Ημερομηνία Παράδοσης: 7/1/018 Name/Όνομα: Dae/Ημερ.: You may eed some (or oe) of he followig equaios Μπορεί να χρειαστείτε κάποιες
WDM over POF ΤΕΧΝΟΛΟΓΙΑ ΣΤΟ ΔΙΚΤΥΟ ΜΕΤΑΔΟΣΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ
Π.Μ.Σ. ΗΛΕΚΤΡΟΝΙΚΗ & ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΙΔΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ WDM over POF ΤΕΧΝΟΛΟΓΙΑ ΣΤΟ ΔΙΚΤΥΟ ΜΕΤΑΔΟΣΗΣ ΚΙΝΗΤΗΣ ΤΗΛΕΦΩΝΙΑΣ Μπανιάς Κωνσταντίνος ΑΜ.55 1 ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΤΩΝ POF Χαμηλό κόστος.
ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Συνδυαστικές Ασκήσεις Διασπορά-μη γραμμικά φαινόμενα Ηρακλής Αβραμόπουλος Photonics Communications
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης
Τεχνοογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πηροφορικής & Επικοινωνιών Δίκτυα Τηεπικοινωνιών και Μετάδοσης Ίνες βηματικού δείκτη (step index fibres) Ίνα βηματικού δείκτη: απότομη (βηματική) μεταβοή του
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Διασπορά ΙI ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ. Ηρακλής Αβραμόπουλος. EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά ΙI Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση
Time Series Analysis Final Examination
Dr. Sevap Kesel Time Series Aalysis Fial Examiaio Quesio ( pois): Assume you have a sample of ime series wih observaios yields followig values for sample auocorrelaio Lag (m) ˆ( ρ m) -0. 0.09 0. Par a.
2.4 Δίκτυα ETHERNET (10/100/1000Mbps) 1 / 27
2.4 Δίκτυα ETHERNET (10/100/1000Mbps) 1 / 27 Βασικά Πρότυπα του IEEE 802.3 Προκειμένου να καλυφθούν οι διάφοροι συνδυασμοί φυσικών μέσων μεταφοράς και ρυθμοί δεδομένων, το πρότυπο IEEE 802.3 έχει προβεί
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Συστήματα Μετάδοσης & ίκτυα Οπτικών Ινών
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συστήματα Μετάδοσης & ίκτυα Οπτικών Ινών www.telecom.ntua.gr/photonics Ηρακλής Αβραμόπουλος Photonics Communications Research
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής
Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space
Adv. Sudies Theor. Phys., Vol. 4, 2010, o. 11, 557-564 Irisic Geomery of he NLS Equaio ad Hea Sysem i 3-Dimesioal Mikowski Space Nevi Gürüz Osmagazi Uiversiy, Mahemaics Deparme 26480 Eskişehir, Turkey
Περιεχόμενα διάλεξης
4η Διάλεξη Οπτικές ίνες IΙI Γ. Έλληνας, Διάλεξη 4, σελ. Περιεχόμενα διάλεξης Ιδιότητες οπτικών ινών ΙΙ Διασπορά Χρωματική Διασπορά Ταχύτητα Ομάδας και Ταχύτητα Φάσης Διασπορά Υλικού Διασπορά Κυματοδηγού
Πώς γίνεται η µετάδοση των δεδοµένων µέσω οπτικών ινών:
1 ΔΟΜΗ ΟΠΤΙΚΗΣ ΙΝΑΣ Κάθε οπτική ίνα αποτελείται από τρία μέρη: Την κεντρική γυάλινη κυλινδρική ίνα, που ονομάζεται πυρήνας(core core) και είναι το τμήμα στο οποίο διαδίδεται το φως. Την επικάλυψη (απλή
ΟΠΤΙΚΕΣ ΙΝΕΣ, ΔΙΚΤΥΑ ΟΠΤΙΚΩΝ ΙΝΩΝ
ΟΠΤΙΚΕΣ ΙΝΕΣ, ΔΙΚΤΥΑ ΟΠΤΙΚΩΝ ΙΝΩΝ η & 3 η Διάλεξη: Οπτική ίνα Παράμετροι Διασπορά Απώλειες Κατασκευή Είδη ινών και καλωδίων Λίγα Λόγια από τα Παλιά 0 ΚΑΙ ΕΙΠΕΝ Ο ΘΕΟΣ Qin E da ή D (. Gauss)(1) B da 0 ή
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
8. The Normalized Least-Squares Estimator with Exponential Forgetting
Lecure 5 8. he Normalized Leas-Squares Esimaor wih Expoeial Forgeig his secio is devoed o he mehod of Leas-Squares wih expoeial forgeig ad ormalizaio. Expoeial forgeig of daa is a very useful echique i
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
ΚΥΜΑΤΟ ΗΓΗΣΗ. «Μικροοπτικές διατάξεις-ολοκληρωµένα οπτικά»
ΚΥΜΑΤΟ ΗΓΗΣΗ Επίπεδοι κυµατοδηγοί Προσέγγιση γεωµετρικής οπτικής Προσέγγιση κυµατικής οπτικής και συνοριακών συνθηκών Οπτικές ίνες ιασπορά Μέθοδοι ανάπτυξης κυµατοδηγών Ηχρήση των κυµάτων στις επικοινωνίες
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
p - n επαφή και εκπομπή φωτονίων
Οπτικοί πομποί Το οπτικό φέρον σήμα που εισέρχεται στις οπτικές ίνες παράγεται από: Led (Light Emission Diodes, Φωτοδίοδοι): εκπομπή ασύμφωνου (incoherent) φωτός, όπου η εκπομπή φωτονίων είναι αυθόρμητη.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Εισαγωγικές Ασκήσεις για Απώλειες και ιασπορά
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΡΙΑΚΟ ΠΑΝΕΠΙΣΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΙΚΩΝ ΕΠΙΣΗΜΩΝ ΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΥΑ ΟΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Εισαγωγικές Ασκήσεις για Απώλειες και ιασπορά Άσκηση 1
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
3 Frequency Domain Representation of Continuous Signals and Systems
3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Σύνθετη Άσκηση για Διάδοση, Διασπορά και Αντιστάθμισή της
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Δ. Συβρίδης Σύνθετη Άσκηση για Διάδοση, Διασπορά και Αντιστάθμισή
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΓΙΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Διασπορά ΙI Ηρακλής Αβραμόπουλος Photonics Communications Research Laboratory Διάρθρωση
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Γραµµικά και Μη Γραµµικά Συστήµατα Μετάδοσης
Γραµµικά και Μη Γραµµικά Συστήµατα Μετάδοσης Τα περισσότερα δίκτυα σήµερα είναι γραµµικά µε κωδικοποίηση γραµµής NRZ Τα µη γραµµικά συστήµατα στηρίζονται στα σολιτόνια µε κωδικοποίηση RZ. Οπτικό σύστηµα
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Περιεχόμενα διάλεξης
η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη, σελ. Περιεχόμενα διάλεξης Εισαγωγή στις οπτικές ίνες Κατασκευή οπτικών ινών Ανάλυση οπτικών ινών βηματικού δείκτη διάθλασης Γεωμετρική οπτική Τρόποι διάδοσης
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
8. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
8. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 8.1. Γενικά Για την εκτέλεση μετρήσεων σε ινοοπτικές ζεύξεις απαιτούνται: Μία ή περισσότερες οπτικές πηγές. Η πηγή ή οι πηγές μπορεί να είναι: Δίοδοι εκπομπής (LEDs).
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο
ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η ιδάσκουσα: Παντάνο Ρόκου Φράνκα Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8 η : Το Φυσικό Επίπεδο Το Φυσικό Επίπεδο ιάδοση Σήµατος Ηλεκτροµαγνητικά Κύµατα Οπτικές Ίνες Γραµµές
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής
Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής 2 η ΕΡΓΑΣΙΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Μπαρμπάκος Δημήτριος Τζούτζης Έλτον-Αντώνιος Διδάσκων: Δρ. Βασίλης Κώτσος Λαμία 2013 Περιεχόμενα 1. Οπτική πηγή 1.1 Χαρακτηριστικές καμπύλες
ΤΕΙ ΗΠΕΙΡΟΥ Οπτικές Ίνες Οπτικά δίκτυα
ΟπτικέςΊνες Οπτικάδίκτυα Μήκος κύµατος - φάσµα (Wavelength and Spectra) Μήκοςκύµατος (Wavelength): Μια ακτίνα φωτός µπορεί να χαρακτηριστεί µε βάση το µήκος κύµατος (wavelength) Ανάλογο στοιχείο µε την