Υπολογιστές Ι. Άδειες Χρήσης. Εντολή IF. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
|
|
- Ἑστία Ρέντης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΝΕΠΙΣΤΗΜΙΟ ΙΩΝΝΙΝΩΝ ΝΟΙΚΤ ΚΔΗΜΪΚ ΜΘΗΜΤ Άδειες Χρήσης Υπολογιστές Ι Εντολή IF Διδάσκοντες: ν. Καθ. Δ. Παπαγεωργίου, ν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.
2 ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή IF ΕΝΤΟΛΗ IF Μέχρι τώρα είδαμε ότι οι εντολές ενός προγράμματος εκτελούνται από την αρχή έως το τέλος διαδοχικά η μία μετά την άλλη. Υπάρχουν προγράμματα όπου χρειάζεται σε κάποια περίπτωση να εκτελεστούν ορισμένες εντολές και σε κάποια άλλη όχι. Η εντολή IF επιτρέπει την επιλεκτική εκτέλεση κάποιων εντολών ελέγχοντας μια συνθήκη. 1 2 Παράδειγμα #1 Παράδειγμα #1 Κατασκευάστε πρόγραμμα που θα επιλύει την εξίσωση πρώτου βαθμού A+B=0 όταν δίνονται τα και Β. Υπενθύμιση: Η λύση είναι αν αλλιώς δεν υπάρχει λύση. PROGRAM SOLVE1 IMPLICIT NONE DOUBLE PRECISION A, B, X WRITE (*,*) 'Εισάγετε τους συντελεστές,β' READ (*,*) A, Β IF (A.NE.0) THEN X = -B/A WRITE (*,*) 'Η λύση είναι: ', X WRITE (*,*) 'Δεν υπάρχει λύση' END 3 4
3 Συντακτικό της εντολής IF (1/4) Τι συγκρίσεις μπορεί να γίνουν ; IF ( σύγκριση ) ΤΗΕΝ εντολή1 εντολή2. εντολή1 εντολή2. Σημείωση: κάθε εντολή γράφεται μερικά κενά (ή ένα tab) πιο δεξιά για ευκρίνεια. 5 Μεταξύ δύο μεταβλητών ή γενικότερα δύο παραστάσεων A και B μπορούν να γίνουν οι παρακάτω συγκρίσεις: Σύγκριση A.EQ. B A.NE. B A.GT. B A.LT. B A.GE. B A.LE. B Τι σημαίνει A = B A B A > B A < B A B A B Ετυμολογία EQual Not EQual Greater Than Less Than Greater or Equal Less or Equal Κάθε σύγκριση είναι είτε αληθής είτε ψευδής. 6 Πως λειτουργεί η εντολή IF Παράδειγμα #2 IF ( σύγκριση ) ΤΗΕΝ εντολή1 εντολή2. εντολή1 εντολή2. Πρώτα γίνεται η σύγκριση Εάν η σύγκριση είναι αληθής εκτελείται το πρώτο τμήμα εντολών και το πρόγραμμα συνεχίζει μετά το. Εάν η σύγκριση είναι ψευδής εκτελείται το δεύτερο τμήμα εντολών. Σημείωση: Το τμήμα μπορεί να παραληφθεί. 7 Κατασκευάστε πρόγραμμα που θα βρίσκει το μεγαλύτερο από δύο αριθμούς, Β που θα εισάγονται από το πληκτρολόγιο. 8
4 Παράδειγμα #2 Παράδειγμα #2 - Επέκταση PROGRAM LARGE IMPLICIT NONE DOUBLE PRECISION A, B, M WRITE (*,*) 'Εισάγετε δύο αριθμούς, Β' READ (*,*) A, Β IF (A.GT.B) THEN M = A M = B WRITE (*,*) 'Ο μεγαλύτερος είναι', Μ Πως θα βρούμε το μεγαλύτερο από τρεις αριθμούς, Β, C που θα εισάγονται από το πληκτρολόγιο ; Σκεφτείτε το END 9 10 Παράδειγμα #3 Παράδειγμα #3 Κατασκευάστε πρόγραμμα που θα βρίσκει ποιο από τα δύο σημεία του επιπέδου ( 1, 1 ) και ( 2, 2 ) βρίσκεται πιο μακριά και πόσο από το σημείο ( 0, 0 ). ( 1, 1 ) ( 2, 2 ) d 2 d 1 (0,0 ) Υπενθύμιση: Η απόσταση d 1 είναι: 11 PROGRAM DIST IMPLICIT NONE DOUBLE PRECISION Χ0, Υ0, Χ1, Υ1, Χ2, Υ2 DOUBLE PRECISION D1, D2 WRITE (*,*) 'Εισάγετε τα σημεία' READ (*,*) Χ0, Υ0, Χ1, Υ1, Χ2, Υ2 D1 = SQRT((X1-X0)**2+(Y1-Y0)**2) D2 = SQRT((X2-X0)**2+(Y2-Y0)**2) IF (D1.GT.D2) THEN WRITE (*,*) 'Μακρύτερα είναι το πρώτο', D1 WRITE (*,*) 'Μακρύτερα είναι το δεύτερο', D2 END 12
5 Παράδειγμα #4 Παράδειγμα #4 Κατασκευάστε πρόγραμμα που θα βρίσκει εάν ένα σημείο του επιπέδου ( 1, 1 ) βρίσκεται εντός ή εκτός κύκλου με κέντρο ( 0, 0 ) και ακτίνα R. Στην πρώτη περίπτωση το πρόγραμμα να εμφανίζει την απόσταση από το κέντρο του κύκλου ενώ στη δεύτερη την απόσταση από την περιφέρειά του. ( 1, 1 ) ( 0, 0 ) ΕΝΤΟΣ ( 0, 0 ) ΕΚΤΟΣ ( 1, 1 ) 13 PROGRAM CIRCLΕ IMPLICIT NONE DOUBLE PRECISION Χ0, Υ0, R, Χ1, Υ1, D WRITE (*,*) 'Εισάγετε κέντρο και ακτίνα κύκλου' READ (*,*) Χ0, Υ0, R WRITE (*,*) 'Εισάγετε το σημείο' READ (*,*) Χ1, Υ1 D = SQRT((X0-X1)**2+(Y0-Y1)**2) IF (D.LE.R) THEN WRITE (*,*) 'Το σημείο είναι εντός ', D D = D-R WRITE (*,*) 'Το σημείο είναι εκτός ', D END 14 Συντακτικό της εντολής IF (2/4) Συντακτικό της εντολής IF (3/4) IF ( σύγκριση1 ) ΤΗΕΝ εντολή. IF ( σύγκριση2 ) ΤΗΕΝ εντολή. IF ( σύγκριση3 ) ΤΗΕΝ εντολή. εντολή. Τμήμα IF 1 o τμήμα IF 2 o τμήμα IF Τμήμα. Εκτελείται όταν όλες οι συγκρίσεις είναι ψευδείς. 15 Ορισμένες παρατηρήσεις για την εντολή IF: Το πρώτο τμήμα IF πρέπει να υπάρχει υποχρεωτικά. Το τμήμα μπορεί να παραληφθεί. Μπορεί να υπάρχουν πολλά τμήματα IF. Εκτελούνται οι εντολές ενός μόνο από όλα τα τμήματα μιας εντολής IF. Εντός κάθε τμήματος επιτρέπεται να υπάρχουν άλλες εντολές IF. 16
6 Συντακτικό της εντολής IF (4/4) Παράδειγμα #5# Η εντολή IF που περιγράψαμε λέγεται τμηματική εντολή IF. Σε ορισμένες περιπτώσεις δεν υπάρχουν τα τμήματα IF και, και επιπλέον το τμήμα IF περιέχει μια μόνο εντολή, δηλαδή είναι της μορφής: IF ( σύγκριση ) ΤΗΕΝ εντολή Τότε η εντολή μπορεί να απλοποιηθεί σε μια γραμμή ως εξής: Κατασκευάστε πρόγραμμα που θα βρίσκει τις πραγματικές λύσεις (αν υπάρχουν) της δευτεροβάθμιας εξίσωσης A 2 + B + C = 0 όταν δίνονται τα, B και C. Υπενθύμιση: ν =0 τότε έχουμε μια εξίσωση πρώτου βαθμού. IF ( σύγκριση ) εντολή Οι λύσεις της δευτεροβάθμιας είναι: Η εντολή αυτή ονομάζεται λογική εντολή IF Παράδειγμα #5# Παράδειγμα #5# (συνέχεια) PROGRAM SOLVE2 IMPLICIT NONE DOUBLE PRECISION A, B, C, X, D, X1, X2 WRITE (*,*) 'Εισάγετε τους συντελεστές,β,c' READ (*,*) A, Β, C IF (A.EQ.0) THEN C Είναι εξίσωση πρώτου βαθμού. IF (B.NE.0) THEN X = -C/B WRITE (*,*) ' Η λύση είναι: ', X WRITE (*,*) 'Δεν υπάρχει λύση' Συνεχίζεται Συνέχεια C Είναι εξίσωση δευτέρου βαθμού. D = B**2-4*A*C IF (D.EQ.0) THEN Χ = -Β/(2*) WRITE (*,*) ' Η λύση είναι: ', X IF (D.GT.0) THEN Χ1 = (-B+SQRT(D))/(2*A) Χ2 = (-B-SQRT(D))/(2*A) WRITE (*,*) ' Η λύσεις είναι:',x1,χ2 WRITE (*,*) 'Δεν υπάρχει λύση' END 19 20
7 Σύνθετες λογικές παραστάσεις Πίνακες αλήθειας (.AND.) Μπορούμε να κατασκευάσουμε σύνθετες λογικές παραστάσεις με τη χρήση των λογικών τελεστών.or..and..not. IF ( σύγκριση1.and. σύγκριση2 ) ΤΗΕΝ IF ( σύγκριση1.or. σύγκριση2 ) ΤΗΕΝ IF (.NOT. σύγκριση ) ΤΗΕΝ Το αποτέλεσμα μιας σύνθετης λογικής παράστασης είναι είτε αληθές είτε ψευδές και εξαρτάται από τις επιμέρους συγκρίσεις. σύγκριση1 σύγκριση2 σύγκριση1.and. σύγκριση2 Πρακτικός κανόνας: Το τελικό αποτέλεσμα είναι αληθές όταν και οι δύο συγκρίσεις είναι αληθείς Πίνακες αλήθειας (.OR.) Πίνακες αλήθειας (.NOT.) σύγκριση1 σύγκριση2 σύγκριση1.or. σύγκριση2 A A Πρακτικός κανόνας: Το τελικό αποτέλεσμα είναι αληθές όταν είτε η μία είτε η άλλη σύγκριση είναι αληθείς σύγκριση.not. σύγκριση Ο τελεστής.not. αντιστρέφει το αποτέλεσμα της σύγκρισης
8 Παράδειγμα #6 Παράδειγμα #6 Με ποια εντολή IF μπορούμε να βρούμε αν μια μεταβλητή X είναι μεταξύ δύο δοσμένων ορίων, Β ; Χ Β ΙF (X.GE.A.AND. X.LE.B) THEN ληθής ληθής ληθής Χ Β ΙF (X.GE.A.AND. X.LE.B) THEN ευδής ληθής Β Χ ΙF (X.GE.A.AND. X.LE.B) THEN ληθής ευδής ευδής ευδής Προτεραιότητες λογικών τελεστών Παράδειγμα #7# Σε μια σύνθετη λογική παράσταση όπως πχ. A.GT.0.AND. B.GT.0.OR. C.EQ.4 η σειρά των λογικών πράξεων καθορίζεται από την προτεραιότητα των τελεστών. Για τελεστές ίδιας προτεραιότητας οι πράξεις γίνονται από αριστερά προς τα δεξιά. Τελεστής.ΝΟΤ..AND..OR. Προτεραιότητα Υψηλή Χαμηλή Με ποια εντολή IF μπορούμε να διαπιστώσουμε αν ένας ακέραιος είναι άρτιος ή περιττός ; Υπενθύμιση: Ένας ακέραιος είναι άρτιος αν είναι πολλαπλάσιο του δύο, δηλαδή διαιρείται ακριβώς με το δύο χωρίς να αφήνει υπόλοιπο. Οι πράξεις σε παρενθέσεις γίνονται πάντα πρώτες. Π.χ. A.GT.0.AND. (B.GT.0.OR. C.EQ.4) 27 28
9 Παράδειγμα #7# Παράδειγμα #7# (συνάρτηση MOD) Έστω Ν ο ακέραιος. Κ = Ν/2 κέραια διαίρεση με το 2. Υ = Ν-2*Κ Υπόλοιπο της διαίρεσης. IF (Y.EQ.0) THEN Έλεγχος του υπολοίπου. άρτιος περιττός ή πιο σύντομα: Η συνάρτηση MOD(A,B) επιστρέφει ως αποτέλεσμα το υπόλοιπο της διαίρεσης του από τον Β. IF (MOD(N,2).EQ.0) THEN άρτιος περιττός Με την ίδια συνάρτηση μπορούμε να βρούμε αν ένας ακέραιος είναι π.χ. πολλαπλάσιο του 7: IF (Ν-2*(Ν/2).EQ.0) THEN IF (MOD(N,7).EQ.0) THEN Παράδειγμα #8 Παράδειγμα #8 Δίνεται τετράγωνο με κέντρο το (0,0) και πλευρά. Κατασκευάστε πρόγραμμα που θα βρίσκει αν ένα σημείο (,) είναι εντός ή εκτός του τετραγώνου. Στην πρώτη περίπτωση θα εμφανίζει την απόσταση από το κέντρο των αξόνων ενώ στη δεύτερη την απόσταση από την πάνω δεξιά γωνία. (,) (,) (-A/2,A/2) (A/2,A/2) Για να είναι ένα σημείο (,) εντός του τετραγώνου πρέπει: Η συντεταγμένη να είναι μεταξύ A/2 και /2 Επίσης η συντεταγμένη να είναι μεταξύ A/2 και /2 (-A/2,-A/2) (A/2,-A/2) ΕΝΤΟΣ ΕΚΤΟΣ 31 32
10 Παράδειγμα #8 Παράδειγμα #8 Πως βρίσκω αν το Χ είναι μεταξύ /2 και /2 ; IF (X.GE.-A/2.AND. X.LE.A/2) THEN Πως βρίσκω αν το Y είναι μεταξύ /2 και /2 ; IF (Y.GE.-A/2.AND. Y.LE.A/2) THEN Οι δύο έλεγχοι μπορούν να συνδυαστούν σε μία εντολή: IF ( X.GE.-A/2.AND. X.LE.A/2.AND. Y.GE.-A/2.AND. Y.LE.A/2 ) THEN 33 PROGRAM SQUARE IMPLICIT NONE DOUBLE PRECISION Χ, Υ, A, D WRITE (*,*) 'Εισάγετε την πλευρά του τετραγώνου' READ (*,*) A WRITE (*,*) 'Εισάγετε το σημείο' READ (*,*) Χ, Υ IF ( X.GE.-A/2.AND. X.LE.A/2.AND. & Y.GE.-A/2.AND. Y.LE.A/2 ) THEN D = SQRT(X**2+Y**2) WRITE (*,*) 'Το σημείο είναι εντός ', D D = SQRT((A/2-X)**2+(A/2-Y)**2) WRITE (*,*) 'Το σημείο είναι εκτός ', D END 34 Παράδειγμα #8 Επέκταση#1 Παράδειγμα #8 Επέκταση#2 Πως θα βρούμε αν ένα σημείο είναι εντός ή εκτός παραλληλογράμμου με κέντρο την αρχή των αξόνων και πλευρές, Β ; Σκεφτείτε το Πως θα βρούμε αν ένα σημείο είναι εντός ή εκτός παραλληλογράμμου με κέντρο το σημείο ( 0, 0 ) και πλευρές, Β ; Σκεφτείτε το 35 36
11 Παράδειγμα #9 Παράδειγμα #9 Δίνεται κύκλος ακτίνας R με κέντρο την αρχή των αξόνων και δύο σημεία με συντεταγμένες (1,1) και (2,2). ν και τα δύο σημεία είναι εντός του κύκλου ή και τα δύο είναι εκτός του κύκλου βρείτε τη μεταξύ τους απόσταση. ν ένα σημείο είναι εντός και το άλλο είναι εκτός βρείτε ποιο από τα δύο απέχει λιγότερο από την περιφέρεια του κύκλου και ποια είναι η απόσταση αυτή. ( 1, 1 ) ( 2, 2 ) Τ ΔΥΟ ΣΗΜΕΙ ΕΝΤΟΣ ( 1, 1 ) Τ ΔΥΟ ΣΗΜΕΙ ΕΚΤΟΣ ( 2, 2 ) ( 1, 1 ) ( 2, 2 ) ΕΝ ΣΗΜΕΙΟ ΕΝΤΟΣ ΕΝ ΣΗΜΕΙΟ ΕΚΤΟΣ Η διακεκομμένη γραμμή δείχνει ποια απόσταση ζητείται d 1 d Παράδειγμα #9 Παράδειγμα #9 Με ποια εντολή IF διαπιστώνω σε ποια από τις τρεις περιπτώσεις βρίσκομαι ; A1 = SQRT(X1**2+Y1**2) A2 = SQRT(X2**2+Y2**2) IF (A1.LE.R.AND. A2.LE.R) THEN και τα δύο σημεία εντός IF (A1.GT.R.AND. A2.GT.R) THEN και τα δύο σημεία εκτός ένα σημείο εντός και ένα εκτός Όμως και στις δύο πρώτες περιπτώσεις ζητείται η απόσταση μεταξύ των δύο σημείων. Μπορώ να συνδυάσω τους δύο ελέγχους: A1 = SQRT(X1**2+Y1**2) A2 = SQRT(X2**2+Y2**2) IF (A1.LE.R.AND. A2.LE.R.OR. A1.GT.R.AND. A2.GT.R) THEN και τα δύο σημεία εντός ή εκτός ένα σημείο εντός και ένα εκτός 39 40
12 Παράδειγμα #9 Παράδειγμα #9 Πως υπολογίζω τις αποστάσεις d 1 και d 2 ; ( 1, 1 ) ( 2, 2 ) d 1 d 2 d 2 d 1 ( 2, 2 ) ( 1, 1 ) Μπορώ να συνδυάσω τις δύο περιπτώσεις υπολογίζοντας τις αποστάσεις d 1 και d 2 ως: D1 = ABS(R-A1) D2 = ABS(A2-R) D1 = A1-R D2 = R-A2 D1 = R-A1 D2 = A2-R Παράδειγμα #9 Παράδειγμα #9 (συνέχεια) PROGRAM CIRC2 IMPLICIT NONE DOUBLE PRECISION R, X1, Y1, X2, Y2 DOUBLE PRECISION A1, A2, D, D1, D2 WRITE (*,*) 'Εισάγετε τα R,X1,Y1,X2,Y2' READ (*,*) R, X1, Y1, X2, Y2 A1 = SQRT(X1**2+Y1**2) A2 = SQRT(X2**2+Y2**2) IF (A1.LE.R.AND. A2.LE.R.OR. & A1.GT.R.AND. A2.GT.R) THEN D = SQRT((X1-X2)**2+(Y1-Y2)**2) WRITE (*,*) D Συνεχίζεται D1 = ABS(R-A1) D2 = ABS(A2-R) IF (D1.LT.D2) THEN D = D1 D = D2 WRITE (*,*) D END Συνέχεια 43 44
13 Παράδειγμα #10 Παράδειγμα #10 Δίνεται τετράγωνο πλευράς 2 καθώς και ο εγγεγραμμένος και ο περιγεγραμμένος κύκλος. Δεδομένου ενός σημείου (,) βρείτε αν αν το το σημείο αυτό: Είναι εντός του περιγεγραμμένου κύκλου (πορτοκαλί περιοχή). Είναι εντός του τετραγώνου αλλά 1 εκτός του εγγεγραμμένου κύκλου (λευκή περιοχή). Είναι εντός του περιγεγραμμένου κύκλου αλλά εκτός του -1 1 τετραγώνου (γαλάζια περιοχή). -1 Είναι εκτός του περιγεγραμμένου κύκλου. Ορισμένες παρατηρήσεις: Οι συντεταγμένες των τεσσάρων γωνιών του τετραγώνου είναι: Η ακτίνα του εγγεγραμμένου κύκλου είναι 1 Η ακτίνα του περιγεγραμμένου κύκλου είναι (-1,1) (1,1) (-1,-1) (1,-1) Παράδειγμα #10 PROGRAM INAREA IMPLICIT NONE DOUBLE PRECISION X, Y WRITE (*,*) 'Εισάγετε τα X, Y' READ (*,*) X, Y IF (SQRT(X**2+Y**2).LE.1) THEN WRITE (*,*) 'Εντός του εγγεγραμμένου κύκλου' IF (X.GE.-1.AND. X.LE.1.AND. & Y.GE.-1.AND. Y.LE.1) THEN WRITE (*,*) 'Εντός του τετραγώνου' IF (SQRT(X**2+Y**2).LE.SQRT(2.D0)) THEN WRITE (*,*) 'Εντός του περιγεγραμμένου κύκλου' WRITE (*,*) 'Εκτός του περιγεγραμμένου κύκλου' END 47
14 Χρηματοδότηση Τέλος Ενότητας Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «νοικτά καδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
15 Σημείωμα Ιστορικού Εκδόσεων Έργου Σημειώματα Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ.
16 Σημείωμα ναφοράς Σημείωμα δειοδότησης Copright Πανεπιστήμιο Ιωαννίνων, Διδάσκοντες: ν. Καθ. Δ. Παπαγεωργίου, ν. Καθ. Ε. Λοιδωρίκης. «Υπολογιστές Ι. Εντολή IF». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση: Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons ναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1]
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή IF ΕΝΤΟΛΗ IF. Παράδειγμα #1. Παράδειγμα #1
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή IF ΕΝΤΟΛΗ IF Μέχρι τώρα είδαμε ότι οι εντολές ενός προγράμματος εκτελούνται από την αρχή έως το τέλος διαδοχικά η μία μετά την άλλη Υπάρχουν προγράμματα όπου χρειάζεται
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολή if. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΝΕΠΙΣΤΗΜΙΟ ΙΩΝΝΙΝΩΝ ΝΟΙΚΤ ΚΔΗΜΪΚ ΜΘΗΜΤ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Εντολή if Διδάσκοντες: ν. Καθ. Δ. Παπαγεωργίου, ν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τι χρειάζεται η εντολή if ; Εντολή if. Παράδειγμα #1. Παράδειγμα #1
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Τι χρειάζεται η εντολή if ; Εντολή if Η εντολή if επιτρέπει την επιλεκτική εκτέλεση εντολών ελέγχοντας μια συνθήκη 1 2 Παράδειγμα #1 Παράδειγμα #1 Κατασκευάστε πρόγραμμα που θα βρίσκει το
Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Δομή του προγράμματος Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Τύποι δεδομένων Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Εντολές for, while, do-while Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Υπολογιστές Ι. Άδειες Χρήσης. Μεταβλητές και πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Μεταβλητές και πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 4: Δομές Ελέγχου Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Δομή του προγράμματος Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις II Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Λογικές συναρτήσεις και λογικοί έλεγχοι με το Excel/Calc Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Δείκτες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Δείκτες Διδάσκοντες: Αν Καθ Δ Παπαγεωργίου, Αν Καθ Ε Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 4: Εντολές συνθήκης και διακλάδωσης Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Προγραμματισμός Η/Υ. Ενότητα 4: Εντολές Επιλογής
Προγραμματισμός Η/Υ Ενότητα 4: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Έλεγχος της ροής ενός προγράμματος
Υπολογιστές Ι. Άδειες Χρήσης. Πολυδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Πολυδιάστατοι πίνακες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 4: Τελεστές - Αλγόριθμος Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Προγραμματισμός και Εφαρμογές Υπολογιστών
Προγραμματισμός και Εφαρμογές Υπολογιστών Ενότητα 3: Συνθήκες- Δομές απόφασης 1/2 Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Κ.Π. Γιαλούρης Μαθησιακοί Στόχοι Κατανόηση της εντολής ελέγχου & επιλογής
Κεφάλαιο 4ο: Εντολές επιλογής
Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 4ο: Εντολές επιλογής Μέχρι τώρα παρατηρήσαµε ότι τα προβλήµατα που αντιµετωπίσαµε είχαν σειριακή κίνηση, δηλαδή η µία εντολή
Μικροβιολογία & Υγιεινή Τροφίμων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μικροβιολογία & Υγιεινή Τροφίμων Μικροοργανισμοί που ελέγχονται ανά είδος τροφίμου Διδάσκοντες: Καθ. Χρυσάνθη Παπαδοπούλου, Λέκτορας Ηρακλής Σακκάς Άδειες
Υπολογιστές Ι. Άδειες Χρήσης. Συναρτήσεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Συναρτήσεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΛΥΚΕΙΟΥ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης
Πληροφορική ΙΙ Θεματική Ενότητα 5
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 3: Εισαγωγή και Εμφάνιση Δεδομένων Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 4: Εντολές ελέγχου ροής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αρχιτεκτονική Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχιτεκτονική Υπολογιστών Αρχιτεκτονικό σύνολο εντολών Διδάσκων: Επίκουρος Καθηγητής Αριστείδης Ευθυμίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ηλεκτρονικοί Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Μη Σειριακή Εκτέλεση Εντολών Συνθήκες και Τελεστές στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ηλεκτρονικοί Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αριθμητικές Πράξεις και Κανόνες στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
Αρχές Προγραμματισμού
Αρχές Προγραμματισμού Ενότητα: Εργαστηριακή Άσκηση 1 Παλιουράς Βασίλης, Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1. Σκοποί ενότητας----------------------------------------------------------------------------------------------------------
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
Τεχνικές Προγραμματισμού και Χρήση Λογισμικού Η/Υ στις Κατασκευές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τεχνικές Προγραμματισμού και Χρήση Λογισμικού Η/Υ στις Κατασκευές Ενότητα 3: Διαδικασίες λογικών αποφάσεων και βρόγχων εργασιών Αναστάσιος
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Εκχώρηση Τιμών
Εκχώρηση Τιμών 1. Σύνταξη Με την εντολή εκχώρησης: α) Ονομάζουμε μια θέση μνήμης, και β) προσδιορίζουμε το περιεχόμενό της Η σύνταξη της εντολής εκχώρησης είναι: ή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΟΧΗΜΕΙΑ ΙΙ Στοιχειώδεις αντιδράσεις, μηχανισμός και εύρεση του νόμου ταχύτητας Διδάσκοντες: Αναπλ. Καθ. Β. Μελισσάς, Λέκτορας Θ. Λαζαρίδης Άδειες
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το
Προγραμματισμός Η/Υ. Ενότητα 2β: Εισαγωγή στη C (Μέρος Δεύτερο)
Προγραμματισμός Η/Υ Ενότητα 2β: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση της έννοιας του Τελεστή
Πληροφορική. Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες. Κωνσταντίνος Καρατζάς
Ηλεκτρονικοί Υπολογιστές II
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές II Ερωτήματα επιλογής SQL, σύζευξη, διάζευξη, NULL, ταίριασμα κειμένου Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών
Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
Ηλεκτρονικοί Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Εντολές Αντικατάστασης, Συναρτήσεις και Σχόλια στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 5: Εντολές if και switch Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει
Υπολογιστές Ι. Άδειες Χρήσης. Εισαγωγή. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Εισαγωγή Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Αντικειμενοστρεφής Προγραμματισμός Ενότητα 9: Ειδικά θέματα γλώσσας C/C++. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Αντικειμενοστρεφής Προγραμματισμός Ενότητα 9: Ειδικά θέματα γλώσσας C/C++. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ανάλυση δεδομένων με συναρτήσεις βάσης δεδομένων και συναρτήσεις αναζήτησης και αναφοράς με το Excel/Calc Διδάσκων: Επίκουρος
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.: Επίπεδα Εμβαδά Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
Προγραμματισμός H/Y Ενότητα 2: Εντολές ελέγχου ροής Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Η μονοπωλιακή αγορά, υπολογισμοί με το Maxima Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Λογικές πράξεις, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλικρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα που αφορούν
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #5: Δομές επιλογής Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Δομές επιλογής MATLAB Programming Α. Καλαμπούνιας Η δομή επιλογής if Η δομή if στο
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Παράγωγοι και ολοκληρώματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ολοκληρώματα με το πρόγραμμα Maima Αθανάσιος
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ενότητα 1 Διάλεξη 2β
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 2β Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Προγραμματισμός και Εφαρμογές Υπολογιστών
Προγραμματισμός και Εφαρμογές Υπολογιστών Ενότητα 6: Δομές Επανάληψης 2/2 Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Κ.Π. Γιαλούρης Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας της επανάληψης σε
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί Η ΠΑΡΑΓΩΓΟΣ. Η ΕΝΝΟΙΑ ΤΗΣ ΑΝΑΛΥΤΙΚΗΣ ΣΥΝΑΡΗΣΗΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Αυτεπαγωγή Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 25: Γραμματικές Χωρίς Περιορισμούς Τμήμα Πληροφορικής ΘΥ 25: Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Μαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Δομημένος Προγραμματισμός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 5: Εντολές επανάληψης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΑΠΤΥΓΜΑ ΑΝΑΛΥΤΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΣΕΙΡΕΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνδυαστική Ανάλυση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Ο νόμος των Biot-Savart Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Προγραμματισμός Η/Υ. Συναρτήσεις & Υποπρογράμματα. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Συναρτήσεις & Υποπρογράμματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τμηματικός Προγραμματισμός Η επίλυση ενός προβλήματος διευκολύνεται
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για