Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.
|
|
- Σοφοκλής Σπανός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας 3. Μέτρα Θέσης και Διασποράς Κατανομών Μέση Τιμή Διακύμανση και Τυπική Απόκλιση 4. Κανονική Κατανομή 5. Κεντρικό Οριακό Θεώρημα 6. Προσέγγιση της Δυωνυμικής Κατανομής με την Κανονική Κατανομή Χ. Εμμανουηλίδης, Συνεχείς Τυχαίες Μεταβλητές Μια συνεχής τυχαία μεταβλητή μπορεί να λάβει οποιαδήποτε τιμή σε ένα ή περισσότερα διαστήματα πραγματικών αριθμών. Δεν έχει νόημα να αναφερόμαστε στην πιθανότητα η τυχαία μεταβλητή να λάβει συγκεκριμένη τιμή: αυτή είναι πρακτικά μηδενική (αμελητέα). Έχει όμως νόημα να αναφερόμαστε στην πιθανότητα η τυχαία μεταβλητή να λάβει τιμή σε συγκεκριμένο διάστημα. Η πιθανότητα η τυχαία μεταβλητή να λάβει τιμή σε διάστημα από έως ορίζεται ως το εμβαδόν της περιοχής κάτω από την καμπύλη της συνάρτησης πυκνότητας πιθανότητας μεταξύ των και. Συνεχείς Κατανομές Πιθανότητας Συνεχείς Κατανομές Πιθανότητας Έστω συνεχής τυχαία μεταβλητή Χ με πεδίο τιμών R. Συνάρτηση πυκνότητας πιθανότητας της Χ ή απλά συνάρτηση πυκνότητας είναι η συνάρτηση f που ικανοποιεί τις συνθήκες: α) f() 0για κάθε τιμή R, β) f ( ) d= R Συνάρτηση πυκνότητας πιθανότητας Δίνεται από έναν μαθηματικό τύπο και το γράφημά της είναι μια καμπύλη: f() α Πυκνότητα πιθανότητας τιμή β Χ Η σχέση f ( ) d= R δηλώνει απλά ότι το εμβαδόν κάτω από την καμπύλη είναι μονάδα Η f() δεν είναι η πιθανότητα της τιμής, αλλά η πυκνότητα πιθανότητας της τιμής : η f()d είναι η πιθανότητα η τ.μ. Χ να λάβει τιμή στο διάστημα (,+d), δηλαδή η P( +d) με d πολύ μικρό (d 0). Χ. Εμμανουηλίδης, cemman@econ.auth.gr PDF processed with CutePDF evaluation edition
2 Συνεχείς Κατανομές Πιθανότητας Πιθανότηταδιαστήματος: Για κάθε, του R ορίζεται P( ) = δηλαδή η πιθανότητα η τ.μ. να λάβει τιμή στο διάστημα [, ] είναι το εμβαδόν κάτω από την καμπύλη της συνάρτησης πυκνότητας πιθανότητας και μεταξύ των σημείων και. f() f ( ) d P( ) f() Συνεχείς Κατανομές Πιθανότητας Αθροιστική συνάρτηση πιθανότητας ή απλά συνάρτηση κατανομής της τ.μ. Χ ονομάζεται η συνάρτηση F() για την οποία ισχύει F ( ) = P( ) = f ( u) du P( ) F() 0.4 Χ Χ Συνεχείς Κατανομές Πιθανότητας Ιδιότητες συνάρτησης κατανομής Από τον ορισμό προκύπτουν οι παρακάτω ιδιότητες για τη συνάρτηση κατανομής τ.μ. Χ με R = [α,β] R: Ι. lim F( ) = 0 και α lim F( ) = β Ι. για κάθε <, F( ) F( ) και P( ) = P( ) P( ) = F( ) F( ) f ( u) du= f ( u) du f ( u) du f() P( ) Χ Μέτρα Θέσης και Διασποράς Συνεχών Κατανομών Κύριο μέτρο θέσης είναι η αναμενόμενη ή μέση τιμή και κύριο μέτρο διασποράς είναι η διακύμανση. Αναμενόμενη τιμή συνεχούς τ.μ. Χ : = E ( ) = µ f ( ) d Διακύμανση συνεχούς τ.μ. Χ : = σ = R H τυπική απόκλιση, σ Χ,ορίζεται ως R [ ] ( E( )) f ( ) d= E( E( )) Var( ) σ = Var( ) Μέτρα Θέσης και Διασποράς Συνεχών Κατανομών Για την εκτίμηση της μέσης τιμής και της διακύμανσης ισχύουν όσα αναφέρθηκαν για τις διακριτές τ.μ. Το ίδιο ισχύει και για τις ιδιότητές τους. Κανονική Κατανομή Πιθανότητας Χ. Εμμανουηλίδης, cemman@econ.auth.gr
3 Χρησιμότητα της κανονικής κατανομής α) περιγράφει καλά την μεταβλητότητα των μετρήσεων πολλών τυχαίων μεταβλητών που εμφανίζονται σε πρακτικά προβλήματα ή φαινόμενα Παραδείγματα προσεγγιστικά κανονικών εμπειρικών κατανομών β) είναι καλή προσέγγιση άλλων θεωρητικών κατανομών πιθανοτήτων κάτω από ορισμένες συνθήκες γ) είναι βασικό εργαλείο της επαγωγικής στατιστικής για τον έλεγχο υποθέσεων Χαρακτηριστικά της Κανονικής Κατανομής Το σχήμα της είναι συμμετρική καμπανοειδής καμπύλη. Η θέση και το σχήμα της κατανομής καθορίζονται από δύο παραμέτρους, τις µ (μέση τιμή) και σ (διακύμανση). Το μέγιστο της κανονικής καμπύλης αντιστοιχεί στη μέση τιμή, η οποία ταυτίζεται με την διάμεσο και τον τύπο. Η τυχαία μεταβλητή έχει άπειρο f() εύρος Ο μέσος μπορεί να λάβει οποιαδήποτε πραγματική τιμή. Χαρακτηριστικά της Κανονικής Κατανομής Η διακύμανση καθορίζει το εύρος της καμπύλης: μεγάλες τιμές της αντιστοιχούν σε πιο απλωμένες κατανομές μικρότερου ύψους. Το εμβαδόν κάτω από την καμπύλη είναι (0.5 αριστερά της μέσης τιμής και 0.5 δεξιά). Οι πιθανότητες για την κανονικά f() κατανεμημένη τυχαία μεταβλητή δίνονται από εμβαδά κάτω από την καμπύλη. µ µ Συνάρτηση Πυκνότητας Πιθανότητας Σχήμα και θέση της κατανομής(καθορίζεται από τα μκαι σ) όπου: f ( ) = e σ π ( µ ) σ, για - + µ = μέση τιμή σ = τυπική απόκλιση π = e =.788 (βάση νεπέρειων λογαρίθμων) Όταν η τ.μ. Χ κατανέμεται σύμφωνα με την κανονική κατανομή μεπαραμέτρουςμκαισ γράφουμε συμπαγώς Χ ~ Ν(μ,σ ) Χ. Εμμανουηλίδης, cemman@econ.auth.gr 3
4 Αθροιστική κανονική κατανομή ή κανονική συνάρτηση κατανομής: ( u µ ) σ F( ) = P( ) = e du σ π Σχήμα της αθροιστικής κατανομής(καθορίζεται από τα μ και σ) Έχει τις γνωστές ιδιότητες κάθε συνάρτησης κατανομής: Σιγμοειδής καμπύλη με κάτω ασύμπτωτη στο F(- ) = 0 και άνω ασύμπτωτη στο F( ) = Για κάθε <, F( ) < F( ) και P( ) = P( ) P( ) = F( ) F( ) Η πιθανότητα είναι το εμβαδόν κάτω από την κανονική καμπύλη: f() P( ) = f ( ) d= F( ) F( ) Υπολογισμός πιθανότητας : Γίνεται με τη χρήση της αθροιστικής κανονικής κατανομής και πινάκων που την καταγράφουν. Για κάθε δυνατό ζεύγος (μ,σ ) έχουμε μια διαφορετική κανονική κατανομή που θα απαιτούσε τον δικό της πίνακα (δηλ. υπολογισμούς του ολοκληρώματος που δίνει τις τιμές της F() ) f() Υπολογισμός πιθανότητας : Η λύση είναι να τυποποιήσουμε την κανονική κατανομή, χρησιμοποιώντας την τυποποιημένη τυχαία μεταβλητή Ζ: Αν μ = σ ~ N( µ, σ ) ~ N( 0, ) Χ ΚανονικήΚατανομή f() ~N(μ,σ^), μ=00, σ= µ = σ Τυποποιημένη ή τυπική Κανονική Κατανομή f(z) ~N(0,) Ένας πίνακας αρκεί. Χ. Εμμανουηλίδης, cemman@econ.auth.gr 4
5 Υπολογισμός πιθανότητας : Όταν Χ ~ Ν(μ,σ ), τότε µ F( ) = F z= σ δηλαδή η τιμή της αθροιστικής συνάρτησης κατανομής της Χ για Χ= ισούται με την τιμή της αθροιστικής συνάρτησης κατανομής της Ζ για Ζ = z = (-μ)/σ. Η τιμή z που αντιστοιχεί στην τιμή ονομάζεται z-τιμή της Υπολογισμός πιθανότητας : Επειδή για κάθε συνεχή τ.μ. Χ ισχύει τότε P( ) = F ( ) F ( ) P( ) = P( z z) = F( z) F( z) όπου z = ( -μ)/σ και z = ( -μ)/σ Άρα, αν Χ ~ Ν(μ,σ ), ο υπολογισμός των πιθανοτήτων μπορεί να γίνει χρησιμοποιώντας τις αθροιστικές πιθανότητες της τυπικής κανονικής κατανομής. Παράδειγμα Τυποποίησης Παράδειγμα Τυποποίησης Κανονική Κατανομή σ= 0 µ= 5 µ 6. 5 z= = = 0. σ 0 6. µ= 0 σ= 0. Πίνακας Αθροιστικής Τυπικής Κανονικής Κατανομής µ= 0 Πιθανότητες σ= Η σκιασμένη περιοχή είναι σε μεγέθυνση Υπολογισμός πιθανότητας : Εξαιτίας της συμμετρίας της τυπικής κανονικής κατανομής, ισχύει για οποιαδήποτε τιμή z της Ζ η σχέση F( z) = P( z) = P( z) = P( z) = F( z) Παράδειγμα για z= Μερικές χρήσιμες πιθανότητες : Οι παρακάτω πιθανότητες για μια τ.μ. ~Ν(μ,σ ) χρησιμοποιούνται συχνά στη δειγματοληψία και στη στατιστική συμπερασματολογία. P ( µ σ <Χ< µ + σ ) = P ( µ. 645σ <Χ< µ σ ) = P ( µ. 96σ < Χ< µ +. 96σ ) = P ( µ. 58σ <Χ< µ +. 58σ ) = Χ. Εμμανουηλίδης, cemman@econ.auth.gr 5
6 Μερικές χρήσιμες πιθανότητες: Κανονική Κατανομή Παράδειγμα - P(3.8 5) µ µ 5 5 z = = = 0. z = = = 0 σ 0 σ 0 σ = 0 σ = µ = 5 -. Η σκιασμένη περιοχή είναι σε μεγέθυνση Παράδειγμα - P(3.8 5) P(3.8 5)=P( 5)- P( 3.8) Για =5, z = (5-5)/0 = 0, Για =3.8, z = (3.8-5)/0 = -0. P(3.8 5)= P( 0) - P( -0.) = 0.5 P( 0.) = 0.5 ( - P( 0.)) = P( 0.)) = = Παράδειγμα - P(.9 7.) z = = = 0. z = = = 0. σ 0 σ 0 Κανονική Κατανομή σ = 0 µ µ Η σκιασμένη περιοχή είναι σε μεγέθυνση σ = Παράδειγμα - P(.9 7.) P(.9 7.)=P( 7.)- P(.9) Για =.9, z = -0., Για =7., z = 0. P(.9 7.) = P( 0.) - P( - 0.) = P( 0.) P( 0.) = P( 0.) ( - P( 0.)) = P( 0.) = = Κανονική Κατανομή σ = 0 µ = 5 Παράδειγμα - P( 8) µ 8 5 z= = = 0.30 σ 0 8 Η σκιασμένη περιοχή είναι σε μεγέθυνση σ = Χ. Εμμανουηλίδης, cemman@econ.auth.gr 6
7 Παράδειγμα - P( 8) P( 8)= - P( 8) Για =8, z = 0.30, P( 8) = - P( 0.30) = = 0.38 Παράδειγμα* Εργάζεστε στον Έλεγχο Ποιότητας εταιρίας κατασκευής λαμπτήρων. Ο χρόνος ζωής τους ακολουθεί κανονική κατανομή με 00 ημέρες και σ = 00 ημέρες. Ποια είναι η πιθανότητα ένας λαμπτήρας να λειτουργήσει α) από000 έως400 ημέρες; β) λιγότερο από 470 ημέρες; Παράδειγμα* - P( ) µ µ z = = = 0.0 z = = =.0 σ 00 σ 00 Παράδειγμα* - P( ) P( )=P( 400)- P( 000) Κανονική Κατανομή σ = σ = Για = 000, z = 0.00, Για = 400, z =.00 P( ) = P( ) - P( 0) = = σ = Κανονική Κατανομή σ = Παράδειγμα* - P( 470) µ z= = =.65 σ σ = Παράδειγμα* - P( 470) P( 470) Για = 470, z = -.65, P( 470) = P( -.65) = P(.65) = - P(.65) = = σ = Χ. Εμμανουηλίδης, cemman@econ.auth.gr 7
8 Εύρεση τιμών της Ζ από Γνωστές Πιθανότητες Εύρεση τιμών της Ζ από Γνωστές Πιθανότητες Ποιο είναι τοz δεδομένου ότι F(z) = 0.67; Πίνακας Αθρ.Τυπικής Κανονικής Κατανομής Ποιο είναι τοz δεδομένου ότι F(z) = 0.67; Πίνακας Αθρ.Τυπικής Κανονικής Κατανομής 0.67 σ= σ= µ= 0 Η σκιασμένη περιοχή είναι σε μεγέθυνση z µ= Η σκιασμένη περιοχή είναι σε μεγέθυνση Εύρεση τιμών της Ζ από Γνωστές Πιθανότητες Aν η τιμή πιθανότητας δεν υπάρχει στον Πίνακα; F(z) = z 0.3 (από τον Πίνακα), Επειδή η τιμή 0.63 είναι κοντύτερα στην τιμή 0.67 (για z = 0.3) απ ότι στην (για z = 0.3) μπορούμε να θέσουμε προσεγγιστικά z 0.3 Εναλλακτικά: z 0.35 Ακριβέστερη είναι η μέθοδος της γραμμικής παρεμβολής Εύρεση τιμών της Χ από Γνωστές Πιθανότητες Ποιο είναι το δεδομένου ότι F() = 0.67; 0.67 µ= 5 Η σκιασμένη περιοχή είναι σε μεγέθυνση σ= µ= 0 σ= 0.3 Εύρεση τιμών της Χ από Γνωστές Πιθανότητες Ποιο είναι το δεδομένου ότι F() = 0.67; 0.67 σ= σ= Εύρεση τιμών της Χ από Γνωστές Πιθανότητες F()=P( ) = 0.67 F(z) = 0.67 z = 0.3 (από τον Πίνακα), z = (-μ)/σ = μ+σ z = 5 + (0.3)(0) = 8. µ= 5 µ= Η σκιασμένη περιοχή είναι σε μεγέθυνση ( 0 3)( 0) = µ + z σ = 5+. = 8. Χ. Εμμανουηλίδης, cemman@econ.auth.gr 8
9 Κεντρικό Οριακό Θεώρημα Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) Κ.Ο.Θ.: Αν οιχ,χ,,χ n είναι ανεξάρτητες και ισόνομες τυχαίες μεταβλητές με μέση τιμή μ και πεπερασμένη διακύμανση σ, και S n = i= είναι το άθροισμά τους και S = ο αριθμητικός τους μέσος, n τότε όσο αυξάνει ο αριθμός n των τ.μ. Χ ( nµ, n ) S ~ N σ i σ ~ N µ, n Κεντρικό Οριακό Θεώρημα Παρατηρείστε ότι η κατανομή του μέσου προσεγγίζει την κανονική κατανομή όσο το πλήθος n των ανεξάρτητων και ισόνομων μεταβλητών Χ αυξάνει, ανεξάρτητα από την κατανομή της Χ. Κεντρικό Οριακό Θεώρημα Σημασία του Κ.Ο.Θ. Ανεξάρτητα από την κατανομή των ανεξάρτητων και ισόνομων τ.μ.χ i, το άθροισμα και ο αριθμητικός τους μέσος ακολουθούν την κανονική κατανομή ασυμπτωτικά, δηλαδή όσο αυξάνει το πλήθος τους. Το ΚΟΘ εξηγεί: το ότι πολλές τυχαίες μεταβλητές ακολουθούν στην πράξη την κανονική κατανομή το ότι σημαντικές κατανομές μπορούν να προσεγγιστούν από την κανονική κατανομή την ευρύτατη χρήση της κανονικής κατανομής στη δειγματοληψία την ευρύτατη χρήση της κανονικής κατανομής στην στατιστική συμπερασματολογία. Κανονική Προσέγγιση της Δυωνυμικής Κατανομής Κανονική Προσέγγιση της Δυωνυμικής Κατανομής. Πώς υπολογίζουμε δυωνυμικές πιθανότητες όταν το μέγεθος δείγματος n είναι μεγάλο;. Όταν το n είναι μεγάλο η δυωνυμική κατανομή τείνει να γίνει συμμετρική ακόμη και για μικρά p, και προσεγγίζεται με την κανονική κατανομή. 3. Οι τιμές των πιθανοτήτων είναι προσεγγιστικές. 4. Απαιτείται Διόρθωση Συνέχειας P() Παράδειγμα συμμετρίας n= 0 p= Χ. Εμμανουηλίδης, cemman@econ.auth.gr 9
10 Η Πιθανότητα είναι Προσεγγιστική P() Δυωνυμική Πιθανότητα: Ύψος Παραλληλογράμμου = Εμβαδόν Παρ/μου Κανονική Πιθανότητα: Εμβαδόν κάτω από την καμπύλη από το 3.5 έως το 4.5 Η Πιθανότητα είναι Προσεγγιστική P() Δυωνυμική Πιθανότητα: Ύψος Παραλληλογράμμου = Εμβαδόν Παρ/μου Πιθανότητα που προστίθεται από την Κανονική Καμπύλη Πιθανότητα που χάνεται από την Κανονική Καμπύλη Κανονική Πιθανότητα: Εμβαδόν κάτω από την καμπύλη από το 3.5 έως το 4.5. Ρύθμιση / μονάδας στη Διακριτή Τιμή. Χρησιμοποιείται όταν προσεγγίζουμε μια Διακριτή Κατανομή με μια Συνεχή Κατανομή Διόρθωση Συνέχειας Περίπου ίσα εμβαδά 3. Εξασφαλίζει καλύτερη ακρίβεια (4-0.5) ( ) Κανονική Προσέγγιση Διαδικασία. Υπολογίστε την μικρότερη από τις δύο ποσότητες: np, n p ( ) Αν η τιμή της είναι μεγαλύτερη ή ίση του 5, η Κανονική Προσέγγιση μπορεί να χρησιμοποιηθεί. Αυτό πρακτικά σημαίνει ότι το διάστημα είναι μεταξύ 0 και n και η δυωνυμική κατανομή είναι περίπου συμμετρική Άρα, αν Χ~Β(n,p), τότε προσεγγιστικά ισχύει Χ~Ν( np,np(-p) ) ( ) µ ± 3σ = np± 3 np p Κανονική Προσέγγιση Διαδικασία Κανονική Προσέγγιση Παράδειγμα. Εκφράστε τη Δυωνυμική Πιθανότητα με Μορφή Αθροιστικών Πιθανοτήτων: P( ) ή P( ) P( ) Ποια είναι η Κανονική Προσέγγιση της P( = 4) όταν n = 0, και p = 0.5; P() 3. Για κάθε τιμή που μας ενδιαφέρει, = ή/και =, χρησιμοποιείστε:.3. ( + 0.5) np z=. np( p) Χ. Εμμανουηλίδης, cemman@econ.auth.gr 0
11 Κανονική Προσέγγιση Παράδειγμα. Υπολογίστε την ελάχιστη από τις np, n(-p) : Είναι μεγαλύτερη ή ίση του 5, άρα η Κανονική Προσέγγιση μπορεί να χρησιμοποιηθεί Το διάστημα ( ) np= n( p) = = 5 ( ) ( ) ( )( ) = 5± 3.35= (.64, 8.35) np± 3 np p = ± όντως βρίσκεται ανάμεσα στο 0 και το 0 Κανονική Προσέγγιση Παράδειγμα. Εκφράστε τη δυωνυμική πιθανότητα στη μορφή: P = 4 = P 4 P 3 ( ) ( ) ( ) 3. Υπολογίστε τις z τιμές της τυπικής κανονικής κατανομής: z ( + 0.5) np (3+ 0.5) 5 = = = z np( p) 5(0.5) ( + 0.5) np (4+ 0.5) 5 = = = np( p) 5(0.5) Κανονική Προσέγγιση Παράδειγμα 4. Σχεδιάστε την Προσεγγιστική Τυπική Κανονική Κατανομή : σ = -.3 Κανονική Προσέγγιση Παράδειγμα 5. Η Ακριβής Πιθανότητα από την Δυωνυμική Κατανομή είναι 0.05 (Προσεγγιστική = 0.034) P() Κανονική Προσέγγιση Παράδειγμα Για τα δεδομένα του παραδείγματός μας υπολογίστε τις πιθανότητες : P( 4) P( > 4) P( 4) P( < 4) P( 4) P( < 4) Τέλος Ενότητας Χ. Εμμανουηλίδης, cemman@econ.auth.gr
12 Τέλος Ενότητας Χ. Εμμανουηλίδης, 67 Χ. Εμμανουηλίδης,
Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.
Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές
Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ορισμός και Ιδιότητες
ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,
1 x-μ - 2 σ. e σ 2π. f(x) =
Κανονική κατανομή Η πιο σημαντική κατανομή πιθανοτήτων της στατιστικής είναι η κανονική κατανομή. Η κανονική κατανομή είναι συνεχής κατανομή, σε αντίθεση με την διωνυμική που είναι διακριτή κατανομή. Τα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή
Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Η Κανονική Κατανομή. Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 81
Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές
Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.
Η Κανονική Κατανομή 1. Η Κανονική Κατανομή Λέμε ότι τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους μ και σ 2, και συμβολίζουμε Χ ~ N (μ, σ 2 ) αν έχει συνάρτηση πυκνότητας πιθανότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13
ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ
Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών
Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής
Το Κεντρικό Οριακό Θεώρημα
Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που
ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ
ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 3Α: Η Κανονική Κατανομή Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b
Πιθανότητες και Αρχές Στατιστικής (8η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 41 Περιεχόμενα
Τυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ
ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr
Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες
Είδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)
Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,
Το Κεντρικό Οριακό Θεώρημα
Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής
X = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Στατιστική Επιχειρήσεων Ι. Βασικές συνεχείς κατανομές
Στατιστική Επιχειρήσεων Ι Βασικές συνεχείς κατανομές 2 Κανονική (Gaussian) κατανομή Η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής 1. Πολλές τ.μ. περιγράφονται ικανοποιητικά από την
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.
14/11/2016. Στατιστική Ι. 7 η Διάλεξη (Βασικές συνεχείς κατανομές)
Στατιστική Ι 7 η Διάλεξη (Βασικές συνεχείς κατανομές) 1 2 Κανονική (Gaussian) κατανομή Η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής 1. Πολλές τ.μ. περιγράφονται ικανοποιητικά από
2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών
Το Κεντρικό Οριακό Θεώρημα
Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής
27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και
Βιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 013 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)
ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ.
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό 2016 2017 Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ. Πέτρος Πιστοφίδης Εισαγωγή
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:
Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες
Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )
Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Μέρος ΙΙ. Τυχαίες Μεταβλητές
Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Δειγματικές Κατανομές
Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)
ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος
Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα
Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης
Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών
Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις
Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9
ΚΕΦΑΛΑΙΟ 9 Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η κανονική κατανομή ανακαλύφθηκε γύρω στο 720 από τον Abraham De Moivre στην προσπάθειά του να διαμορφώσει Μαθηματικά που να εξηγούν την τυχαιότητα. Γύρω στο 870, ο Βέλγος
Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής
Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.
ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ
Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές
Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ
Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ Αριθµητικός Μέσος: όπου : αριθµός παρατηρήσεων ιάµεσος: εάν άρτιος εάν περιττός M + + M + Παράδειγµα: ηλ.: Εάν :,,, M + + 5 + +, 5 Εάν :,, M + Επικρατούσα Τιµή:
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
Εισαγωγή στη Στατιστική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική ΜΕΡΟΣ ΙΙ-ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΑΠΟΚΛΙΣΗ ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ ΡΟΠΕΣ ΑΣΥΜΜΕΤΡΙΑ-ΚΥΡΤΩΣΗ II.1
Συνεχείς Τυχαίες Μεταβλητές
Συνεχείς Τυχαίες Μεταβλητές Η σ.κ.π. F() είναι παντού συνεχής F PX t dt H σ.π.π. df d Ισχύει ότι d F Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ0 () Πιθανότητες & Στατιστική
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων
Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές έννοιες της στατιστικής ανάλυσης των μετρήσεων που υπόκεινται σε τυχαία σφάλματα. Παρουσιάζεται μέσω
P(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
Τάση συγκέντρωσης. Μέτρα Κεντρικής Τάσης και Θέσης. Μέτρα Διασποράς. Τάση διασποράς. Σχήμα της κατανομής
Τάση συγκέντρωσης Μέτρα Κεντρικής Τάσης και Θέσης Τάση διασποράς Μέτρα Διασποράς Σχήμα Σχήμα της κατανομής Αριθμητικός Μέσος Γεωμετρικός Μέσος Μέτρα Κεντρικής Τάσης Αρμονικός Μέσος Διάμεσος ή Κεντρική