Θεωρία της Πληροφορίας 3 ο Εξάμηνο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρία της Πληροφορίας 3 ο Εξάμηνο"

Transcript

1 Τμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1

2 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Κάθε πότε? Βλέπε πρόγραμμα εξαμήνου. Πού? ΑΜΦ Τμήματος Πληροφορικής & Επικοινωνιών. Πώς? 13 Διαλέξεις (περιλαμβάνουν και τις Ασκήσεις Πράξης Εξέταση Στο τέλος του εξαμήνου. Γραπτή. Κλειστές σημειώσεις (δίνεται τυπολόγιο. Επικοινωνία και ενημέρωση ιστοσελίδα ( (αποστολές μηνυμάτων που είναι ανώνυμα δεν θα απαντώνται Ώρες γραφείου: βλέπε ιστοσελίδα. 2

3 Βιβλιογραφία Μαθήματος Βασική βιβλιογραφία μαθήματος Εγχειρίδιο Δρ. Ι. Ρέκανου «Θεωρία της Πληροφορίας», Οκτώβριος 2003 (βρίσκεται στη σελίδα του μαθήματος και στο εκπαιδευτικό υλικό. Ότι ειπωθεί κατά την διάρκεια των διαλέξεων (παραδείγματα, ασκήσεις κλπ. Οι διαφάνειες του μαθήματος (μόνο ως βοήθημα. Συμπληρωματική βιβλιογραφία «Εισαγωγή στη θεωρία της πληροφορίας», Αφράτη Φώτω. «Θεωρία πληροφοριών Κώδικες», Βούκαλης Δημήτρης. 3

4 Εισαγωγή 20 ος Αιώνας Αιώνας Πληροφορικής και Επικοινωνιών. Ανάπτυξη μέσων καταγραφής αποθήκευσης επεξεργασίας μετάδοσης (επικοινωνία της πληροφορίας. Έναυσμα για την εξέλιξη τεχνολογικών επιτευγμάτων Τηλέφωνο Τηλεόραση Ραδιόφωνο Δίκτυα Υπολογιστών 4

5 Εισαγωγή Τί είναι όμως η Πληροφορία Γνώση Ενημέρωση Συμβουλή Δεδομένα Παράδειγμα Χρηματιστή-Επενδυτή Ο επενδυτής χρειάζεται πληροφορίες από τον χρηματιστή (Συμβουλή. Ο χρηματιστής τις δίνει βασιζόμενος σε πληροφορίες που κατέχει (Γνώση. Ο χρηματιστής πληροφορεί τον επενδυτή για τις μετοχές μιας εταιρίας (Ενημέρωση. Ο επενδυτής αξιολογεί τις πληροφορίες για να πουλήσει/αγοράσει (Δεδομένα. Η πληροφορία είναι Μέτρο της Αβεβαιότητας (ή της βεβαιότητας Ο επενδυτής μειώνει την αβεβαιότητα του συμβουλευόμενος τον επενδυτή. Ο χρηματιστής γνωρίζει τα χρηματηστιριακά θέματα με βεβαιότητα. 5

6 Εισαγωγή Στις αρχές με μέσα του 20 ου αιώνα, η πληροφορία είναι: Έννοια αφηρημένη και ποιοτική (τι αξίζει να πληροφορηθώ? Άρα, δεν μπορώ να βγάλω νόμους που να περιγράφουν με αυστηρότητα την πληροφορία και επικοινωνία (δύσκολος σχεδιασμός υπολογιστικών και επικοινωνιακών συστημάτων. Ενδιαφέρον για ποσοτικοποίηση της πληροφορίας 1948 Πόση πληροφορία περιέχεται σε ένα γεγονός. Shannon, A Mathematical Theory of Communication Θεμελίωσε έννοιες/θεωρήματα για την μαθηματική περιγραφή της επικοινωνίας. Ακριβής ανάλυση με μαθηματική αυστηρότητα της μετάδοσης πληροφοριών. Μπορώ να σχεδιάσω καλύτερα επικοινωνιακά συστήματα (ξέρω πόση πληροφορία χρειάζεται να μεταδωθεί για ένα γεγονός!. 6

7 Εισαγωγή Η ΘτΠ βασίζεται πιθανοθεωρία στατιστική άλγεβρα Απαντά σε ερωτήματα που αφορούν: περιγραφή διαύλου επικοινωνίας επικοινωνία σε περιβάλλοντα θορύβου συμπίεση δεδομένων κρυπτογράφηση Αρχικά: η ΘτΠ αποτέλεσε τμήμα της επιστήμης επικοινωνιών Σήμερα: χωριστός κλάδος των μαθηματικών. 7

8 Βασικές Έννοιες Στη ΘτΠ κεντρικό ρόλο έχει η έννοια της πληροφορίας. Έχει ποσοτικό χαρακτήρα ( εννοιολογικού περιεχομένου. Η πληροφορία ενός γεγονότος σχετίζεται με την πιθανότητα πραγματοποίησης του γεγονότος και μόνον αυτή. Δηλαδή: ( f ( p Στην πράξη μικρότερη p A, περισσότερη Ι(Α. Συμφωνεί με κοινή αντίληψη? Μερικές φορές ναι, μερικές όχι! Παράδειγμα σε συμφωνία με την κοινή αντίληψη: Γεγονός Α: «Σήμερα έγινε ολική έκλειψη ηλίου». Γεγονός Β: «Σήμερα ο ήλιος ανέτειλε». σε ασυμφωνία με την κοινή αντίληψη: Γεγονός Α: «Στην εκλογική αναμέτρηση μεταξύ των κομμάτων Χ και Υ, κέρδισε το Χ». Γεγονός Β: «Έριξα τα ζάρια και έτυχα 6-5». Ι(Β>Ι(Α Ι(Α>Ι(Β 8

9 Μέτρο της Πληροφορίας Αν Α είναι ένα τυχαίο γεγονός, και p A είναι η πιθανότητα να συμβεί το γεγονός αυτό τότε, το μέτρο της πληροφορίας του Α, Ι(Α θα πρέπει να έχει τις παρακάτω ιδιότητες: 1. Το Ι(Α θα πρέπει να είναι συνάρτηση της p A. ( f ( p 2. To I(A θα πρέπει να είναι πραγματική θετική συνάρτηση. 3. Η συνάρτηση Ι(Α θα πρέπει να είναι γνησίως φθίνουσα: p A, pb : pa pb 4. Αν Α και Β είναι δύο ανεξάρτητα γεγονότα (δηλαδή p(a B=p A p B τότε το μέτρο της πληροφορίας εμφάνισης και των δύο γεγονότων θα πρέπει να είναι το άθροισμα των δύο επιμέρους μέτρων πληροφορίας: ( Αποδεικνύεται ότι η Πληροφορία (μέτρο της πληροφορίας δίνεται από τη σχέση: ( Από εδώ και πέρα Κ=2, και μονάδα μέτρησης της πληροφορίας είναι το bit. ( ( log K p A ( ( 9

10 Μέτρο της Πληροφορίας Γραφική παράσταση της συνάρτησης της πληροφορίας 10

11 Μέτρο της Πληροφορίας Εφαρμογή: Έστω ότι έχουμε τα παρακάτω σύνολα γεγονότων: Να βρεθούν τα μέτρα της πληροφορίας όλων των γεγονότων. Παρατηρήσεις: Στην Ι περίπτωση είναι εύκολο να μαντέψουμε ποιό γεγονός θα συμβεί. Στην ΙΙΙ περίπτωση αυτή η πρόβλεψη είναι δυσκολότερη. Στην ΙΙ περίπτωση είναι πολύ δύσκολο να προβλέψουμε το γεγονός που θα συμβεί. Σχόλιο:... [ [ [ 1 1 1,,, ] ] ] P P P [, [, ] [, ] Μήπως υπάρχει ένα μέτρο για να περιγράψει αυτή την αβεβαιότητα μας για το σύνολο των γεγονότων και όχι για το καθένα ξεχωριστά; ] Απ.: Ι(Α 1 =8 bit, Ι(Α 2 = bit Απ.: Ι(B 1 =1 bit, Ι(B 2 =1 bit Απ.: Ι(Γ 1 =1.19 bit, Ι(B 2 =0.830 bit 11

12 Εντροπία Η μέση αβεβαιότητα μας για το ποιό γεγονός θα συμβεί μέσα από ένα σύνολο γεγονότων ονομάζεται εντροπία και είναι ο σταθμισμένος μέσος όρος των μέτρων της πληροφορίας όλων των γεγονότων: Ονομάζεται και μέση πληροφορία. Εδώ η μονάδες μέτρησης της εντροπίας είναι το bit. Εφαρμογή: Έστω ότι έχουμε τα παρακάτω σύνολα γεγονότων:... Να βρεθεί η μέση πληροφορία που περιλαμβάνεται σε κάθε σύνολο. [ [ [ 1 1 1,,, ] ] ] i N 1 P P P p i log p i [, [, ] [, ] ] Απ.: Η(Ε= bit Απ.: Η(Ε=1 bit Απ.: Η(Ε=0.987 bit 12

13 Εφαρμογές Εφαρμογή Ι Ποιά είναι η πληροφορία που περιέχει το γεγονότος: «έριξα τα ζάρια και έτυχα έξη-πέντε»? Εφαρμογή ΙΙ Απ.: I=4.17 bits Πόση πληροφορία περιέχεται στον αριθμό κυκλοφορίας αυτοκινήτου μορφής ΓΓΓαααα, όπου Γ είναι κεφαλαίο γράμμα και α αριθμός. (Βοήθεια: για ελληνικές πινακίδες χρησιμοποιούνται 14 διεθνή γράμματα και ο τετραψήφιος αριθμός μπορεί να πάρει 9000 διαφορετικές τιμές Εφαρμογή ΙΙΙ Να βρεθεί η εντροπία ενός ζαριού. Εφαρμογή IV Απ.: Ι=24.56 bits Απ.: Η=2.58 bits Γνωρίζουμε από την ιστορία ότι ο τελευταίος αρχηγός της φυλής των Λιλιπούα είχε δύο παιδιά. Νεότερες έρευνες κατέληξαν σε δύο συμπεράσματα: Α. Ο αρχηγός είχε μια κόρη και έναν γιο. Β. Ο αρχηγός είχε μια κόρη και ένα μεγαλύτερο γιο. Πόση πληροφορία θα λάβουμε με την ανακοίνωση μόνο του πρώτου συμπεράσματος και πόση μόνο με την ανακοίνωση του δεύτερου; Πόση θα είναι η πληροφορία εάν ανκοινωθούν και τα δύο μαζί; 13

14 Γενικό Επικοινωνιακό Διάγραμμα Σύμφωνα με την ΘτΠ (Shannon γενικό σύστημα επικοινωνίας Noise Source Coder Channel Decoder Destination Πηγή: οποιοδήποτε άτομο ή μηχανή που παράγει πληροφορία. Κωδικοποιητής: μετατρέπει κάθε πληροφορία της πηγής σε μορφή κατάλληλη για μετάδοση. Κανάλι επικοινωνίας: το μέσο μέσω του οποίου μεταδίδεται η πληροφορία. Αποκωδικοποιητής: προσπαθεί να εξάγει την αρχική πληροφορία από την κωδικοποιημένη μορφή της. Προορισμός: οποιοδήποτε άτομο ή μηχανή που είναι ο αποδέκτης της πληροφορίας. 14

15 Ορισμοί 1 ος Ορισμός Πληροφορία είναι μία συλλογή δεδομένων, τα οποία καταγράφονται με τη χρήση συμβόλων. 2 ος Ορισμός Πηγή πληροφορίας είναι κάθε σύστημα που παράγει στην έξοδο του πληροφορία. 3 ος Ορισμός Επικοινωνία είναι κάθε διαδικασία μεταφοράς της πληροφορίας μεταξύ δύο σημείων του χωροχρόνου. 4 ος Ορισμός Αλφάβητο της Πηγής είναι το σύνολο των διακεκριμένων (διαφορετικών συμβόλων, x 1, x 2,, x N που χρησιμοποιούνται για την αναπαράσταση της πληροφορίας που παράγεται από μία πηγή. Το αλφάβητο της πηγής συμβολίζεται ως: Χ={x 1, x 2,, x N }. Το πλήθος Ν των συμβόλων δύναται να είναι πεπερασμένο ή άπειρο. 5 ος Ορισμός Ως λέξη ορίζουμε μια διατεταγμένη ακολουθία συμβόλων. 6 ος Ορισμός Ως μήνυμα ορίζουμε μια διατεταγμένη ακολουθία λέξεων. 15

16 Πηγή Πληροφορίας Η πηγή παράγει στην έξοδο της πληροφορία η οποία έχει την μορφή συμβόλων. Τα σύμβολα προέρχονται από ένα σύνολο συμβόλων Χ={x 1, x 2,, x N } (αλφάβητο. Το κάθε σύμβολο έχει μια πιθανότητα εμφάνισης στην έξοδο της πηγής. Συνολικά η πηγή έχει μια κατανομή πιθανοτήτων του συνόλου των συμβόλων που διαθέτει P Χ ={p x1, p x2,, p xn }. Η πηγή συμβολίζεται από την δυάδα που σχηματίζουν το αλφάβητο της και η κατανομή πιθανοτήτων των συμβόλων: (Χ,P X Ισχύουν: i N 1 I( x p i i 1 log p x i Πληροφορία συμβόλου 16

17 Εντροπία Πηγής Πληροφορίας Η εντροπία πηγής είναι ένα μέγεθος που σχετίζεται με την πηγή συνολικά. Εκφράζει την μέση αβεβαιότητα που έχουμε για το ποιό σύμβολο θα εμφανιστεί στην έξοδο της πηγής. X i N 1 p x i log Εντροπία πηγής Μετράται σε bits/symbol. Όταν αναφερόμαστε σε πηγή πληροφορίας οι μονάδες εντροπίας θα είναι bits/symbol. Ιδιότητες της εντροπίας: Είναι μη αρνητική: X 0 p x i Είναι συνεχής συνάρτηση των πιθανοτήτων p 1, p 2,, p N. Δηλαδή, μια μικρή μεταβολή στις πιθανότητες προκαλεί μικρή μόνο μεταβολή στην τιμή της εντροπίας. 17

18 Εφαρμογές Εφαρμογή Ι Θεωρούμε πηγή με αλφάβητο Χ={0,1}. Και p 1 =0.7. Να βρεθεί η πληροφορία του κάθε συμβόλου της πηγής. Επίσης, να βρεθεί η εντροπία της πηγής. Απ.: Ι(1=0.515 bits, Ι(0=1.737 bits, Η(Χ= bits/symbol Εφαρμογή ΙΙ Μία πηγή έχει αλφάβητο Χ={Ο,Ε,Β,Δ} και κατανομή πιθανοτήτων P X ={1/2, 1/4, 1/8, 1/8}. Εάν το κάθε σύμβολο του αλφαβήτου είναι ανεξάρτητο, ποιά η πληροφορία της λέξης ΟΕΟ. Ποιά η εντροπία της πηγής; Απ.: Ι(OEO=4 bits, Η(Χ=1.75 bits/symbol 18

19 Εντροπία Πηγής Πληροφορίας Μερικές βασικές ιδιότητες της εντροπία πηγής: Μέγιστη εντροπία Η εντροπία μιας πηγής (Χ,P X διακριτών συμβόλων είναι μέγιστη όταν τα σύμβολα της πηγής είναι ισοπίθανα: 1 p1 p2... pn N Η αβεβαιότητα μας (εντροπία για την έξοδο της πηγής είναι μέγιστη όταν η πιθανότητες εμφάνισης των συμβόλων της πηγής είναι ίσες. Σχετική εντροπία Αν P X ={p 1,p 2,,p N } και Q X ={q 1,q 2,,q N } είναι δύο εναλλακτικές κατανομές πιθανοτήτων των συμβόλων Χ={x 1,x 2,,x N } μιας πηγής τότε: N pi X, PX / QX pi log i 1 qi Είναι η απόσταση Kullback-Leibler των κατανομών P X και Q X για το αλφάβητο Χ. 19

20 Ερμηνεία της Σχετικής Εντροπίας Σημασία της σχετικής εντροπίας: Εκφράζει την απόκλιση της κατανομής P X από την Q X. Πόση δηλαδή επιπλέον πληροφορία ανά σύμβολο θα παραχθεί από την πηγή εάν θεωρήσουμε ως κατανομή πιθανοτήτων των συμβόλων της πηγής την Q X, ενώ στην πραγματικότητα είναι η P X. Η απόσταση Kullback-Leibler «αποκαλύπτει» το ποσό της αναποδοτικότητας που θα υπάρξει εάν ο σχεδιασμός ενός επικοινωνιακού συστήματος βασιστεί στην λανθασμένη κατανομή. Η σχετική εντροπία είναι πάντα μεγαλύτερη ή ίση του μηδενός: H ( X, P X H ( X, P X / Q / Q X X Η σχετική εντροπία δεν είναι συμμετρική ως προς τις δύο κατανομές: X, PX / QX X, QX / PX 0 0 P P X X Q Q X X 20

21 Εφαρμογές Εφαρμογή Ι: Να υπολογιστεί η εντροπία ενός νομίσματος, όταν: α αυτό είναι τίμιο. Απ.: Η=1 bit β η ένδειξη «κεφαλή» έχει δύο φορές μεγαλύτερη πιθανότητα να εμφανιστεί από την ένδειξη «γράμματα». Απ.: Η=0.918 bits Εφαρμογή ΙΙ: Θεωρούμε την πηγή Χ={0, 1} με δύο ενναλακτικές κατανομές πιθανοτήτων, P X ={0.3,0.7} και Q X ={0.6,0.4}. Να υπολογιστούν οι αποστάσεις Kullback-Leibler, Η(Χ, P X /Q X } και Η(Χ, Q X /P X }. Απ.: Η(X,P X /Q X = bits/symbol, Η(X,Q X /P X =0.277 bits/symbol Εφαρμογή ΙΙΙ: Να υπολογιστούν οι αποστάσεις Kullback-Leibler μεταξύ των εναλλακτικών κατανομών πιθανοτήτων P={0.2,0.3,0.5} και Q={0.4,0.5,0.1}. Ισχύει η αντιμεταθετική ιδιότητα; Απ.: Η(X,P X /Q X =0.741 bits/symbol, Η(X,Q X /P X =0.536 bits/symbol, Όχι δεν ισχύει 21

22 Εντροπία Δυαδικής Πηγής Εντροπία Δυαδικής Πηγής δίνεται από την Συνάρτηση Shannon: Η b (p p log p (1 plog(1 p 22

23 Θεωρούμε την σύνθετη πηγή (ΧΥ,P XY : Συνδετική Εντροπία (ΧΥ, P XY Αλφάβητο της νέας πηγής: XY {( x, y1,( x2, y1,...,( xn, y1,( x1, y2,( x2, y2,...,( xn, y2,...,( x1, ym,( x2, y,...,( x 1 M N M Εντροπία της σύνθετης πηγής: Ισχύει: N XY p( xi y j log p( xi, y i M 1 j 1, j XY X Y εάν οι πηγές είναι ανεξάρτητες XY X Y αλλιώς, y 23 }

24 Υπό Συνθήκη Εντροπία Σύνθετης Πηγής 24 Θεωρούμε την σύνθετη πηγή (ΧΥ,P XY : Θεωρούμε ότι γνωρίζουμε εκ των προτέρων την έξοδο της πηγής (Υ,P Y. Δηλαδή ισχύει: Η υπό συνθήκη εντροπία της σύνθετης πηγής (ΧΥ,P XY γνωρίζοντας την έξοδο της απλής πηγής (Υ,P Y δίνεται: Αντίστοιχα θα ισχύει: ( log ( ( 1 1, j i N i M j j i y x p y x p Y X H (, ( ( j j i j i y p y x p y x p ( log ( ( 1 1, i j N i M j j i x y p y x p X Y H (ΧΥ, P XY

25 Υπό Συνθήκη Εντροπία Σύνθετης Πηγής Σχέση υπο συνθήκη εντροπίας με την συνδετική εντροπία και τις εντροπίες πηγών: Η παραπάνω σχέση ερμηνεύεται και διαισθητικά: Η υπό συθνήκη εντροπία Η(Χ Υ γνωρίζοντας την έξοδο μιας απλής πηγής Η(Υ θα προκύπτει εάν από την συνδετική εντροπία της πηγής Η(ΧΥ αφαιρέσουμε την εντροπία της γνωστής πηγής Η(Υ. Προφανώς θα ισχύει: X Y XY Y Y X XY X 25

26 Διαπληροφορία Εκτελούμε το ακόλουθο πείραμα: 1. Διαθέτουμε 2 νομίσματα. Το ένα «τίμιο» και το άλλο «κάλπικο». Το «κάλπικο» διαθέτει δύο Κεφαλές. 2. Επιλέγουμε ένα από τα δύο νομίσματα τυχαία και το ρίχνουμε δύο φορές. 3. Καταγράφουμε τον αριθμό των κεφαλών που προκύπτουν. Κατόπιν κάνουμε την ερώτηση: «Πόση πληροφορία πήραμε για την ταυτότητα του νομίσματος (τίμιο ή κάλπικο μετρώντας πόσες Κεφαλές είδαμε στο τέλος του πειράματος;» Παρατηρήσεις Σίγουρα ο αριθμός των κεφαλών μπορεί να μας δώσει μια ιδέα για το ποιο νόμισμα επιλέχθηκε: Αριθμός Κεφαλών<2, σίγουρα το νόμισμα που επιλέχθηκε ήταν το τίμιο νόμισμα. Αριθμός Κεφαλών=2, τότε ενδεχομένως να επιλέχθηκε το κάλπικο νόμισμα. 26

27 Διαπληροφορία Έστω: Τυχαία μεταβλητή Χ=«επιλογή του νομίσματος» (0 για το τίμιο και 1 για το κάλπικο. Τυχαία μεταβλητή Υ=«ο αριθμός των κεφαλών» (0 για καμία 1 για μία και 2 για δύο. Γραφική αναπαράσταση του πειράματος: Χ 0 (Τίμιο 1 (Κάλπικο 1/4 2/4 1/4 1 Υ 0 (Καμία Κεφαλή 1 (Μία Κεφαλή 2 (Δύο Κεφαλές Δειγματοχώρος «Τίμιου» Ζαριού 1. ΚΓ 2. ΓΚ 3. ΚΚ 4. ΓΓ Δειγματοχώρος «Κάλπικου» Ζαριού 1. ΚΚ 27

28 Διαπληροφορία Θεωρούμε τον δίαυλο πληροφορίας που στην είσοδο και στην έξοδο του λειτουργούν δυο πηγές πληροφορίας (Χ,P X και (Y,P Y. Θεωρούμε παρατηρητή στην έξοδο (δηλαδή στην πηγή (Y,P Y. Κάποια στιγμή ο παρατηρητής βλέπει στην πηγή (Y,P Y το σύμβολο y j. Ερώτημα: «Βλέποντας το σύμβολο y j, πόση πληροφορία αποκόμισε ο παρατηρητής για το ποιό σύμβολο x i εκπέμθηκε αρχικά από την πηγή στην είσοδο του διαύλου;» Άρχικά (πριν την εμφάνιση του συμβόλου y j στην έξοδο του διαύλου η αβεβαιότητα του παρατηρητή για το ποιό σύμβολο θα εμφανιστεί στην είσοδο του διαύλου είναι X. Με την εμφάνιση του συμβόλου y j η αβεβαιότητα του μειώθηκε κατά X Y. 28

29 Διαπληροφορία Άρα: Η πληροφορία που αποκόμισα για την πηγή Χ γνωρίζοντας το αποτέλεσμα της πηγής Υ θα είναι: I( X Y X X Y Η Ι(Χ Υ ονομάζεται διαπληροφορία και προσδιορίζει: «πόσο μειώθηκε η αβεβαιότητα του παρατηρητή για την έξοδο της πηγής Χ γνωρίζοντας την έξοδο της πηγής Υ». Πρακτικά εκφράζει το ποσό της πληροφορίας που μεταφέρθηκε από την είσοδο του διαύλου στην έξοδο του (σε bits/symbol. Ιδιότητες H Ι(Χ Υ είναι συμμετρική συνάρτηση. Δηλαδή ισχύει: H Ι(Χ Υ είναι μη αρνητική: I( X Y I( Y X Y Y X I( X Y Πότε η διαπληροφορία είναι ίση με μηδέν; 0 29

30 Εφαρμογές Εφαρμογή Ι: Να δείξετε ότι για τις πηγές Χ (στην είσοδο ενός διαύλου και Υ (στην έξοδο του διαύλου ισχύει: Εφαρμογή ΙΙ: Να δείξετε ότι για τις πηγές Χ (στην είσοδο ενός διαύλου και Υ (στην έξοδο του διαύλου ισχύει: Εφαρμογή ΙΙ: Θεωρούμε δυο δυαδικές πηγές πληροφορίας με αλφάβητα Χ={x 1,x 2 } και Υ={y 1,y 2 }, αντίστοιχα. Γνωρίζουμε ότι ισχύουν οι εξής πιθανότητες: p(x 1 =0.2, p(y 1 =0.3 και p(x 1,y 2 =0.15. Να βρεθούν: Y X X Y Y X I( X Y X XY Y 1. Οι εντροπίες των πηγών. 2. Η συνδετική εντροπία της σύνθετης πηγής. 3. Οι υπό συνθήκη εντροπίες. 4. Η διαπληροφορία μεταξύ των πηγών Χ και Υ. Απ.: Η(Χ=0.722bits/symbol, Y=0.881bits/symbol Απ.: Η(ΧY=1.601bits/symbol Απ.: Η(Χ Y=0.720bits/symbol, Y X=0.879bits/symbol Απ.: I(Χ Y=0.002bits/symbol 30

31 Ασκήσεις Επανάληψης Εφαρμογή Ι (Εξεταστική 2009: Έστω δύο δυαδικές πηγές Α και Β. Υποθέτουμε ότι 0<p A (0<p Β (0<0.5. Ποιά δυαδική πηγή έχει την μεγαλύτερη εντροπία; Απ.: η Β. Εφαρμογή ΙΙ (Εξεταστική 2009: Έστω μια τριαδική πηγή Α={0,1,2}. Υπολογίστε τις πιθανότητες p(0, p(1 και p(2, έτσι ώστε να μεγιστοποιείται η εντροπία της πηγής Α. Εφαρμογή ΙΙΙ (Εξεταστική 2007: Θεωρούμε δυο δυαδικές πηγές πληροφορίας Χ={x 1,x 2 } και Υ={y 1,y 2 } για τις οποίες ισχύουν p(x 2 =0.2, p(y 1 =0.3 και p(y 2 x 2 =0.3. Να βρεθούν: 1. Οι εντροπίες X και Η(Υ. Απ.: Η(Χ=0.721bits/symbol, Y=0.881bits/symbol 2. Η συνδετική εντροπία Η(ΧΥ. Απ.: Η(ΧY=1.475bits/symbol 3. Η διαπληροφορία Ι(Χ;Υ των πηγών. Εφαρμογή ΙV Απ.: p(0=p(1=p(2=1/3 Απ.: I(Χ Y=0.127bits/symbol Ρίχνουμε ένα «τίμιο» ζάρι μια φορά. Εάν το αποτέλεσμα είναι 1, 2, 3, ή 4, τότε ρίχνουμε ένα «τίμιο» νόμισμα μια φορά. Εάν η ένδειξη του ζαριού είναι 5 ή 6, τότε ρίχνουμε το νόμισμα δύο φορές. Να βρεθεί η πληροφορία που αποκομίσαμε για την ένδειξη του ζαριού από την καταμέτρηση των «Κεφαλών» μετά την ρίψη/εις του νομίσματος. Απ.: X~0.918 bits, Y~1.324 bits, XY~2.083 bits I(Χ Y~0.16bits 31

Θεωρία της Πληροφορίας 3 ο Εξάμηνο

Θεωρία της Πληροφορίας 3 ο Εξάμηνο Σμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Πώς? 13 Διαλέξεις.

Διαβάστε περισσότερα

Θεωρία της Πληροφορίας (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Θεωρία της Πληροφορίας (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ Θεωρία της Πληροφορίας (Θ) Ενότητα 1: Θεωρία της Πληροφορίας ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειες Χρήσης Σο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:

Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από: Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία πληροφορίας

Εισαγωγή στη θεωρία πληροφορίας Θεωρία πληροφορίας Εισαγωγή στη θεωρία πληροφορίας Τηλεπικοινωνιακά συστήματα Όλα τα τηλεπικοινωνιακά συστήματα σχεδιάζονται για να μεταφέρουν πληροφορία Σε κάθε τηλεπικοινωνιακό σύστημα υπάρχει μια πηγή

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά

Διαβάστε περισσότερα

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1 Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 1 η : Βασικές Έννοιες Πιθανότητας Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ. Άδειες

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

Κεφάλαιο 2 Πληροφορία και εντροπία

Κεφάλαιο 2 Πληροφορία και εντροπία Κεφάλαιο 2 Πληροφορία και εντροπία Άσκηση. Έστω αλφάβητο Α={0,} και δύο πηγές p και q. Έστω οτι p(0)=-r, p()=r, q(0)=-s και q()=s. Να υπολογιστούν οι σχετικές εντροπίες Η(Α,p/q) και Η(Α,q/p). Να γίνει

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ TOMEAΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΙΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 26 Σεπτεμβρίου 2014 Ομάδα Θεμάτων Α ΘΕΜΑ 1 Ρίχνουμε ένα αμερόληπτο νόμισμα (δύο δυνατά

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Πιθανότητες. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Πιθανότητες. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Πιθανότητες Δρ. Αγγελίδης Π. Βασίλειος 2 Τυχαίες Μεταβλητές Μία τυχαία μεταβλητή (random variable) είναι μία συνάρτηση ή ένας κανόνας ο οποίος αναθέτει έναν αριθμό

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Μέρος ΙΙ. Τυχαίες Μεταβλητές

Μέρος ΙΙ. Τυχαίες Μεταβλητές Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣΟΡ Κεφάλαιο 1 : Εισαγωγή στη Θεωρία ωία Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Έννοια της πληροφορίας Άλλες βασικές έννοιες Στόχος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5 5ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εισαγωγή στις Διακριτές Πιθανότητες ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage:

Διαβάστε περισσότερα

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f 1 ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ Ι. Το πεδίο ορισμού της f είναι:, 1 υ -1, B. 1, Γ. -1,., 1. 1, f 1 ΙΙ. Το όριο lm είναι ίσο με: 0 Α. 0 Β. 1 Γ. -1 Δ. 1/ Ε. Τίποτε

Διαβάστε περισσότερα

Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος

Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 30 Περιεχόμενα

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

Μέσα, Πολυµέσα & µέτρηση Πληροφορίας

Μέσα, Πολυµέσα & µέτρηση Πληροφορίας ΒΕΣ 04 Συµπίεση και Μετάδοση Πολυµέσων Μέσα, Πολυµέσα & µέτρηση Πληροφορίας Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π..407/80 Τµήµα Επιστήµης & Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Επικοινωνία:

Διαβάστε περισσότερα

Ορισμός της Πιθανότητας (Ι)

Ορισμός της Πιθανότητας (Ι) Ορισμός της Πιθανότητας (Ι) Κλασσικός Ορισμός Πιθανότητα ενδεχομένου Α ( ) N( ) N ( ) Ν(Α): πλήθος ευνοϊκών αποτελεσμάτων του ενδεχ. Α Ν(Ω): πλήθος συνολικών αποτελεσμάτων του δ.χ. Ω Περιορισμοί: - μόνο

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ Πιθανότητες και Αρχές Στατιστικής (3η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 38 Περιεχόμενα

Διαβάστε περισσότερα

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 ) Μέρος IV Πολυδιάστατες τυχαίες μεταβλητές Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων Δ5 ( ) Πολυδιάστατες μεταβλητές Πολλά ποσοτικά χαρακτηριστικά που σχετίζονται με

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/08051

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/08051 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/0805 ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 3: Πιθανότητες Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ

Περιεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ 3ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 3ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος.

Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος. Εναλλακτικά η τιμή της τυχαίας μεταβλητής είναι ένα αριθμητικό γεγονός.

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Διακριτές πηγές πληροφορίας με μνήμη Μαρκοβιανές αλυσίδες Τάξη μακροβιανών αλυσίδων

Διαβάστε περισσότερα

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας

Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική. Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας Εισαγωγή στο μάθημα Πιθανότητες - Στατιστική Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας 1 Πειραματικά Μοντέλα Μοντέλα:» Καθοριστικά» (π.χ. ο νόμος του Ohm)» Στοχαστικά ή πιθανοτικά» (π.χ. ένταση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Πιθανότητες Πραγματικοί αριθμοί Εξισώσεις Ανισώσεις Πρόοδοι Βασικές έννοιες των συναρτήσεων Μελέτη βασικών συναρτήσεων ΑΛΓΕΒΡΑ Α

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής. Εντροπία Shannon

Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής. Εντροπία Shannon Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Εντροπία Shannon Ένα από τα βασικά ερωτήματα της θεωρίας της πληροφορίας ήταν ανέκαθεν το πώς θα μπορούσε να ποσοτικοποιηθεί η πληροφορία, ώστε να μπορούμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ιαφορική εντροπία Σεραφείµ Καραµπογιάς

ιαφορική εντροπία Σεραφείµ Καραµπογιάς ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Τυχαία Μεταβλητή (Random variable-variable aléatoire)

Τυχαία Μεταβλητή (Random variable-variable aléatoire) Τυχαία Μεταβλητή (Random varable-varable aléatore) Σε πολλούς τύπους πειραμάτων τα αποτελέσματα είναι από τη φύση τους πραγματικοί αριθμοί. Παραδείγματα τέτοιων πειραμάτων αποτελούν οι μετρήσεις των υψών

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 16 ης διάλεξης

Ασκήσεις μελέτης της 16 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 16 ης διάλεξης 16.1. (α) Έστω ένα αντικείμενο προς κατάταξη το οποίο

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις Έννοια τυχαίας μεταβλητής Κατά τον υπολογισμό πιθανοτήτων, συχνά συμβαίνει τα ενδεχόμενα που μας ενδιαφέρουν να μετρούν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4. Έκδοση v2 με διόρθωση τυπογραφικού λάθους στο ερώτημα 6.3 Στόχος: Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα):

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Κωδικοποίηση Πηγής Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Coder Decoder Μεταξύ πομπού-καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο Κατανομές Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς - - Χρησιμοποιώντας την Στατιστική Έστω οι διαφορετικές διατάξεις ενός αγοριού (B) και ενός κοριτσιού (G) σε τέσσερις

Διαβάστε περισσότερα

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Θεωρία Πιθανοτήτων Εάν οι συνθήκες τέλεσης ενός πειράματος καθορίζουν πλήρως το αποτέλεσμα του, τότε το πείραμα λέγεται αιτιοκρατικό. Είναι γνωστό ότι το αποσταγμένο νερό βράζει στους 100 βαθμού κελσίου.

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 3 η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

X:S X(S) Έστω ότι στρίβουµε ένα αµερόληπτο νόµισµα δύο φορές και ενδιαφερόµαστε για τον αριθµό των Κ που θα εµφανιστούν.

X:S X(S) Έστω ότι στρίβουµε ένα αµερόληπτο νόµισµα δύο φορές και ενδιαφερόµαστε για τον αριθµό των Κ που θα εµφανιστούν. Στατιστική Ι: Ακαδηµαϊκό Έτος 6-7 Τυχαίες Μεταβλητές Έστω ότι εκτελούµε ένα πείραµα τύχης και ότι είµαστε σε θέση να µετρήσουµε όλα τα δυνατά αποτελέσµατα και να αντιστοιχούµε ένα πραγµατικό αριθµό σε

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές. Ορισμός

Τυχαίες Μεταβλητές. Ορισμός Τυχαίες Μεταβλητές Ορισμός Μία τυχαία μεταβλητή (τ.μ.) είναι μία συνάρτηση (ή μία μεταβλητή) η οποία καθορίζει αριθμητικές τιμές σε μία ποσότητα που σχετίζεται με το αποτέλεσμα ενός πειράματος, όπου μία

Διαβάστε περισσότερα

Θεώρημα κωδικοποίησης πηγής

Θεώρημα κωδικοποίησης πηγής Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα

Διαβάστε περισσότερα

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

1.1 Πείραμα Τύχης - δειγματικός χώρος

1.1 Πείραμα Τύχης - δειγματικός χώρος 1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα