Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ"

Transcript

1 Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και από το μέγεθος του σώματος. Αυτό το μέγεθος εκφράζεται με τη διατομή ή σωστότερα τη φέρουσα διατομή. Ερώτηση: Πού βρίσκεται η φέρουσα διατομή; Απάντηση: Στη θέση όπου φοβόμαστε ότι θα σπάσει το σώμα και για την οποία θα εκτελέσουμε τον υπολογισμό αντοχής. Αυτή θα λέγεται επικίνδυνη θέση. Παράδειγμα 1 (Αντοχή δοκαριού): Μπορεί στον στύλο του σχήματος να ζητηθεί η αντοχή του ιδίου του στύλου στη βάση του, διότι εκεί στη βάση αναπτύσσεται η μεγαλύτερη καμπτική ροπή, άρα κινδυνεύει περισσότερο ο στύλος να σπάσει. Σε μία τέτοια περίπτωση η φέρουσα διατομή πρέπει να τοποθετηθεί στο επίπεδο Α-Α. Παράδειγμα 2 (Αντοχή σύνδεσης): Μπορεί στον ίδιο στύλο να ζητηθεί η αντοχή της συγκόλλησής του με τη βάση, οπότε η φέρουσα διατομή πρέπει να τοποθετηθεί στο επίπεδο Β-Β. Ερώτηση: Σε ποια όψη του σχεδίου θα κοιτάξουμε για να δούμε τη φέρουσα διατομή; Απάντηση: Διακρίνουμε δύο περιπτώσεις: α) Όταν ζητείται η αντοχή δοκαριού (όπως στο παράδειγμα 1) σχεδιάζουμε μία τομή κάθετη στο μήκος του δοκαριού, η οποία το κόβει στην επικίνδυνη θέση. Συνέχεια παραδείγματος 1: Αν η επικίνδυνη θέση ορισθεί η Α-Α, τότε η φέρουσα διατομή είναι η τομή Α- Α του δοκαριού, η οποία φαίνεται στο διπλανό σχήμα. Είναι προτιμότερο να φαίνεται στο σχήμα μόνο η τομή του δοκαριού και όχι άλλες λεπτομέρειες ώστε να μπορούν πιο άνετα να τοποθετηθούν διαστάσεις. β) Όταν ζητείται η αντοχή σύνδεσης (όπως στο παράδειγμα 2) σχεδιάζουμε μία

2 τομή που περνάει από τη θέση της σύνδεσης, κόβει την κατασκευή και ξεχωρίζει ξανά τα δύο εξαρτήματα που είχε ενώσει η σύνδεση. Συνέχεια παραδείγματος 2: Αν ως επικίνδυνη θέση ορισθεί η συγκόλληση στη βάση του στύλου, πρέπει να κόψουμε την κατασκευή με τομή στο επίπεδο Β-Β (η συγκόλληση συνδέει τα τεμάχια 1 και 2, ενώ το επίπεδο Β-Β τα διαχωρίζει). Ερώτηση: Ποια γεωμετρικά χαρακτηριστικά της φέρουσας διατομής μας ενδιαφέρουν; Απάντηση: α) Αν το σώμα έχει εφελκυσμό, πρέπει να βρούμε το συνολικό εμβαδό Α της φέρουσας διατομής με τη θεωρία της Γεωμετρίας. β) Αν το σώμα καταπονείται σε διάτμηση, μας ενδιαφέρει το εμβαδό διάτμησης Α το οποίο είναι ίσο: Με το συνολικό εμβαδό Α, αν το σώμα είναι συμπαγές ή αποτελείται από τα τοιχώματα μεγάλου πάχους Με το εμβαδό όσων τοιχωμάτων είναι παράλληλα με τη διατμητική δύναμη (και μόνο αυτών), αν το σώμα αποτελείται από λεπτά τοιχώματα. Παράδειγμα: Στη διατομή του σχήματος πρέπει να τεθεί Α = Εμβαδό πλευράς ΑΒ + Εμβαδό πλευράς ΓΔ = 2 * 90mm * 5mm = 900mm 2 γ) Αν το σώμα καταπονείται σε κάμψη, πρέπει να βρούμε τη ροπή αντίστασης σε κάμψη W σύμφωνα με τον πίνακα... (σελ. 24). δ) Αν το σώμα έχει στρέψη, πρέπει να βρούμε τη ροπή αντίστασης σε στρέψη W t σύμφωνα με τον πίνακα... (σελ. 25). Δ.2 Διαδικασία υπολογισμού αντοχής: Για να ελέγξουμε αν αντέχει ένα σώμα, πρέπει να εφαρμόσουμε την εξής διαδικασία: 1. Αναγνώριση δυνάμεων Παρατηρούμε ποιες δυνάμεις ασκούνται στο σώμα (γνωστές από την εκφώνηση). Βρίσκουμε (αν χρειάζεται) ποιες δυνάμεις ακούν οι στηρίξεις του σώματος (οι δυνάμεις στήριξης δε χρειάζεται να δίνονται από την εκφώνηση διότι μπορούν να υπολογισθούν από τις εξισώσεις ισορροπίας). 2. Αναγνώριση φορτίσεων Χωρίζουμε το σώμα σε μέρη, αναγνωρίζουμε τις φορτίσεις σε κάθε μέρος του σώματος ξεχωριστά. Για να αναγνωρίσουμε τις φορτίσεις

3 συμβουλευόμαστε τα σχήματα στις παραγράφους Γ.1, Γ.3 (προηγούμενο κεφάλαιο, ή τυπολόγιο Β' μέρος στο e-learning). 3. Υπολογισμός φορτίων Εφαρμόζοντας τη θεωρία Μηχανικής Ι, υπολογίζουμε όσα από τα παρακάτω φορτία υπάρχουν: Εφελκυστική ή θλιπτική δύναμη Ν, διατμητική δύναμη Q, καμπτική ροπή Μ και στρεπτική ροπή Τ. (Για επανάληψη της σχετικής θεωρίας της Μηχανικής Ι βλέπε παράγραφο Γ.4, ή τυπολόγιο Β' μέρος στο e-learning). Για έτοιμα διαγράμματα καμπτικών ροπών βλέπε πίνακα Τ2 (Προηγούμενο κεφάλαιο, ή τυπολόγιο Γ' μέρος στο e-learning) 4. Υπολογισμός γεωμετρικών μεγεθών της διατομής του σώματος Βρίσκουμε την επικίνδυνη θέση και σχεδιάζουμε τη φέρουσα διατομή του σώματος (βλέπε παράγραφο Δ.1 του παρόντος). Υπολογίζουμε όσα από τα μεγέθη της διατομής χρειάζονται: Συνολικό εμβαδό Α, με τη θεωρία της Γεωμετρίας Εμβαδό διάτμησης Α με βάση τον ορισμό του (βλέπε παράγραφο Δ.1) και τη θεωρία της Γεωμετρίας Ροπή αντίστασης σε κάμψη W. (Συμβολίζεται και W x ή W y. Για τον υπολογισμό της βλ. επόμενες σελίδες). Ροπή αντίστασης σε στρέψη W t (βλ. επόμενες σελίδες) 5. Υπολογισμός τάσεων Η τάση λόγω εφελκυσμού, λόγω διάτμησης, λόγω κάμψης και λόγω στρέψης είναι αντίστοιχα: N Q M T σ z = ----, τ δ = ----, σ b = ----, τ t = A A' W χ W t 6. Υπολογισμός της ισοδύναμης τάσης (δηλαδή της συνισταμένης) Η ισοδύναμη τάση σε συγκολλήσεις είναι σ v = (σ b + σ z ) 2 + (τ t + τ δ ) 2 Σε ασυγκόλλητο μέταλλο η ισοδύναμη τάση είναι σ v = (σ b + σ z ) 2 + 3(α ο (τ t + τ δ )) 2 Όπου α 0 = ένας κατάλληλος συντελεστής, συνήθως α 0 = 0,7 7. Εύρεση (από πίνακες) της επιτρεπόμενης τάσης σ επ 8. Έλεγχος Αν ισχύει σ v σ επ τότε το σώμα αντέχει, και σ' αυτό το σημείο ολοκληρώνεται ο υπολογισμός.

4 Πίνακας Τ.3 Ροπές αδράνειας και άλλα γεωμετρικά στοιχεία Α=εμβαδό διατομής, I xx =ροπή αδράνειας, W xx =ροπή αντίστασης σε κάμψη, i min =ακτίνα αδράνειας (η μικρότερη ακτίνα, για υπολογισμό λυγισμού) 1) Α=(π/4)*d² 0,785 d², I x =(π/64)*d 4 0,05 d 4 W=(π/32)*d 3 0,1 d 3, i min =d/4 2) Α 0,785(D²-d²), I x 0,05(D 4 -d 4 ) W 0,1(D 4 -d 4 )/D, i min = D²+d²/4 3) A=b h, I x =b h 3 /12 W x =b h²/6, Αν b<h τότε i min =b/ 12 = b/3,464 4) A=2 α h, I x =2 α h 3 /12 W x =2 α h²/6, Αν I min =min(i x,i y ) τότε i min = I min /A 5) A=b(H-h), I x =b(h 3 -h 3 )/12 b(h 3 -h 3 ) Αν I min =min(i x,i y ) τότε i min = I min /A W x = , 6H 6) A=BH-bh, I x =(BH 3 -bh 3 )/12 BH 3 -bh 3 Αν I min =min(i x,i y ) τότε i min = I min /A W x = , 6H 7) Όπως στην περίπτωση 6 παραπάνω

5 Πίνακας Τ.4 Ροπές αντίστασης σε στρέψη για διάφορες διατομές 1) W t = (π/16)*d 3 0,2 d 3 2) W t 0,2 (D 4 -d 4 )/D 3) (Πρέπει h>b) W t = η 2 b 2 h, όπου το η 2 υπολογίζεται από τον πίνακα: αν h/b = 1 1, τότε η 2 = 0,208 0,231 0,246 0,267 0,282 αν h/b = τότε η 2 = 0,299 0,307 0,313 0,333 4) s 13 l 1 + s 23 l W t = 3 s μεγ 5) W t = 2 A m s ελαχ

Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων

Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων 1 Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων Πρόβλημα 3.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές.

Διαβάστε περισσότερα

ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι

ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι Το τεστ θα περιλαμβάνει ασκήσεις στα παρακάτω κεφάλαια: Υπολογισμός ελέγχου συγκόλλησης Υπολογισμός μελέτης δοκού που φορτίζεται σε κάμψη Υπολογισμός

Διαβάστε περισσότερα

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ Τμήμα Μηχανολόγων Μηχανικών ΤΕ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΚΑΘΗΓΗΤΗΣ κ. ΜΟΣΧΙΔΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων Σχήμα 1 Δυο ελάσματα πάχους h, συγκολλημένα σε μήκος L, με υλικό συγκόλλησης ορίου ροής S y, που εφελκύονται με δύναμη P. Αν το πάχος της συγκόλλησης είναι h, τότε η αναπτυσσόμενη στο υλικό της συγκόλλησης

Διαβάστε περισσότερα

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M)

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M) . ΥΠΟΛΟΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M). Ορισμοί φορτίσεων μίας δοκού Οι φορτίσεις που μπορεί να εμφανισθούν σ'ένα σώμα είναι ο εφελκυσμός (ή η θλίψη με κίνδυνο λογισμού), η διάτμηση, η κάμψη και η στρέψη.

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

5. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 5.1 Η

5. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 5.1 Η 5. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 5. Η έννοια του κέντρου βάρους Έστω ότι ένα σώμα αποτελείται από δύο ή περισσότερα μέρη,... με απλό σχήμα, και ότι τα βάρη των μερών του είναι Β, Β.... Οι δυνάμεις Β, Β... θα ενεργούν

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ

Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ 3.1. Εφελκυσμός Τάση λόγω εφελκυσμού: Ν σz = ----(3-1) Α όπου Ν = η εφελκυστική δύναμη Α = το εμβαδό της διατομής του σώματος («διατομή» είναι το σχήμα που έχει το σώμα σε μία κάθετη

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3)

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) Η εξεταστέα ύλη για τις περιγραφικές ερωτήσεις (στο πρώτο μέρος της γραπτής εξέτασης) θα είναι η παρακάτω: - Κεφ. 1: Ποια είναι τα δύο πλεονεκτήματα

Διαβάστε περισσότερα

Ενότητα: Υπολογισμός διατμητικών τάσεων

Ενότητα: Υπολογισμός διατμητικών τάσεων ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Υπολογισμός διατμητικών τάσεων Α. Θεοδουλίδης Υπολογισμός διατμητικών τάσεων Η ύπαρξη διατμητικών τάσεων οφείλεται στην διατμητική δύναμη Q(x): Κατανομή διατμητικών τάσεων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ. Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί:

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί: 8. ΔΙΚΤΥΩΜΑΤΑ Σχ. 8.1 Παραδείγματα δικτυωμάτων 8.1 Ορισμοί: Δικτύωμα θα λέγεται ένας σύνθετος φορέας που όλα τα μέλη του είναι ράβδοι. Παραδείγματα δικτυωμάτων δίνονται στο σχήμα παραπάνω. Πλεονέκτημα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ Τμήμα Μηχανολόγων Μηχανικών ΤΕ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΚΑΘΗΓΗΤΗΣ κ. ΜΟΣΧΙΔΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και

Διαβάστε περισσότερα

Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1. Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4

Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1. Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4 Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1 Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4 1 Δεδομένα : 1 3000 2 2000 3 12000 4 15000 d 1 12 d 2 15 Ζητούμενα : Να γίνει ο έλεγχος

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ

Διαβάστε περισσότερα

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού Δρ. Σωτήρης Δέμης Πανεπιστημιακός Υπότροφος Τσιμεντοπολτός Περιλαμβάνονται διαγράμματα από τα βιβλία «Μηχανική των Υλικών» και «Δομικά Υλικά» του Αθανάσιου

Διαβάστε περισσότερα

Δυνάμεις στήριξης και καμπτικές ροπές σε άτρακτο που δέχεται φόρτιση στον χώρο T Ε T Ε. A z. A y

Δυνάμεις στήριξης και καμπτικές ροπές σε άτρακτο που δέχεται φόρτιση στον χώρο T Ε T Ε. A z. A y υνάμεις στήριξης και καμπτικές ροπές σε άτρακτο που δέχεται φόρτιση στον χώρο ίδεται μία άτρακτος ΑΒ που φέρει οδοντοτροχό στη θέση. Στο δεξιό της άκρο είναι συνδεδεμένη με κινητήρα ο οποίος ασκεί στρεπτική

Διαβάστε περισσότερα

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler.

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Δυναμική Αντοχή Σύνδεση με προηγούμενο μάθημα Καμπύλη τάσης παραμόρφωσης Βασικές φορτίσεις A V y A M y M x M I

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 03-04 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 04 Κατεύθυνση: Θεωρητική Μάθημα: Εφαρμοσμένη Μηχανική Επιστήμη Τάξη: Β' Αριθμός Μαθητών: 0 Κλάδος: Μηχανολογίας

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙΔΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 016

Διαβάστε περισσότερα

9. ΦΟΡΤΙΑ ΔΙΑΤΟΜΗΣ ΔΟΚΩΝ

9. ΦΟΡΤΙΑ ΔΙΑΤΟΜΗΣ ΔΟΚΩΝ 9. ΦΟΡΤΙ ΔΙΤΟΜΗΣ ΔΟΚΩ 9.1 ενικά Ο όρος φορτία σημαίνει είτε δυνάμεις είτε ροπές. Συνοψίζοντας αυτά που αναφέρθηκαν σε προηγούμενα κεφάλαια, μπορούμε να πούμε ότι δοκός είναι ένα σώμα με μεγάλο μήκος και

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Στρέψη κυκλικής διατομής

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΙΙ

Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΙΙ 1 Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΙΙ 22/02/2011 ΘΕΜΑ 1 ο Στον πρόβολο του σχήματος μήκους l, η διατομή είναι ορθογωνική διαστάσεων bxh (για τις οποίες δίνεται h=3b). Aν σ εφ

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

14/2/2008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ

14/2/2008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ 14//008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ 007-008 Το τυπολόγιο έχει παραχθεί αποκλειστικά για χρήση κατά την εξέταση του μαθήματος ΑΝΤΟΧΗ ΠΛΟΙΟΥ ΚΑΜΨΗ ΣΕ ΗΡΕΜΟ ΝΕΡΟ Διόρθωση

Διαβάστε περισσότερα

5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80)

5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) 1 Βασική αρχή εργαστηριακής άσκησης Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία

Διαβάστε περισσότερα

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

TEXNIKH MHXANIKH 7. ΚΑΜΨΗ, ΔΙΑΤΜΗΣΗ, ΣΤΡΕΨΗ, ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

TEXNIKH MHXANIKH 7. ΚΑΜΨΗ, ΔΙΑΤΜΗΣΗ, ΣΤΡΕΨΗ, ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ TEXNIKH MHXANIKH 7. ΚΑΜΨΗ, ΔΙΑΤΜΗΣΗ, ΣΤΡΕΨΗ, ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΚΛΩΤΣΟΣ ΔΗΜΗΤΡΗΣ dimglo@uniwa.gr Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Πανεπιστήμιο Δυτικής Αττικής Ιανουάριος 2018 1 ΠΕΡΙΕΧΟΜΕΝΑ 1.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα

Διαβάστε περισσότερα

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005) RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2017 ΗΜΕΡΟΜΗΝΙΑ 23 ΙΑΝΟΥΑΡΙΟΥ ΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 3h00 (12:00-15:00)

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2017 ΗΜΕΡΟΜΗΝΙΑ 23 ΙΑΝΟΥΑΡΙΟΥ ΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 3h00 (12:00-15:00) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙ ΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 017 ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

Σχήμα 12-7: Σκαρίφημα άξονα με τις φορτίσεις του

Σχήμα 12-7: Σκαρίφημα άξονα με τις φορτίσεις του 1.6.1 ΑΣΚΗΣΗ Ζητείται να υπολογιστεί ένας άξονας μετάδοσης κίνησης και ισχύος με είσοδο από την τρίτη τροχαλία του σχήματος, όπου φαίνονται οι με βασικές προδιαγραφές του προβλήματος. Ο άξονας περιστρέφεται

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ 1. Γενικά Κατά τη φόρτιση μιας ράβδου από θλιπτική αξονική δύναμη και με προοδευτική αύξηση του μεγέθους της δύναμης αυτής, η αναπτυσσόμενη τάση θλίψης θα περάσει από το όριο αναλογίας

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 5: Κοχλίωση κοντού προβόλου γερανογέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 10: Έλεγχος διακοπτόμενης συγκόλλησης Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΔΙΑΤΜΗΣΗ 1. Γενικά Όλοι γνωρίζουμε ότι σε μια διατομή ενός καταπονούμενου φορέα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 4-2 ΑΤΡΑΚΤΟΙ ΑΞΟΝΕΣ - ΣΤΡΟΦΕΙΣ

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

3. ΥΠΟΛΟΓΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ

3. ΥΠΟΛΟΓΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ 3. ΥΠΟΛΟΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ 3.1 Ορισμός: Φορέας λέγεται ένα στερεό σώμα που δέχεται δυνάμεις (και θέλουμε τελικά να ελέγξουμε την αντοχή του). Είδη γραμμικών φορέων: ράβδος, δοκός, εύκαμπτος γραμμικός

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

Αναλυτικά Λυμένα Παραδείγματα. Στοιχεία Θεωρίας. Άλυτες Ασκήσεις. Ερωτήσεις Θεωρίας

Αναλυτικά Λυμένα Παραδείγματα. Στοιχεία Θεωρίας. Άλυτες Ασκήσεις. Ερωτήσεις Θεωρίας ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Αναλυτικά Λυμένα Παραδείγματα Στοιχεία Θεωρίας Άλυτες Ασκήσεις Ερωτήσεις Θεωρίας Νικόλαος Χονδράκης (Εκπαιδευτικός) ... Νικόλαος Γ. Χονδράκης ( chon nik o@g ma il.co

Διαβάστε περισσότερα

Παράδειγμα 1 P 1 P 4 P 2 P 3 A B Γ Δ. Παράδειγμα 2

Παράδειγμα 1 P 1 P 4 P 2 P 3 A B Γ Δ. Παράδειγμα 2 Παράδειγμα 1 Μία ράβδος ομογενής σταθερής διατομής Α = 5 cm 2 καταπονείται όπως στο σχήμα. Να βρείτε την συνολική επιμήκυνση της ράβδου. Δίνεται το μέτρο ελαστικότητας Ε = 2*10 7 Ν/cm 2 και ακόμη : 1 =

Διαβάστε περισσότερα

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Δοκιμή κάμψης: συνοπτική θεωρία Όταν μια δοκός υπόκειται σε καμπτική ροπή οι αξονικές γραμμές κάπτονται σε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Σελίδα1 ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΙΣΟΡΡΟΠΙΑΣ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Για να λύσουμε ένα πρόβλημα ισορροπίας εφαρμόζουμε τις συνθήκες ισορροπίας, αφού πρώτα σχεδιάσουμε τις δυνάμεις που ασκούνται στο σώμα

Διαβάστε περισσότερα

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr Σύνθεση και Ανάλυση Δυνάμεων και Ροπών

Διαβάστε περισσότερα

ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:..

ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:.. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2017-2018 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2018 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ:.... ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:.. Μάθημα: ΜΗΧΑΝΙΚΗ

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας

Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Άσκηση 1. Παράδειγμα απλά οπλισμένης πλάκας Δίνεται ο ξυλότυπος του σχήματος που ακολουθεί καθώς και τα αντίστοιχα μόνιμα και κινητά φορτία των πλακών. Ζητείται η διαστασιολόγηση των πλακών, συγκεκριμένα:

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΣΥΓΚΟΛΛΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ ΣΥΓΚΟΛΛΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 8 ΣΥΓΚΟΛΛΗΣΕΙΣ - 2 / 22 - Παπαδόπουλος Α. Χρήστος 8 Συγκολλήσεις είναι η διαδικασία της μόνιμης τοπικής ένωσης μεταλλικών μερών σε ημιτετηγμένη μορφή με εφαρμογή πίεσης ή την ένωση των μερών σε

Διαβάστε περισσότερα

9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ

9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ 9 ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ Βλ. Κεφ. 4, Παρ. 4.4, για την λογική των ελέγχων. Το παρόν Κεφάλαιο περιλαμβάνει τα κριτήρια ελέγχου της ανίσωσης ασφαλείας, κατά την αποτίμηση ή τον ανασχεδιασμό,

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://phsicscourses.wordpress.com/ Θεωρία Υπάρχουν κάποιες περιπτώσεις μελέτης τις οποίες

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑ 1: Ο κύλινδρος που φαίνεται στο σχήμα είναι από χάλυβα που έχει ένα ειδικό βάρος 80.000 N/m 3. Υπολογίστε την θλιπτική τάση που ενεργεί στα σημεία Α και

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

Ηλοσυνδέσεις. = [cm] Μαυρογένειο ΕΠΑΛ Σάμου. Στοιχεία Μηχανών - Τυπολόγιο. Χατζής Δημήτρης

Ηλοσυνδέσεις. = [cm] Μαυρογένειο ΕΠΑΛ Σάμου. Στοιχεία Μηχανών - Τυπολόγιο. Χατζής Δημήτρης Ηλοσυνδέσεις Ελάχιστη επιτρεπόμενη διάμετρος ήλου που καταπονείται σε διάτμηση 4Q = [cm] zxπτ επ : διάμετρος ήλου σε [cm] Q : Μέγιστη διατμητική δύναμη σε [an] τ επ : επιτρεπόμενη διατμητική τάση σε [an/cm

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΚΤΙΝΙΚΟ Ε ΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 7.1 Εδρανα Τα έδρανα αποτελούν φορείς στήριξης και οδήγσης κινούµενων µηχανολογικών µερών, όπως είναι οι άξονες, -οι οποίοι καταπονούνται µόνο σε κάµψη

Διαβάστε περισσότερα

2 ΔΥΝΑΜΕΙΣ ΓΙΑ ΤΗΝ ΚΟΠΗ ΛΑΜΑΡΙΝΑΣ

2 ΔΥΝΑΜΕΙΣ ΓΙΑ ΤΗΝ ΚΟΠΗ ΛΑΜΑΡΙΝΑΣ 2 ΔΥΝΑΜΕΙΣ ΓΙΑ ΤΗΝ ΚΟΠΗ ΛΑΜΑΡΙΝΑΣ 2.1 Εισαγωγή Τα περισσότερα έμβολα και μήτρες που χρησιμοποιούμε για την κοπή λαμαρίνας καταλήγουν σε επίπεδες επιφάνειες που σχηματίζουν ορθή γωνία με τις κάθετες πλευρές.

Διαβάστε περισσότερα

Δομικά Υλικά. Μάθημα ΙΙ. Μηχανικές Ιδιότητες των Δομικών Υλικών (Αντοχές, Παραμορφώσεις)

Δομικά Υλικά. Μάθημα ΙΙ. Μηχανικές Ιδιότητες των Δομικών Υλικών (Αντοχές, Παραμορφώσεις) Δομικά Υλικά Μάθημα ΙΙ Μηχανικές Ιδιότητες των Δομικών Υλικών (Αντοχές, Παραμορφώσεις) Μηχανικές Ιδιότητες Υλικών Τάση - Παραμόρφωση Ελαστική Συμπεριφορά Πλαστική Συμπεριφορά Αντοχή και Ολκιμότητα Σκληρότητα

Διαβάστε περισσότερα

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 0.08.006 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Ενισχυμένη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις. Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm

Διαβάστε περισσότερα

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Συντελεστής ασφαλείας safety factor safety factor οριακόϕορτίο / τάση = ϕορτίο / τάση λειτουργ ίας Το φορτίο λειτουργίας ή σχεδίασης

Διαβάστε περισσότερα

Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100

Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100 Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΠΑΤΡΑ 26504 Ομάδα εκτέλεσης έργου: Αθανάσιος

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 3 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

Περίληψη μαθήματος Ι

Περίληψη μαθήματος Ι ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΛΙΚΩΝ, ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΓΕΝΙΚΟ ΤΜΗΜΑ, ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ, ΑΠΘ Περίληψη μαθήματος Ι Τυπολόγιο μεθοδολογία στατικής Περίληψη Ι: Ισορροπία υλικού σημείου & στερεού σώματος, δικτυώματα,

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Παράδειγμα Π4-1 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ04-2 Χρησιμοποιώντας την ΑΔΕ, να υπολογιστούν οι μετακινήσεις δ x και δ y του κόμβου

Διαβάστε περισσότερα

ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:..

ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:.. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2017-2018 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2018 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ:.... ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:.. Επιτρεπόμενη διάρκεια

Διαβάστε περισσότερα

Επαλήθευση πασσάλου Εισαγωγή δεδομένων

Επαλήθευση πασσάλου Εισαγωγή δεδομένων Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης

Διαβάστε περισσότερα

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. 1. Ανατροπής ολίσθησης. 2. Φέρουσας ικανότητας 3. Καθιζήσεων Να γίνουν οι απαραίτητοι έλεγχοι διατομών και να υπολογισθεί ο απαιτούμενος

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 26-6-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

15/12/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή

15/12/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή 15/1/016 Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή Αρχή: Δομικό στοιχείο καταπονείτε σε στρέψη όταν διανύσματα ροπών είναι

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 8: Στύλος πινακίδας σήμανσης υπό στρέψη Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι

ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΣΥΓΚΟΛΛΗΣΕΙΣ 1 M σ = W b w σ επιτρεπ όµενη σ max = σ κάµψη + σ εφελκυστική σ επιτρεπόµενη ΣΥΓΚΟΛΛΗΣΕΙΣ 2 ΣΥΓΚΟΛΛΗΣΕΙΣ 3 Συγκόλληση σηµείων τ F A n m F n d s = τ επιτρεπ όµενη

Διαβάστε περισσότερα

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία

Διαβάστε περισσότερα