. ΟΑΣΠ καθηγητών του ΑΠΘ. Εμπεριέχει 22 παραδείγματα κτηρίων..τον Φεβρουάριο του 2011, έγινε η δεύτερη διευρωπαϊκή Slide με κτήριο
|
|
- Νέστωρ Παπαγεωργίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Κατά την αντισεισμική μελέτη ενός κτηρίου, ένας δομοστατικός μηχανικός οφείλει να γνωρίζει τις παραδοχές που κάνει το τεχνικό λογισμικό που χρησιμοποιεί Συγχρόνως, πρέπει να επιλέξει τις κατάλληλες μεθόδους προσομοίωσης της κατασκευής του ώστε να αποφύγει σφάλματα που ενδεχομένως να οδηγήσουν σε υποδιαστασιολόγηση των δομικών στοιχείων της κατασκευής Πρωταρχικά όμως καλείται να ελέγξει την εγκυρότητα των αποτελεσμάτων του τεχνικού λογισμικού, μέσω πρότυπα επιλυμένων κτηριακών κατασκευών Στην Ελλάδα, έχουν γίνει ήδη κάποιες προσπάθειες σύνταξης πρότυπων αντισεισμικών αναλύσεων Η πρώτη από αυτές έρχεται το 2005 με τη χορηγία του ΟΑΣΠ και συγγραφική ομάδα Slide με κτήρια ΟΑΣΠ καθηγητών του ΑΠΘ Εμπεριέχει 22 παραδείγματα κτηρίων Τον Φεβρουάριο του 2011, έγινε η δεύτερη διευρωπαϊκή Slide με κτήριο προσπάθεια δημιουργίας μιας πρότυπης ανάλυσης κτηριακής Φαρδή κατασκευής από οπλισμένο σκυρόδεμα, με ενεργή συμμετοχή του Τμήματος Πολιτικών Μηχανικών του Πανεπιστημίου Πατρών Είναι το πρώτο πρότυπο κτήριο με χρήση των Ευρωκωδίκων 2 και 8 Τέλος, το Σεπτέμβριο του 2011, η ίδια συγγραφική ομάδα του Slide με κτήρια ΑΠΘ που έκανε τις αναλύσεις στη μελέτη του ΟΑΣΠ, εξέδωσε Αβραμίδη ένα σύγγραμα με 3 πρότυπα επιλυμένα κτήρια Δυστυχώς, όμως, οι αναλύσεις αυτές είχαν λάθη, όπως λάθος συνεργαζόμενα πλάτη πλακοδοκών, λάθος φορτία ή επιφάνειες φόρτισης, λάθος αδρανειακά μεγέθη των μελών της κατασκευής κα Κυρίως όμως δεν περιέγραφαν αναλυτικά όλη τη διαδικασία, όπως τον τρόπο εύρεσης των αδρανειακών μεγεθών των μελών, τον τρόπο ορισμού της ακαμψίας των κόμβων δοκών-υποστυλωμάτων, τη διαδικασία εύρεσης ταυτόχρονων μέγιστων εντατικών μεγεθών για σεισμική δράση κατά X και Υ Τις περισσότερες φορές, επαφίονταν σε αυτοματοποιημένες διαδικασίες του εκάστοτε τεχνικού λογισμικού Με αυτή τη διπλωματική εργασία, θα προσπαθήσω να εξηγήσω ορισμένα λεπτά σημεία στην ανάλυση των κατασκευών Ας αρχίσουμε από τη διαφραγματική λειτουργία των πλακών των ορόφων που συναντάται στα περισσότερα κτηριακά έργα και περιγράφει την κίνηση της πλάκας ενός ορόφου, σαν δίσκος απαραμόρφωτος εντός του επιπέδου του 1 Η
2 Η διαφραγματική λειτουργία του φορέα, εφόσον εξασφαλίζεται από ατενείς πλάκες, σημαίνει μηδενικές αξονικές παραμορφώσεις των δοκών, αν οι δοκοί έχουν οριστεί χωρίς εκκεντρότητα Αυτό είναι εφικτό μόνο στην περίπτωση του ενός αμφίπακτου πλαισίου και μόνο αν ληφθεί το διάφραγμα στη Slide με πλαίσιο στάθμη του κέντρου βάρους της δοκού Στους πραγματικούς φορείς, οι δοκοί σπάνια είναι της ίδιας διατομής Αυτό έχει σαν αποτέλεσμα, το κέντρο βάρους των δοκών να μην έχει σταθερή θέση σε σχέση με τη στάθμη του ορόφου/διαφράγματος Slide με θεωρ προσομοίωμα Η σημασία της εκκεντρότητας φαίνεται σε μία αμφιέρειστη δοκό πλαισιακών με ομοιόμορφα κατανεμημένο φορτίο Εάν οι στηρίξεις βρίσκονται κόμβων στο κέντρο βάρους της διατομής, δεν υπάρχουν παραμορφώσεις στον κεντροβαρικό άξονα και άρα η ροπή είναι ql 2 /8 ενώ η αξονική δύναμη είναι μηδέν Αντιθέτως, σημαντική αξονική Slide με δύναμη αναπτύσσεται, εάν η δοκός στηρίζεται στο κάτω πέλμα της Η καμπτική ροπή στις στηρίξεις, είναι ίση με ql 2 /16 ενώ στο μέσο του ανοίγματος είναι μειωμένη κατά 50% δηλαδή ql 2 /16 Το φαινόμενο γίνεται εντονότερο όταν η δοκός κατατμηθεί σε εκκεντρότητα άξονα δοκού-διαφράγματος 1 πεπερασμένο αριθμό τμημάτων, ώστε να σχηματιστούν τα βέλη ελέγχου στην Οριακή Κατάσταση Λειτουργικότητας Φυσικά, Slide με αν μεταφέρουμε την αξονική στο κάτω πέλμα, ως ροπή με μοχλοβραχίονα h/2, η τελική ροπή που αντιστοιχεί στο κάτω πέλμα είναι ίση με εκείνη της κεντροβαρικά στηριζόμενης δοκού Γίνεται, έτσι σαφές, ότι τα αποτελέσματα που λαμβάνουμε λόγω εκκεντρότητα άξονα δοκού-διαφράγματος 2 της εκκεντρότητας του κέντρου βάρους των δοκών, από τη στάθμη του διαφράγματος καθιστούν την εποπτεία αλλά και διαστασιολόγηση των δοκών, μια επίπονη διαδικασία, με μεγάλο κίνδυνο λάθους Συνεπώς, τα περισσότερα λογισμικά ορίζουν τις δοκούς χωρίς εκκεντρότητα, με τον κεντροβαρικό τους άξονα να διέρχεται από τη στάθμη του διαφράγματος Έτσι, με μηδενική εκκεντρότητα, τα διαγράμματα ροπών εμφανίζονται στις συνηθισμένες μορφές ενώ η διαστιασιολόγηση γίνεται ευκολότερη αφού γίνεται μόνο για κάμψη και όχι για αξονική δύναμη Slide με προσομοίωμα Τα λογισμικά προσομοιώνουν τη διαφραγματική λειτουργία πλαισιακών με εξαρτημένους βαθμούς ελευθερίας για κάθε διάφραγμα ή κόμβων με προσαύξηση του εμβαδού της διατομής των δοκών Η Midas/ΡΑΦ προσαύξηση του εμβαδού της διατομής κάθε δοκού με έναν 2 συντελεστή
3 συντελεστή σημαίνει ότι για τα στοιχεία των δοκών, το πρόγραμμα λαμβάνει εμβαδόν 60 φορές μεγαλύτερο από το ονομαστικό Αυτό οδηγεί σε μικρές αξονικές των δοκών που όμως μπορεί να θεωρηθούν και αμελητέες Αντιθέτως, μια ανάλυση με εξαρτημένους βαθμούς ελευθερίας, θα έδινε μόνο καμπτικές ροπές για τις δοκούς Διαφοροποιήσεις στα αποτελέσματα μπορεί να προκύψουν Slide με από την παραδοχή που θα γίνει για την προσομοίωση των απολύτως στερεών βραχιόνων Η προσομοίωση τους, μπορεί να επιτευχθεί είτε με εκκεντρότητες των επιμέρους στοιχείων που προσομοίωμα πλαισιακών κόμβων b, c, d τους απαρτίζουν, είτε με στιβαρούς βραχίονες (rigid links) μεταξύ των έκκεντρων κόμβων Η μεν εκκεντρότητα των στοιχείων, ορίζεται κατά τα γνωστά από τη μητρωϊκή στατική, με το μητρώο εκκεντροτήτων του κάθε μέλους του φορέα Οι στιβαροί βραχίονες ωστόσο, πρόκειται για δοκούς με φαινομενικά άπειρη δυσκαμψία, δυστρεψία, δυστμησία και δυστένεια συνήθως φορές τα μεγέθη των μελών που συνδέουν Η διαφορά των αποτελεσμάτων είναι αμελητέα, ωστόσο μπορεί να προκαλέσει παρανοήσεις Το φαινόμενο γίνεται εντονότερο στην περίπτωση που οι στιβαροί βραχίονες έχουν σημαντικό μήκος, όπως στου άκαμπτους βραχίονες σύνδεσης δοκού-τοιχώματος Αν ο άκαμπτος βραχίονας, προσομοιωθεί με στιβαρό βραχίονα (rigid link) και στους κόμβους που ενώνει, τοποθετηθεί δοκός, τότε η δοκός θα εμφανίσει εντατικά μεγέθη, μικρά αλλά υπαρκτά Αυτό φυσικά έρχεται σε αντίθεση με την πλήρη ακαμψία που θεωρούμε εμείς θεωρώντας την ύπαρξη άκαμπτου βραχίονα στον κόμβο των δύο στοιχείων Ένα ακόμη μειονέκτημα είναι η σημαντική αύξηση των βαθμών Slide με κτήριο ελευθερίας Χαρακτηριστικά, ο πενταώροφος φορέας με Αβραμίδη Α απλή συμμετρία του Αβραμίδη, για τη θεώρηση κόμβων της συγγραφικής ομάδας, έχει με χρήση εκκεντροτήτων 150 βαθμούς ελευθερίας ενώ με χρήση στιβαρών βραχιόνων 852 βαθμούς ελευθερίας Καθίσταται λοιπόν σαφές, ότι η χρήση στιβαρών βραχιόνων αυξάνει την πολυπλοκότητα του ορισμού του προσομοιώματος και μειώνει την εποπτεία του Στο μητρώο στιβαρότητας της κατασκευής συνήθως λαμβάνονται 3 στρεπτικές
4 στρεπτικές και διατμητικές παραμορφώσεις Οι στρεπτικές βρίσκονται μέσω της στρεπτικής ροπής αδράνειας της διατομής του κάθε μέλους και δεν αποτελούν ιδιαίτερο πρόβλημα Ωστόσο, σε δοκούς από οπλισμένο σκυρόδεμα, το βέλος από διάτμηση μπορεί να έχει την ίδια τάξη μεγέθους όπως το βέλος από ροπή κάμψης Έτσι, κατά την μόρφωση του προσομοιώματος του φορέα, πρέπει να λαμβάνονται υπόψη οι διατμητικές παραμορφώσεις Αυτό επιτυγχάνεται μέσω των επιφανειών διάτμησης των διατομών A sy και A sz που αποτελούν μια απομείωση της επιφάνειας Α της διατομής μέσω ενός διορθωτικού συντελεστή Ȯ Pilkey, στο βιβλίο του, παραθέτει προσεγγιστικούς τύπους για Τύπος Pilkey τον διορθωτικό συντελεστή συνήθων διατομών εμπεριέχοντας το λόγο Poisson ν Αντιθέτως, τα τεχνικά λογισμικά SAP2000 και Midas Gen, υπολογίζουν το εμβαδόν διάτμησης αγνοώντας το λόγο Poisson Στην πραγματικότητα όμως, λόγω του φαινομένου της παρασιτικής διατμητικής δυσκαμψίας (shear locking), η επιφάνειες διάτμησης μιας διατομής υπερεκτιμώνται Έτσι, για μια ορθογωνική διατομή b h, με λόγο Poisson ν = 03, η εξίσωση του Pikey, δίνει συντελεστή διόρθωσης κοινό για κατακόρυφο ή οριζόντιο επίπεδο διάτμησης Αντιθέτως, η εξίσωση του Renton που λαμβάνει υπόψη το Τοίχωμα και τιμές λόγο των διαστάσεων της ορθογωνικής διατομής, δίνει τιμές Αsy Asz διαφορετικές για επιμήκεις διατομές όπως τοιχώματα Κέντρο διάτμησης μιας δοκού ανοικτής διατομής (πχ C, L), με Διατομή L τον κορμό κατακόρυφο, είναι το σημείο εκείνο από το οποίο αν διέρχεται φορτίο σε κατακόρυφο, ως προς τη διατομή, επίπεδο, η δοκός κάμπτεται χωρίς να στρέφεται Δυστυχώς, δημοφιλή προγράμματα (SAP2000, Midas Gen) λαμβάνουν τις δοκούς κεντροβαρικά αγνοώντας την στρέψη που προκαλείται λόγω διάτμησης Αυτό έχει σαν αποτέλεσμα, ένα κεντροβαρικά φορτιζόμενος πρόβολος μιας πλακοδοκού Γ να μην στρέφεται λόγω απόστασης κέντρου βάρους και κέντρου διάτμησης Το κέντρο διάτμησης, όπως και η ενεργός επιφάνεια διάτμησης, εξαρτώνται από το λόγο Poisson ν του υλικού Ο ακριβής 4 υπολογισμός
5 υπολογισμός τους γίνεται στοιχείων μέσω λογισμικού πεπερασμένων Συνεπώς, η στρεπτική επιπόνηση των δοκών λόγω εκκεντρότητας του φορτίου σε σχέση με το κέντρο διάτμησης (ή ακόμη και με το κέντρο βάρους) είναι προτιμότερο να αγνοείται, διότι μπορεί να οδηγήσει σε εσφαλμένα συμπεράσματα Η περιγραφή ενός κτηρίου ως μονοβάθμιου ή πολυβάθμιου ταλαντωτή, για την εύρεση των ιδιομορφών του, επιβάλει την κατασκευή του μητρώου μάζας της κατασκευής Το τελευταίο Μητρώο μάζας συνίσταται από τις μεταφορικές μάζες Mx και My κατ όροφο καθώς και τη μαζική ροπή αδράνειας (mass moment of inertia) J m που περιγράφει την αδράνεια του διαφράγματος ως τη στρέψη Η μαζική ροπή αδράνειας ενός διαφράγματος προκύπτει από το άθροισμα των επιμέρους γραμμικών κι επιφανειακών μαζικών ροπών αδράνειας των μαζών των φορτίων που επιβάλλονται σε αυτό μετατοπισμένα ως προς το κέντρο μάζας του ορόφου σύμφωνα με το θεώρημα Steiner Ράβδος & Ένα σύνηθες λάθος που κάνουν τα περισσότερα εμπορικά λογισμικά είναι η συγκέντρωση των μαζών στους κόμβους αρχής και τέλους κάθε γραμμικού στοιχείου Αυτό επηρεάζει σημαντικά τη μαζική ροπή αδράνειας ορθογώνιο Για κατανεμημένο επιφανειακό φορτίο στην πλάκα και μονώροφο κάτοψη κατανεμημένο φορτίο στις δοκούς του μονώροφου κτηρίου του σχήματος προέκυψαν τρεις διαφορετικές μαζικές ροπές αδράνειας, μια πραγματική και δύο για θεωρήσεις 4 και 8 κόμβων μάζας Γίνεται αντιληπτό ότι η μαζική ροπή αδράνειας υπερεκτιμάται Διαφορετικά με τη θεώρηση κόμβων στα άκρα των ραβδόμορφων μελών της κατασκευής Ο μελετητής καλείτε να εξακριβώσει το σωστό υπολογισμό των μαζικών ροπών αδράνειας και αν είναι λάθος να τις διορθώσει χειροκίνητα στο μητρώο μάζας μοντέλα θεώρησης μαζών + Πίνακας Εναλλακτικά, με πύκνωση των γραμμωτών/χωρικών πεπερασμένων δύναται να πετύχει πιο ομοιόμορφη κατανομή μαζών και συνεπώς, ακριβέστερο υπολογισμό των μαζικών ροπών αδράνειας Σε κάθε δοκάρι που κάμπτεται σε ένα επίπεδο συμμετρίας το σχήμα φορτίο ισορροπεί από τις διατμητικές τάσεις που αναπτύσσονται πλακοδοκού ισορροπία 5 στο
6 στο κορμό και οι οποίες προκαλούν τις αξονικές παραμορφώσεις σε αυτόν Η αξονική παραμόρφωση μεταφέρεται στα πέλματα μέσω διατμητικών δυνάμεων που αναπτύσσονται στις ακμές όπου τα πέλματα ενώνονται με τον κορμό Όμως οι επίπεδες διατμητικές τάσεις στο πέλμα δεν είναι ομοιόμορφες κατά το πλάτος του και έτσι η διατομή του πέλματος δεν παραμένει επίπεδη με αποτέλεσμα να μειώνεται η ικανότητα του να φέρει αξονικές τάσεις όπως αυτές προβλέπονται από την απλή θεωρία της κάμψης Το φαινόμενο λέγεται υστέρηση διάτμησης (shear lag), και έχει ως αποτέλεσμα την μη σταθερή κατανομή των ορθών τάσεων κατά την κάμψη σε σημεία που ισαπέχουν από τον ουδέτερο άξονα Η υστέρηση διάτμησης έχει ως αποτέλεσμα οι τάσεις να είναι σχήμα 3ων μεγαλύτερες στην ένωση κορμού με τα πέλματα και μικρότερες σε απόσταση από την ένωση πλακοδοκών Στις πλακοδοκούς από σκυρόδεμα, ο ουδέτερος άξονας Σχήμα Brendel ακολουθεί παραβολική πορεία, λόγω της μείωσης της τάσης του σκυροδέματος κατά μήκος της πλάκας Οι παράγοντες που επηρεάζουν την πραγματική κατανομή τάσεων σε μια πλακοδοκό είναι το είδος του φορτίου (κατανεμημένο, συγκεντρωμένο), το είδος των στηρίξεων, οι αποστάσεις των γειτονικών δοκών, το άνοιγμα της δοκού και οι διαστάσεις της διατομής Επιπλέον, η ανελαστική συμπεριφορά του σκυροδέματος, η συστολής ξηράνσεως και ερπυσμός, καθιστούν αδύνατο τον προσδιορισμό του ακριβούς σχήματου του ουδέτερου άξονα Για το λόγο αυτό, στον υπολογισμό της ροπής αντίστασης της διατομής (section modulus) ενός καμπτόμενου δοκαριού, χρησιμοποιείται αντί του πλάτους του πέλματος ένα ισοδύναμο ή ενεργό πλάτος (effective width) το οποίο πολλαπλασιαζόμενο με τη μέγιστη τάση (στο σημείο ένωσης πέλματος και κορμού) δίδει την αξονική δύναμη που συνολικά φέρει η διατομή Το ισοδύναμο πλάτος ορίζεται με την παραδοχή οριζόντιου ουδέτερου άξονα κατά πλάτος της διατομής και αναλογίας των τάσεων σε σχέση με την απόσταση κάθε σημείου από τον ουδέτερο άξονα Η χρήση του ισοδύναμου πλάτους έχει σημαντικά πλεονεκτήματα επιτρέπει στο μηχανικό να 6 εφαρμόσει
7 εφαρμόσει τύπους απλής κάμψης τετραγωνικών διατομών σε πλακοδοκούς μορφής Τ Προκειμένου να διαπιστωθεί η ακρίβεια επίλυσης ενός φορέα με επιφανειακά πεπερασμένα στοιχεία για την προσομοίωση των πλακών, έκκεντρα συνδεδεμένα με ορθογωνικές δοκούς, μορφώθηκε το κτήριο του παραδείγματος Finite building Για λόγους σύγκρισης, ελέγχθηκαν τα στατικά προσομοιώματα με χρήση πλακοδοκών για διάφορα συνεργαζόμενα πλάτη καθώς και για το ήμισυ του πλάτους της πλάκας Από την ταύτιση των εντασιακών μεγεθών του υποστυλώματος, για τα μοντέλα με τα επιφανειακά πεπερασμένα στοιχεία και με τις πλακοδοκούς με πλάτος ίσο με το μισό της πλάκας, διαπιστώνουμε ότι η προσομοίωση απέχει από τον πραγματικό φορέα αφού περιγράφει μια πλήρως ελαστική παραμόρφωση της πλάκας building T-Beam Καταλήγουμε λοιπόν, ότι ο μηχανικός οφείλει να είναι long συντηρητικός στη χρήση νέων τεχνολογιών στη μελέτη της κατασκευής του, διότι χωρίς την κατάλληλη εποπτεία του τεχνικού λογισμικού μπορούν να καταλήξει σε λάθος συμπεράσματα και να υποδιαστασιολογήση την κατασκευή του slide τελικό 7
Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ Διερεύνηση της επίδρασης του προσομοιώματος στην ανάλυση κτηρίου Ο/Σ κατά ΕΚ8 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΠΑΠΑΝΔΡΕΟΥ Σ ΝΙΚΟΛΑΟΥ Επιβλέπων:
Διαβάστε περισσότερα11. Χρήση Λογισμικού Ανάλυσης Κατασκευών
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής
Διαβάστε περισσότερα9. Χρήση Λογισμικού Ανάλυσης Κατασκευών
9. Χρήση Λογισμικού Ανάλυσης Κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής Κατανομή φορτίων πλακών
Διαβάστε περισσότεραΙΑπόστολου Κωνσταντινίδη ιαφραγµατική λειτουργία. Τόµος B
Τόµος B 3.1.4 ιαφραγµατική λειτουργία Γενικά, αν υπάρχει εκκεντρότητα της φόρτισης ενός ορόφου, π.χ. από την οριζόντια ώθηση σεισµού, λόγω της ύπαρξης της πλάκας που στο επίπεδό της είναι πρακτικά άκαµπτη,
Διαβάστε περισσότεραΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό
Διαβάστε περισσότεραΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί
ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Η σεισμική συμπεριφορά κτιρίων από φέρουσα τοιχοποιία εξαρτάται κυρίως από την ύπαρξη ή όχι οριζόντιου διαφράγματος. Σε κτίρια από φέρουσα
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8
Διαβάστε περισσότεραΕνότητα: Υπολογισμός διατμητικών τάσεων
ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Υπολογισμός διατμητικών τάσεων Α. Θεοδουλίδης Υπολογισμός διατμητικών τάσεων Η ύπαρξη διατμητικών τάσεων οφείλεται στην διατμητική δύναμη Q(x): Κατανομή διατμητικών τάσεων
Διαβάστε περισσότεραΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013
ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές
Διαβάστε περισσότεραΚεφάλαιο 10: Δυναμική Ανάλυση Κτιριακών Κατασκευών
Κεφάλαιο 10: Δυναμική Ανάλυση Κτιριακών Κατασκευών 10.1 Ανάλυση Κτιρίων Πλαισιακού Τύπου Στην παρούσα ενότητα υπολογίζονται τα δυναμικά χαρακτηριστικά ενός εξαώροφου, αμιγώς πλαισιακού τύπου κτιρίου με
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΣΕ ΗΥ Ενότητα 3: Λεπτομέρειες προσομοίωσης δομικών στοιχείων. Διδάσκων: Κίρτας Εμμανουήλ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΣΕ ΗΥ Ενότητα 3: Λεπτομέρειες προσομοίωσης δομικών στοιχείων Διδάσκων: Κίρτας Εμμανουήλ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΔυναμική ανάλυση μονώροφου πλαισίου
Κεφάλαιο 1 Δυναμική ανάλυση μονώροφου πλαισίου 1.1 Γεωμετρία φορέα - Δεδομένα Χρησιμοποιείται ο φορέας του Παραδείγματος 3 από το βιβλίο Προσομοίωση κατασκευών σε προγράμματα Η/Υ (Κίρτας & Παναγόπουλος,
Διαβάστε περισσότεραΚατακόρυφος αρμός για όλο ή μέρος του τοίχου
ΤΥΠΟΙ ΦΕΡΟΝΤΩΝ ΤΟΙΧΩΝ ΚΑΤΑ EC6 Μονόστρωτος τοίχος : τοίχος χωρίς ενδιάμεσο κενό ή συνεχή κατακόρυφο αρμό στο επίπεδό του. Δίστρωτος τοίχος : αποτελείται από 2 παράλληλες στρώσεις με αρμό μεταξύ τους (πάχους
Διαβάστε περισσότεραΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2018 Εργασία Εξαμήνου. ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ. Εργασία Εξαμήνου
Γενικές οδηγίες: ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2018 Εργασία Εξαμήνου Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ
Διαβάστε περισσότεραΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων
ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός
Διαβάστε περισσότεραΠ Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1 ο ΜΕΡΟΣ Εισαγωγή στη φιλοσοφία του αντισεισμικού σχεδιασμού και στην κανονιστική της υλοποίηση 1-1 1. H φιλοσοφία του αντισεισμικού σχεδιασμού των κατασκευών Επεξήγηση θεμελιωδών
Διαβάστε περισσότεραΆσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας
Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:
Διαβάστε περισσότεραΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA
ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA Άρης Αβδελάς, Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τα δομικά συστήματα στις σύμμικτες κτιριακές κατασκευές, αποτελούνται
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΣΚΥΡΟΔΕΜΑ ΧΑΛΥΒΑΣ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΚΥΡΟΔΕΜΑ 1.1 Θλιπτική αντοχή σκυροδέματος 15 1.2 Αύξηση της θλιπτικής αντοχής του σκυροδέματος με την πάροδο του χρόνου 16 1.3 Εφελκυστική αντοχή σκυροδέματος 17 1.4 Εφελκυστική
Διαβάστε περισσότεραΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΕΠΕΞΗΓΗΜΑΤΙΚΟ ΣΗΜΕΙΩΜΑ... xvii ΚΑΤΑΛΟΓΟΣ ΣΥΜΒΟΛΩΝ... xviii 1. ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΚΑΙ Η ΙΣΤΟΡΙΚΗ ΤΟΥΣ ΕΞΕΛΙΞΗ... 1-1 1.1 Η πραγματική κατασκευή και η "Στατική Μελέτη" της... 1-3
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright
Διαβάστε περισσότεραΣυνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή
Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε
Διαβάστε περισσότεραΕΓΧΕΙΡΙΔΙΟ ΕΠΙΒΕΒΑΙΩΣΗΣ
ΣΤΑΤΙΚΕΣ ΜΕΛΕΤΕΣ ΚΤΙΡΙΩΝ ΕΓΧΕΙΡΙΔΙΟ ΕΠΙΒΕΒΑΙΩΣΗΣ συγκρίσεις αποτελεσμάτων του ΡΑΦ με το βιβλίο : Αντισεισμικός σχεδιασμός κτιρίων Ο/Σ σύμφωνα με τους Ευρωκώδικες των Ι.Αβραμίδη Α. Αθανατοπούλου Κ.Μορφίδη
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ.
Σχεδιασμός κτιρίου με ΕΑΚ, Κανονισμό 84 και Κανονισμό 59 και αποτίμηση με ΚΑΝ.ΕΠΕ. ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Αντικείμενο
Διαβάστε περισσότεραΜε βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος
Διαβάστε περισσότεραΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ
Επίδραση Γειτονικού Κτιρίου στην Αποτίμηση Κατασκευών Ο/Σ ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΒΑΣΙΛΕΙΑΔΗ ΜΙΧΑΕΛΑ Μεταπτυχιακή Φοιτήτρια Π.Π., mikaelavas@gmail.com
Διαβάστε περισσότεραΓενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
Διαβάστε περισσότεραΜεταπτυχιακή Διπλωματική εργασία. «Στρεπτική ευαισθησία κατασκευών λόγω αλλαγής διατομής υποστυλωμάτων»
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ Αντισεισμική και Ενεργειακή Αναβάθμιση Κατασκευών και Αειφόρος Ανάπτυξη ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μεταπτυχιακή Διπλωματική εργασία «Στρεπτική
Διαβάστε περισσότεραΔρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
Διαβάστε περισσότεραΑΝΤΙΜΕΤΩΠΙΣΗ ΦΑΙΝΟΜΈΝΟΥ ΚΟΝΤΩΝ ΥΠΟΣΤΗΛΩΜΑΤΩΝ ΜΕ ΕΝΙΣΧΥΣΗ
Αντιμετώπιση Φαινομένου Κοντών Υποστυλωμάτων με Ενίσχυση των Παρακειμένων Φατνωμάτων ΑΝΤΙΜΕΤΩΠΙΣΗ ΦΑΙΝΟΜΈΝΟΥ ΚΟΝΤΩΝ ΥΠΟΣΤΗΛΩΜΑΤΩΝ ΜΕ ΕΝΙΣΧΥΣΗ ΤΩΝ ΠΑΡΑΚΕΙΜΕΝΩΝ ΦΑΤΝΩΜΑΤΩΝ ΛΥΚΟΥΡΑΣ ΙΩΑΝΝΗΣ Περίληψη Στόχος
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν
Διαβάστε περισσότεραΚεφάλαιο 3: Διαμόρφωση και ανάλυση χαρακτηριστικών στατικών συστημάτων
Κεφάλαιο 3: Διαμόρφωση και ανάλυση χαρακτηριστικών στατικών συστημάτων 3.1 Εισαγωγή 3.1.1 Στόχος Ο στόχος του Κεφαλαίου αυτού είναι η παρουσίαση ολοκληρωμένων παραδειγμάτων προσομοίωσης και ανάλυσης απλών
Διαβάστε περισσότεραΠεριεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27
Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *
ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε
Διαβάστε περισσότεραΔιδάσκων: Κίρτας Εμμανουήλ
ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΣΕ ΗΥ Ενότητα 1: Προσομοίωση φορέα με χρήση πεπερασμένων στοιχείων Διδάσκων: Κίρτας Εμμανουήλ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΔιδάσκων: Κίρτας Εμμανουήλ 1η εξεταστική περίοδος: 01/07/2009 Διάρκεια εξέτασης: 1 ώρα και 30 λεπτά Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Εαρινό Εξάμηνο 2008-2009 Εξέταση Θεωρίας: Επιλογή Γ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΣΤΑΤΙΚΗΣ Διδάσκων: Κίρτας Εμμανουήλ
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
Διαβάστε περισσότεραΠίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΠΑΤΡΑ 26504 Ομάδα εκτέλεσης έργου: Αθανάσιος
Διαβάστε περισσότεραΕρευνητικό πρόγραµµα ΟΑΣΠ /02 - Επιστ. Υπεύθ.: καθηγ. Ι.Ε. Αβραµίδης - ΑΠΘ
ΠΑΡΑ ΕΙΓΜΑ Μονώροφος, απλά συµµετρικός φορέας µε µη παράλληλη διάταξη στύλων Περιεχόµενα. εδοµένα Παραδοχές Προσοµοίωµα. Ένταση λόγω στατικών κατακορύφων φορτίων 6. Σεισµική απόκριση.. υναµική φασµατική
Διαβάστε περισσότεραΑντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων
Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων 1. Γενικά Τα κριτήρια σχεδιασμού κτιρίων σε σεισμικές περιοχές είναι η προσφορά επαρκούς δυσκαμψίας, αντοχής και πλαστιμότητας. Η δυσκαμψία απαιτείται για την
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙXΜΗΣ ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ομική Μηχανική Ι 1 Περιεχόμενα 1. Εισαγωγή 2. Μόρφωση επίπεδων
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.
Διαβάστε περισσότεραΣιδηρές Κατασκευές Ι. Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών
Σιδηρές Κατασκευές Ι Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΝοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ
Διαβάστε περισσότεραΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ Ε.Κ.Ω.Σ. 2000) ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ
ΕΛΕΓΧΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΣ ΚΑΤΑΣΚΕΥΗΣ (Ε.Α.Κ. 2003 Ε.Κ.Ω.Σ. 2000) ΑΠΟΤΙΜΩΜΕΝΗΣ ΜΕ pushover ΑΝΑΛΥΣΗ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΤΕΝΤΟΛΟΥΡΗΣ ΕΥΑΓΓΕΛΟΣ ΚΑΛΟΓΕΡΟΠΟΥΛΟΥ ΓΕΩΡΓΙΑ Περίληψη Σκοπός της παρούσης εργασίας είναι
Διαβάστε περισσότεραΣιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΘΕΜΑ ΕΚΠΟΝΗΣΗΣ Παράδοση Παραδοτέα (α) (β) (γ) (δ) Βαθμός Φορτία
Πάτρα 5-12-2016 ΘΕΜΑ ΕΚΠΟΝΗΣΗΣ Παράδοση: Ημέρα διεξαγωγής της εξέτασης περίοδος Ιανουαρίου 2017. Παραδοτέα: (α) Τεχνική έκθεση η οποία θα ξεκινά με συμπληρωμένο των πίνακα αριθμητικών δεδομένων (βλ. παρακάτω),
Διαβάστε περισσότεραΗ µέθοδος των µετατεταγµένων κατακόρυφων δίσκων στις ενισχύσεις των κατασκευών
Η ΜΕΘΟ ΟΣ ΤΩΝ ΜΕΤΑΤΕΤΑΓΜΕΝΩΝ ΚΑΤΑΚΟΡΥΦΩΝ ΙΣΚΩΝ ΣΤΙΣ ΕΝΙΣΧΥΣΕΙΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΡΗΓΑΣ ΠΑΝΑΓΙΩΤΗΣ Περίληψη Η εργασία αυτή έχει σαν σκοπό την παρουσίαση της µεθόδου των µετατεταγµένων κατακόρυφων δίσκων σε
Διαβάστε περισσότεραΣιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ
Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης
Διαβάστε περισσότεραΆσκηση 3. Παράδειγμα σταυροειδώς οπλισμένων πλακών
Άσκηση 3. Παράδειγμα σταυροειδώς οπλισμένων πλακών Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:
Διαβάστε περισσότεραΠίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50 Εγχειρίδιο σχεδιασμού σύμμικτων πλακών σύμφωνα με τον Ευρωκώδικα 3 (ΕΝ 1993.01.03:2006) και τον Ευρωκώδικα 4 (EN 1994.01.04:
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7
Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη
Διαβάστε περισσότεραΤΟ «ΚΕΝΤΡΟ ΣΤΡΟΦΗΣ» ΣΤΗΝ ΑΝΕΛΑΣΤΙΚΗ ΑΝΑΛΥΣΗ
21o ΦΟΙΤΗΤΙΚΟ ΣΥΝΕ ΡΙΟ ΕΠΙΣΚΕΥΕΣ ΚΑΙ ΕΝΙΣΧΥΣΕΙΣ ΚΑΤΑΣΚΕΥΩΝ 2015 ΠΑΤΡΑ ΦΕΒΡΟΥΑΡΙΟΣ 2015 ΤΟ «ΚΕΝΤΡΟ ΣΤΡΟΦΗΣ» ΣΤΗΝ ΑΝΕΛΑΣΤΙΚΗ ΑΝΑΛΥΣΗ Ε. ΒΟΥΓΙΟΥΚΑΣ, ΛΕΚΤΟΡΑΣ ΕΜΠ ΡΙΚΟΜΕΞ (1999) ΤΟ «ΜΟΝΩΡΟΦΟ ΜΕ ΣΤΡΟΦΗ» ΘΕΩΡΗΤΙΚΟ
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ 1 Περιεχόμενα
Διαβάστε περισσότεραΠαράρτημα Έκδοση Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών
Παράρτημα Έκδοση 2015 Έδραση με κυκλικές κοιλοδοκούς Συνδετήριες δοκοί στο πρόγραμμα Πέδιλο Ανάλυση κατασκευής με ενημερωμένες διατομές μελών ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 2 2. Έδραση με κυκλικές κοιλοδοκούς...
Διαβάστε περισσότεραΠροσομοίωση πλάκας οπλισμένου σκυροδέματος με χρήση επιφανειακών πεπερασμένων στοιχείων
Κεφάλαιο 8 Προσομοίωση πλάκας οπλισμένου σκυροδέματος με χρήση επιφανειακών πεπερασμένων στοιχείων Σύνοψη Στο παράδειγμα του Κεφαλαίου 8, παρουσιάζεται η προσομοίωση πλάκας οπλισμένου σκυροδέματος με χρήση
Διαβάστε περισσότεραΕνότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ
Ενότητα Β ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΙΑΚΡΙΣΗ ΦΟΡΤΙΩΝ-ΣΤΗΡΙΞΕΩΝ-ΕΠΙΠΟΝΗΣΕΩΝ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ
Διαβάστε περισσότεραΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση:
ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143 9.2 ΔΙΣΚΟΙ 9.2.1 Μέθοδοι ανάλυσης Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ελαστική ανάλυση πλαστική ανάλυση
Διαβάστε περισσότεραΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή
Διαβάστε περισσότεραΆσκηση 2. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας
Άσκηση. Παράδειγμα μονοπροέχουσας απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών,
Διαβάστε περισσότεραΒιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m
Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν
Διαβάστε περισσότεραΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ
Ενίσχυση Προβόλου που έχει Υποστεί Βέλος Κάμψης ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ ΒΕΝΙΟΣ ΚΥΡΙΑΚΟΣ ΚΟΥΦΟΠΟΥΛΟΥ ΣΤΥΛΙΑΝΗ Περίληψη Η παρούσα εργασία εξετάζει την δημιουργία βέλους κάμψης σε
Διαβάστε περισσότεραΠ Ε Ρ Ι Λ Η Ψ Η. Ερευνητικό πρόγραμμα - μελέτη :
Π Ε Ρ Ι Λ Η Ψ Η Ερευνητικό πρόγραμμα - μελέτη : Ανάπτυξη προτύπων αριθμητικών παραδειγμάτων για την υποστήριξη της ορθής εφαρμογής του EAK 2000 και τον έλεγχο προγραμμάτων Η/Υ και Νέου κανονιστικού πλαισίου
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ
Διαβάστε περισσότεραΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων
Σχήμα 1 Δυο ελάσματα πάχους h, συγκολλημένα σε μήκος L, με υλικό συγκόλλησης ορίου ροής S y, που εφελκύονται με δύναμη P. Αν το πάχος της συγκόλλησης είναι h, τότε η αναπτυσσόμενη στο υλικό της συγκόλλησης
Διαβάστε περισσότεραΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΝΟ.1 (2011)
Τ.Ε. 01 - Προσομοίωση και παραδοχές FESPA SAP 2000 1.1 ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΝΟ.1 (2011) Προσομοίωση και παραδοχές FESPA - SAP 2000 Η παρούσα τεχνική έκθεση αναφέρεται στις παραδοχές και απλοποιήσεις που υιοθετούνται
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
Διαβάστε περισσότεραΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2017 Εργασία Εξαμήνου. ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ. Εργασία Εξαμήνου
Γενικές οδηγίες: ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ, 2017 Εργασία Εξαμήνου Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ
Διαβάστε περισσότεραΣιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών
ιδηρές ατασκευές Διάλεξη Πλευρικός λυγισμός χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΕΥΡΩΚΩΔΙΚΑ 2 ΕΝ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ Ε. ΜΑΚΡΥΚΩΣΤΑΣ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ Ε.Μ.Π.
ΣΧΕΔΙΑΣΜΟΣ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΕΥΡΩΚΩΔΙΚΑ 2 ΕΝ 1992-1-1 ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΤΕΧΝΙΚΟΕΠΙΜΕΛΗΤΗΡΙΟΕΛΛΑΔΟΣ ΕΛΛΗΝΙΚΟ ΤΜΗΜΑ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΦΟΡΕΩΝ ΜΕ ΒΑΣΗ ΤΟΝ ΕΥΡΩΚΩΔΙΚΑ 2 ΕΝ 1992-1-1 ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΤΕΧΝΙΚΟ
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση 2 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΙI ΛΥΣΗ ΑΣΚΗΣΗΣ 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ
Διαβάστε περισσότεραΧ. ΖΕΡΗΣ Απρίλιος
Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα
Διαβάστε περισσότερα2 ΠΕΡΙΠΤΩΣΕΙΣ ΑΝΩΔΟΜΗΣ ΓΕΦΥΡΩΝ ΜΟΡΦΗΣ ΠΛΑΚΟΔΟΚΟΥ I. ΠΡΟΣΟΜΟΙΩΘΗΚΑΝ ΣΕ ΕΣΧΑΡΑ II. ΥΠΟΛΟΓΙΣΤΗΚΑΝ ΜΕ ΠΡΟΓΡΑΜΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ
2 ΠΕΡΙΠΤΩΣΕΙΣ ΑΝΩΔΟΜΗΣ ΓΕΦΥΡΩΝ ΜΟΡΦΗΣ ΠΛΑΚΟΔΟΚΟΥ I. ΠΡΟΣΟΜΟΙΩΘΗΚΑΝ ΣΕ ΕΣΧΑΡΑ II. ΥΠΟΛΟΓΙΣΤΗΚΑΝ ΜΕ ΠΡΟΓΡΑΜΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΥΓΚΡΙΘΗΚΑΝ ΜΕ ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΛΛΗΣ ΕΡΓΑΣΙΑΣ (ΣΑΠΟΥΝΤΖΑΚΗΣ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης
5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).
Διαβάστε περισσότεραΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ
ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύµµικτες πλάκες ονοµάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούντα από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεµα. Η σύµµικτη µέθοδος κατασκευής πλακών
Διαβάστε περισσότεραΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
Διαβάστε περισσότεραAΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
Διαβάστε περισσότερα4.5 Αµφιέρειστες πλάκες
Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και
Διαβάστε περισσότεραΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΚΑΝΟΝΙΣΜΟΥ ΣΕ ΠΟΛΥΩΡΟΦΑ ΚΤΙΡΙΑ ΜΕ ΜΕΙΚΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ
Διαβάστε περισσότεραΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ
Διαβάστε περισσότεραΠολυβάθμια Συστήματα
Πολυβάθμια Συστήματα Εισαγωγή Πολυβάθμια Συστήματα: Δ19-2 Η βασική προϋπόθεση για την προσομοίωση μίας κατασκευής ως μονοβάθμιο ταλαντωτή είναι πως η μάζα, ο μηχανισμός απόσβεσης και η ακαμψία μπορούν
Διαβάστε περισσότεραΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
Διαβάστε περισσότεραΠΑΘΟΛΟΓΙΑ ΚΑΙ ΔΟΜΟΣΤΑΤΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΙΣΤΟΡΙΚΩΝ ΚΤΙΡΙΩΝ
Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΠΑΘΟΛΟΓΙΑ ΚΑΙ ΔΟΜΟΣΤΑΤΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΙΣΤΟΡΙΚΩΝ ΚΤΙΡΙΩΝ Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός,
Διαβάστε περισσότεραΠΕΡΙΛΗΨΗ ΕΞΑΣΦΑΛΙΣΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΣΕ ΝΕΕΣ ΚΑΙ ΥΦΙΣΤΑΜΕΝΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΠΟΥ ΑΠΑΙΤΟΥΝ ΕΠΙΣΚΕΥΗ Η ΕΝΙΣΧΥΣΗ
ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: ΕΞΑΣΦΑΛΙΣΗ ΠΛΑΣΤΙΜΟΤΗΤΑΣ ΣΕ ΝΕΕΣ ΚΑΙ ΥΦΙΣΤΑΜΕΝΕΣ ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ ΠΟΥ ΑΠΑΙΤΟΥΝ ΕΠΙΣΚΕΥΗ Η ΕΝΙΣΧΥΣΗ ΑΝΑΘΕΣΗ: ΟΡΓΑΝΙΣΜΟΣ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΠΡΟΣΤΑΣΙΑΣ (Ο.Α.Σ.Π.)
Διαβάστε περισσότεραΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:
Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται
Διαβάστε περισσότεραΑΠΟΤΙΜΗΣΗ ΑΝΤΟΧΗΣ ΚΤΗΡΙΟΥ ΕΠΙΛΟΓΗ ΣΤΡΑΤΗΓΙΚΗΣ ΕΝΙΣΧΥΣΗΣ ΕΠΙΛΟΓΗ ΤΕΛΙΚΗΣ ΛΥΣΗΣ. Καμάρης Γεώργιος Μαραβάς Ανδρέας ΕΙΣΑΓΩΓΗ
1 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 4», Μάρτιος 24 Εργασία Νο 29 ΑΠΟΤΙΜΗΣΗ ΑΝΤΟΧΗΣ ΚΤΗΡΙΟΥ ΕΠΙΛΟΓΗ ΣΤΡΑΤΗΓΙΚΗΣ ΕΝΙΣΧΥΣΗΣ ΕΠΙΛΟΓΗ ΤΕΛΙΚΗΣ ΛΥΣΗΣ Καμάρης Γεώργιος Μαραβάς Ανδρέας ΠΕΡΙΛΗΨΗ Στην παρούσα
Διαβάστε περισσότεραιάλεξη 7 η, 8 η και 9 η
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy
Διαβάστε περισσότεραΠροσομοίωση τοιχώματος με χρήση επιφανειακών πεπερασμένων στοιχείων
Κεφάλαιο 7 Προσομοίωση τοιχώματος με χρήση επιφανειακών πεπερασμένων στοιχείων Σύνοψη Στο παράδειγμα του Κεφαλαίου 7 παρουσιάζεται η προσομοίωση επίπεδου τοιχώματος με χρήση επιφανειακών πεπερασμένων στοιχείων.
Διαβάστε περισσότεραΜάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15. 10. Εσχάρες... 17
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 10. Εσχάρες... 17 Γενικότητες... 17 10.1 Κύρια χαρακτηριστικά της φέρουσας λειτουργίας... 18 10.2 Στατική διάταξη και λειτουργία λοξών γεφυρών... 28 11. Πλάκες...
Διαβάστε περισσότεραΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
Διαβάστε περισσότεραΠροσεισμικός Έλεγχος Κτιρίων Συμπλήρωση Δελτίου Ενότητες Δ, Ε
Προσεισμικός Έλεγχος Κτιρίων Συμπλήρωση Δελτίου Ενότητες Δ, Ε Περιφέρεια Βορείου Αιγαίου Οργανισμός Αντισεισμικού Σχεδιασμού &Προστασίας Ο.Α.Σ.Π.) Ενημερωτικό Σεμινάριο για Μηχανικούς με θέμα: «ΠΡΟΣΕΙΣΜΙΚΟΣ
Διαβάστε περισσότεραΕρευνητικό πρόγραµµα ΟΑΣΠ - 2001/02 - Επιστ. Υπεύθ.: καθηγ. Ι.Ε. Αβραµίδης - ΑΠΘ
Πρότυπα αριθµητικά παραδείγµατα για τον έλεγχο ορθής εφαρµογής των διατάξεων του ΕΑΚ/000 ΠΑΡΑ ΕΙΓΜΑ 9 ΠΑΡΑ ΕΙΓΜΑ 9 Περιεχόµενα Τριώροφος φορέας µε κλιµακοστάσιο χωρίς περιµετρικά τοιχώµατα. εδοµένα Παραδοχές
Διαβάστε περισσότεραΔ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ
Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και
Διαβάστε περισσότεραΜέθοδοι των Μετακινήσεων
Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.
Διαβάστε περισσότεραιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Διαβάστε περισσότεραΔιαδικασίες διασφάλισης ποιότητας του Λογισμικού για Πολιτικούς Μηχανικούς. Structural analysis software verification
3 o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας 5 7 Νοεμβρίου, 2008 Άρθρο 1821 Διαδικασίες διασφάλισης ποιότητας του Λογισμικού για Πολιτικούς Μηχανικούς. Structural analysis software
Διαβάστε περισσότεραΑΘAΝΑΣΙΟΣ X. TPIANTAΦYΛΛOY KAΘHΓHTHΣ ΠANEΠIΣTHMIO ΠATPΩN TMHMA ΠOΛITIKΩN MHXANIKΩN ΣΥΜΜΙΚΤΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΑΘAΝΑΣΙΟΣΣ X. TPIANTAΦYΛΛOYY KAΘHΓHTHΣ ΠANEΠIΣTHMIO ΠATPΩN TMHMA ΠOΛITIKΩN MHXANIKΩN ΣΥΜΜΙΚΤΕΣ ΚΑΤΑΣΚΕΥΕΣ ΠΑΤΡΑ 2016 ii ISBN 978-960-92177-4-3 c ΑΘ. X. TPIANTAΦYΛΛOY Απαγορεύεται η ολική ή εν μέρει αντιγραφή
Διαβάστε περισσότερα