ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Αναπλ. Καθηγητής ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ"

Transcript

1 ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 3 ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

2 ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ θα εξετάσουμε τις σχέσεις μεταξύ των θέσεων που καταλαμβάνουν οι διάφοροι στοιχειώδεις όγκοι του ρευστού, (που υποτίθεται σαν συνεχές) και του χρόνου. Οι στοιχειώδεις αυτοί όγκοι είναι πολύ μεγαλύτεροι από τη μέση απόσταση μεταξύ των μορίων του ρευστού, αλλά αρκετά μικροί σε σχέση με τις γεωμετρικές διαστάσεις του κινουμένου ρευστού, έτσι που από μαθηματική άποψη οι στοιχειώδεις αυτοί όγκοι να θεωρούνται «σημεία». Για συντομία, θα καλούμε τους στοιχειώδεις αυτούς όγκους «σωματίδια του ρευστού». Η κινηματική εξετάζει την κίνηση των σωματιδίων του ρευστού από περιγραφική πλευρά, χωρίς να ενδιαφέρεται πως δημιουργήθηκε η κίνηση ή ποιες είναι οι δυνάμεις που τη διατηρούν. Τα τελευταία δύο θέματα τα εξετάζει η δυναμική, που αποτελεί άλλο κεφάλαιο της θεωρητικής υδραυλικής. Η κινηματική αποτελεί το απαραίτητο βάθρο πάνω στο οποίο θα αναπτυχθεί η δυναμική.

3 ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ A B Υποθέτουμε ότι σε κάποια αυθαίρετη z(t) ξ χρονική στιγμή t=t o τα σωματίδια ενός ρευστού καταλαμβάνουν τις θέσεις ξ στο σύστημα αναφοράς. Οι θέσεις αυτές μπορούν να χρησιμοποιηθούν σαν «ονόματα» των σωματιδίων αυτών. Οι συντεταγμένες z μπορούν να θεωρηθούν σαν τα σημεία του Ευκλείδιου χώρου, όπου κάποια χρονική στιγμή t>t o βρίσκονται σωματίδια του ρευστού. Ας θεωρήσουμε στο Καρτεσιανό σύστημα αναφοράς τον μετασχηματισμό ( ) z = F ξ, t όπου η παράμετρος t φανερώνει τον χρόνο. Για κάθε τιμή του χρόνου t, η σχέση αυτή ορίζει μια παραμόρφωση. Η μονοπαραμετρική αυτή οικογένεια των παραμορφώσεων, όπως περιγράφεται από την παραπάνω σχέση καλείται κίνηση

4 Οι αρχικές συντεταγμένες ξ ενός σωματιδίου λέγονται υλικές συντεταγμένες του σωματιδίου, ή σωματιδιακές ή συντεταγμένες LAGRANGE. Οι συντεταγμένες z λέγονται χωρικές ή διαστημικές συντεταγμένες ή συντεταγμένες του EULER. Αξίωμα της συνεχούς κίνησης: Η κίνηση που δίνεται από τη σχέση ή από την αντίστροφή της ξ = Φ z, t ( ) z = F ξ,t ( ) είναι μονότιμη και έχει συνεχείς μερικές παραγώγους οποιασδήποτε τάξης. Από φυσικής πλευράς το παραπάνω αξίωμα φανερώνει ότι κατά τη διάρκεια της κίνησης του ρευστού, μια επιφάνεια από σωματίδια του ρευστού θα παραμένει μια επιφάνεια, ένας όγκος από σωματίδια του ρευστού θα παραμένει ένας όγκος και μια γραμμή θα παραμένει μια γραμμή.

5 Επίσης, μια συνεχής σειρά από σωματίδια δεν διασπάται για να δώσει δυο σειρές και ότι σωματίδια τα οποία βρίσκονται κοντά σ ένα σωματίδιο μια χρονική στιγμή θα βρίσκονται συνέχεια κοντά του. Η σχέση z = F ξ, t ( ) μπορεί να θεωρηθεί ότι παριστάνει την παραμετρική εξίσωση μιας καμπύλης γραμμής στο χώρο, με τον χρόνο t σαν παράμετρο. Η καμπύλη αυτή γραμμή περνάει από το σημείο ξ, που αντιστοιχεί στην παράμετρο t=t o. Απόφυσικήςπλευράςτοσύνολοτωνθέσεωνπου καταλαμβάνει το σωματίδιο του ρευστού με το «όνομα» ξ περιγράφεται από την παραπάνω σχέση η οποία μπορεί να ονομασθεί «τροχιά του σωματιδίου».

6 Οι προαναφερθείσες σχέσεις μας οδηγούν σε δυο βασικούς τρόπους περιγραφής της κίνησης ενός ρευστού. Ο πρώτος είναι να θεωρήσουμε ότι ο παρατηρητής, που μελετά την κίνηση του σωματιδίου βρίσκεται συνέχεια πάνω στο σωματίδιο ξ και ταξιδεύει συνέχεια μαζί του. Ο «μικροσκοπικός» παρατηρητής διατηρεί το ξ και καθώς ο χρόνος t μεταβάλλεται, «μετρά» τη θέση του z καθώς και κάθε άλλη ιδιότητα που συνοδεύει το σωματίδιο, π.χ. την πυκνότητα, τη θερμοκρασία, κλπ. Ο τρόπος αυτός περιγραφής της κίνησης λέγεται περιγραφή κατά LAGRANGE ή σωματιδιακή ή υλική (materal) περιγραφή.

7 Ο δεύτερος τρόπος είναι ο παρατηρητής να «καταλάβει» μια συγκεκριμένη θέση στο σύστημα αναφοράς, έστω τη θέση z= σταθερό, καιναπαρατηρείόλατα σωματίδια, τα οποία περνούν απ αυτό. Είναι φανερό, ότι στη δεύτερη αυτή περίπτωση, ο παρατηρητής μελετά, όχι ένα συγκεκριμένο σωματίδιο, αλλά πολλά σωματίδια με διαφορετικές τιμές «ξ», σωματίδια με «διαφορετικά ονόματα». Ο δεύτερος τρόπος λέγεται περιγραφή κατά EULER ή (spatal) περιγραφή χωρική Οι δύο αυτοί διαφορετικοί τρόποι οδηγούν σε μια διαφοροποίηση της μαθηματικής περιγραφής της κίνησης. Πραγματικά, αν Φ παριστάνει γενικά ένα οποιοδήποτε μέγεθος τότε μπορούμε να ορίσουμε δύο τρόπους παραγώγησης της Φ, ως προς το χρόνο t:

8 α) Την ολική παράγωγο ως προς τον χρόνο t, όπου το z και το t μεταβάλλονται, αλλά το ξ παραμένει σταθερό. DΦ β) Την απλή, μερική παράγωγο ως προς το χρόνο t, όπου το z θεωρείται σταθερό και μεταβάλλονται τα ξ και t ϑφ ϑt H ολική παράγωγος μετράει τον ρυθμό της αλλαγής της ποσότητας Φ από ένα παρατηρητή πάνω στο κινούμενο σωματίδιο ξ. Ηολική παράγωγος λέγεται επίσης σωματιδιακή ή μοριακή παράγωγος. Η μερική παράγωγος μετράει τον ρυθμό της αλλαγής της ποσότητας Φ από ένα παρατηρητή στο σταθερό σημείο z.

9 Η ταχύτητα του σωματιδίου ξ που βρίσκεται στη θέση z τη χρονική στιγμή t δίνεται από τη σχέση: U z,t ( ) z z dz = = 2 1 lm t t dt t2 t Θα δούμε τώρα πως συνδέεται η ολική παράγωγος του μεγέθους Φ με τη μερική της παράγωγο D Φ ( z,t) ϑφ dz ϑφ ϑφ U ϑφ ϑφ = + = + = + UgradΦ ϑz dt ϑt ϑt ϑz ϑt Ολική παράγωγος = μερική παρ.+μεταθετική παράγωγος Η επιτάχυνση του σωματιδίου ξ βρίσκεται από την ολική παράγωγο της ταχύτητας: DU ϑu γ = = + UgradU ϑt Επιτάχυνση = τοπική επιτάχ.+μεταθετική επιτάχυνση Αν η τοπική επιτάχυνση είναι μηδέν, τότε ηροή καλείται μόνιμη

10 Οι γραμμές ροής ορίζονται σαν οικογένειες γραμμών που είναι παντού εφαπτόμενες κατά τη χρονική στιγμή t στο διάνυσμα U. dx ds ( ) = U x,x,x,t Ηπαράμετρος s δεν πρέπει να συγχέεται με τον χρόνο t, διότι ο χρόνος t διατηρείται σταθερός κατά την ολοκλήρωση, οπότε οι καμπύλες γραμμές οι οποίες θα προκύψουν αποτελούν τις γραμμές ροής κατά την χρονική στιγμή t. Οι γραμμές ροής μπορούν να μεταβάλλονται από στιγμή σε στιγμή (σαν συνάρτηση του χρόνου t), και γενικώς δεν συμπίπτουν με τις τροχιές των σωματιδίων.

11 H τροχιά του σωματιδίου ξ δίνεται από την λύση του συστήματος των διαφορικών εξισώσεων, με αρχικές συνθήκες x = ξ στο χρόνο t=0 : dx dt = U x,x,x,t ( ) Αν το πεδίο ταχυτήτων δεν εξαρτάται από το χρόνο (η ροή λέγεται μόνιμη), τότε τα συστήματα των παραπάνω διαφορικών εξισώσεων συμπίπτουν, οπότε στην ειδική αυτή περίπτωση οι γραμμές ροής και οι τροχιές των σωματιδίων συμπίπτουν. Το αντίστροφο όμως δεν ισχύει. Δηλαδή η σύμπτωση των γραμμών ροής με τις τροχιές δεν σημαίνει αναγκαστικά ροή μόνιμη.

12 ΜΕΤΑΒΟΛΗ ΟΓΚΟΥ ΕΝΟΣ ΣΤΟΙΧΕΙΩΔΟΥΣ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟΥ ΡΕΥΣΤΟΥ ΣΕ ΚΙΝΗΣΗ 3 Εξαιτίας της κίνησης, το αρχικό στοιχειώδες παραλληλεπίπεδο αλλάζει σχήμα και παραμορφώνεται, γιατί τα σωματίδια με συντεταγμένες ξκαιξ+dξ έχουν διαφορετικές γενικά ταχύτητες, αλλά δεν διαχωρίζεται γιατί η κίνηση υποτίθεται συνεχής. 1 χρόνος t=0 θέση x 0 ξ dv 0 dξ 2 dξ 1 dξ 3 2 χρόνος t dv x = x (ξ, t) Σχήμα Κίνηση ρευστού σωματιδίου ξ (παραλληλεπιπέδου) από τη θέση x 0 (στο χρόνο t=0),στη θέση x (στο χρόνο t) ξ Κατά συνέπεια το αρχικό παραλληλεπίπεδο με όγκο dv ο (χρόνος t=0), βρίσκεται στο χρόνο t γύρω από το σημείο x, με όγκο γενικά διαφορετικό του όγκου dv ο. Οι όγκοι αυτοί συνδέονται από τη σχέση: dv = ζ dv ο

13 όπου ζ είναι η Ιακωβιανή του μετασχηματισμού, η οποία δίνεται από τον πίνακα x x x ϑ 1 ϑ 1 ϑ 1 ϑξ ϑξ ϑξ ζ = ϑξ ϑξ ϑξ ϑξ ϑξ ϑξ ϑx2 ϑx2 ϑx ϑx3 ϑx3 ϑx Κατά συνέπεια η Ιακωβιανή ζ παριστάνει τη «διαστολή» ή «συστολή» του αρχικού όγκου dv ο. Ας εξετάσουμε τον τρόπο μεταβολής της Ιακωβιανής ζ καθώς το σωματίδιο κινείται. Πρέπει, να βρούμε την ολική παράγωγο Dζ/. Μπορούμε να αποδείξουμε ότι: Dζ ϑu ϑu ϑu x x x = + + ζ = ζ ϑ 1 ϑ 2 ϑ 3 δηλαδή η απόκλιση της ταχύτητας φανερώνει από φυσικής πλευράς τον σχετικό ρυθμό διαστολής ή συστολής ενός στοιχειώδους όγκου του ρευστού. Αν θεωρήσουμε το ρευστό ασυμπίεστο και ομογενές dvu dvu = O

14 ΘΕΩΡΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟΥ REYNOLDS α) Ολοκλήρωση σε όγκο V(t) κινούμενο με το ρευστό Σε προβλήματα ροής παρουσιάζονται συχνά ολοκληρώματα της μορφής : F( t) = Φ( x,tdv ) Vt () Καθώς και της ολικής παραγώγου του ολοκληρώματος DF( t) D Vt () Vt () D = Φ Vt () { Φ Φ ζ } x, t dv ( ) D Φ ( x, t) dv = Φ( ξ, t) ζdvo Vo D D = ζ + dvo = Vo { DΦ ζ + Φζ } dvu dvo = Vo { DΦ + Φ } dvu dv

15 ΘΕΩΡΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟΥ REYNOLDS Επειδή και D Φ ( z,t) ϑφ dz ϑφ ϑφ U ϑφ ϑφ = + = + = + UgradΦ ϑz dt ϑt ϑt ϑz ϑt UgradΦ + Φ dvu = dv ΦU ( ) Vo Vt () { DΦ + Φ } dvu dv Έχουμε D Vt () ( ) { ϑφ ( )} Φ x, t dv = + dv ΦU dv ϑt Vt () Εφαρμόζοντας το θεώρημα του GREEN ολοκληρώματος σε διπλό), έχουμε: D ϑφ Φ x, t dv = dv + ( ΦU) nds ϑt ( ) Vt () Vt () St () (μετασχηματισμός τριπλού Το γινόμενο Φ( x, t) U ( x, t) n ( x, t) ds δείχνει την «ροή» της ποσότητας Φ μέσα από την στοιχειώδη επιφάνεια ds (να αποφευχθεί η σύγχυση με τη ροή μάζας δια μέσου της επιφάνειας S(t) η οποία είναι εξ ορισμού μηδέν).

16 ΘΕΩΡΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟΥ REYNOLDS D ϑφ Φ ( x, t) dv = dv + ( ΦU) nds ϑt Vt () Vt () St () Η παραπάνω σχέση οδηγεί στο ενδιαφέρον συμπέρασμα ότι ο ρυθμός αλλαγής του ολοκληρώματος του Φ μέσα στον κινούμενο όγκο, ισούται με το ολοκλήρωμα του ρυθμού αλλαγής του Φ μέσα στον όγκο και επί πλέον με την «ροή» του Φ, μέσα από την επιφάνεια S(t). Μια και το Φ μπορεί να είναι οποιαδήποτε βαθμωτή ή διανυσματική ή τανυστική ποσότητα, το θεώρημα μεταφοράς (γνωστό επίσης ως θεώρημα του Reynolds) βρίσκει πλατειά εφαρμογή με τη μορφή μιας των παραπάνω εξισώσεων

17 ΘΕΩΡΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟΥ REYNOLDS β) Ολοκλήρωση σε νοητό ακίνητο όγκο V Σ μέσα από το οποίο διέρχεται ρευστό D VΣ VΣ Φ x, t dv ( ) VΣ { Φ } D D D ( x, t) dv dv ( dv) Φ = +Φ = DΦ dζ DΦ = dv +Φ dv = +ΦdvU dv D VΣ VΣ 0 dt VΣ ( ) { ϑφ ( )} Φ x, t dv = + dv ΦU dv ϑt VΣ Χρησιμοποιώντας το θεώρημα του Green D vσ VΣ SΣ t 1 x ( ξ, t ) ϑφ Φ ( x, t) dv = dv + ( ΦU) nds ϑt 1 V Σ t 2 x ( ξ, t ) 2 S Σ t 3 x ( ξ, t ) 3

18 Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΑΖΑΣ (ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ) Θα εφαρμόσουμε το θεώρημα του REYNOLDS για την περίπτωση που η ποσότητα Φ είναι βαθμωτή συνάρτηση και συγκεκριμένα όταν η Φ είναι η πυκνότητα του ρευστού dm ρ = m = ρ( ) dv V x,tdv Αν ο όγκος V είναι ένας σωματιδιακός (ή υλικός) όγκος, δηλαδή αν συνίσταται από τα ίδια σωματίδια, τότε με βάση την αρχή της διατήρησης της μάζας, η μάζα m πρέπει να διατηρείται σταθερή, οπότε η σωματιδιακή της παράγωγος πρέπει να μηδενίζεται, δηλ. πρέπει Dm D = ρ dv = 0 Vt ()

19 Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΑΖΑΣ (ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ) Εφαρμόζοντας το θεώρημα του REYNOLDS D Vt () Φ ( x, t) dv = D Vo Vt () { DΦ + Φ } dvu dv έχουμε Vt () ρ + ρ dvu dv = { D } O Dρ + ρ dvu = 0 Η εξίσωση συνέχειας, αποτελεί μια από τις βασικές εξισώσεις της θεωρητικής υδραυλικής Dρ ϑρ ϑρ + ρ dvu = + Ugradρ + ρ dvu = + dv ρu ϑt ϑt ( ) =0

20 Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΑΖΑΣ (ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ) Dρ ϑρ ϑρ + ρ dvu = + Ugradρ + ρ dvu = + dv ρu ϑt ϑt Ένα ρευστό που έχει την ίδια πυκνότητα ρ σε όλο το χώρο που καταλαμβάνει λέγεται ασυμπίεστο και ομογενές dvu = 0 Σε καρτεσιανό σύστημα συντεταγμένων ( ) =0 ( u) ( ) ( w) ϑρ ϑ ρ ϑ ρυ ϑ ρ = ϑt ϑx ϑy ϑz 0 για ασυμπίεστο ομογενές ρευστό ϑu ϑυ ϑw + + = 0 ϑx ϑy ϑz

21 ΡΟΪΚΗ ΣΥΝΑΡΤΗΣΗ Για απλότητα θα περιοριστούμε στην περίπτωση ασυμπίεστου ρευστού και επίπεδης κίνησης. Η εξίσωση συνέχειας γράφεται : ϑu ϑυ + = 0 ϑx ϑy αν βρούμε μια συνάρτηση ψ(x,y,t) τέτοια ώστε: u( x,y,t) = ϑψ( x, y, t) ϑy υ ( x, y, t) ϑψ( x, y, t) = ϑx τότε η εξίσωση της συνέχειας ικανοποιείται αυτομάτως. Η συνάρτηση αυτή ψ(x,y,t) λέγεται ροϊκή συνάρτηση του πεδίου ταχυτήτων (u,υ). Η εισαγωγή της ροϊκής συνάρτησης βοηθά με τους εξής δύο τρόπους: α) ικανοποιείται αυτομάτως η εξίσωση συνέχειας β) αντί να έχουμε δύο συναρτήσεις, τις u(x,y,t) και υ(x,y,t), έχουμε μόνο μία, την ψ(x,y,t). Το ερώτημα στο οποίο θα δώσουμε απάντηση είναι: Μπορούμε να βρούμε την ψ για κάθε πεδίο ταχυτήτων που ικανοποιεί την εξίσωση συνέχειας; Η απάντηση είναι καταφατική.

22 Σε οποιαδήποτε χρονική στιγμή t μπορούμε να υπολογίσουμε τη συνάρτηση ψ(x,y,t) και να σχεδιάσουμε μια οικογένεια καμπυλών: ψ(x,y,t) = c, όπου η σταθερά c παίρνει διάφορες τιμές. Κατά μήκος της καμπύλης ψ(x,y,t) = c (όπου η σταθερά c παίρνει μια συγκεκριμένη τιμή), έχουμε:dψ =0 ή ϑψ ϑψ dψ = dx+ dy x y dψ = υ dx + udy = 0 ϑ ϑ πάνω στην καμπύλη ψ=σταθερό dx u dy = υ Αυτό σημαίνει ότι οι εφαπτόμενες των γραμμών ψ=σταθ. έχουν τοπικά τη διεύθυνση της ταχύτητας για κάθε χρονική στιγμή. Συνεπώς η ροή γίνεται πάντα κατά τη ψ=σταθ., ποτέ κάθετα σ αυτές. διεύθυνση των γραμμών, Βεβαίως, αν η ροή είναι μη μόνιμη τότε οι γραμμές ψ=σταθ. αλλάζουν κάθε χρονική στιγμή

23 Σε μια οποιαδήποτε επίπεδη ροή ενός ασυμπίεστου ρευστού, όπως στο σχήμα, ας θεωρήσουμε τη μάζα ανά μονάδα χρόνου (παροχή) που περνά από μια τυχούσα καμπύλη ΑΒΡ (στη πραγματικότητα από μια κυλινδρική επιφάνεια μοναδιαίου βάθους). Υποθέτουμε ότι τα σημεία Α και Ρ βρίσκονται επί των γραμμών ψ=c A και ψ=c P αντιστοίχως, όπου C A,C P σταθερές. Η παροχή που περνά από το στοιχειώδες τμήμα d1 της καμπύλης ΑΒΡ από αριστερά προς τα δεξιά είναι προφανώς ρ(udy - vdx)

24 Συνεπώς η ολική παροχή που περνά από την καμπύλη ΑΒΡ για οποιαδήποτε χρονική στιγμή δίνεται από το επικαμπύλιο ολοκλήρωμα: P Q = ρ ( udy υdx) AP A P P Q = ρ ϑψ dy ϑψ dx + = ρ dψ = ρψ x,y,t ρψ x,y,t ϑ ( ) ( ) AP P P A A y ϑx A A Συνεπώς η μεταβολή της ψ μεταξύ δύο γραμμών ροής δίνει την παροχή που περνά ανάμεσα στις δύο γραμμές ροής. Σχετικά με το πρόσημο, ισχύει ο ακόλουθος κανόνας: όταν η ψ αυξάνει κατά την +y διεύθυνση, η ροή πραγματοποιείται κατά την θετική φορά των x, ήτοι εξ αριστερών προς τα δεξιά. Η παροχή που περνά ανάμεσα στις καμπύλες ψ =C 1 και ψ =C 2 (όπου C 1 και C 2 σταθερές) είναι Q=ρ(C 2 -C 1 ).

25 ΤΑΝΥΣΤΗΣ ΤΑΧΥΤΗΤΩΝ ΠΑΡΑΜΟΡΦΩΣΗΣ ΚΑΙ ΤΑΝΥΣΤΗΣ ΠΕΡΙΣΤΡΟΦΗΣ Ας θεωρήσουμε δύο σημεία Ρ και Q με σωματιδιακές συντεταγμένες ξ και ξ+dξ («ονόματα των σωματιδίων» τη χρονική στιγμή t = 0). Ύστερα από κάποιο χρονικό διάστημα t βρίσκονται στις θέσεις x(ξ,t) και x(ξ+dξ,t) αντίστοιχα. Αναπτύσσουμε σε σειρά γύρω από το (ξ,t): x ξ + d ξ,t = x ξ,t + dξ + dx ϑx ( ) ( ) j ϑξj Οι εννέα ποσότητες ϑx ϑξ j αποτελούν τις συνιστώσες ενός τανυστή δεύτερης τάξης. ϑx = dξ ϑξ j j Kαλείται τανυστής παραμόρφωσης και αποτελεί βασική θεωρία ελαστικότητας. έννοια στη

26 Για τις κινήσεις ενός ρευστού μας ενδιαφέρει η παραμόρφωση ανοιγμένη στη μονάδα του χρόνου, οπότε διαιρούμε τα δύο μέλη με το χρόνο dt, και έχουμε : du = dξj ϑξ j Αντικαθιστώντας το dξ j προκύπτει: ϑu ϑu ϑξ = = ϑu j du dxκ dxκ ϑξj ϑxκ ϑxκ Είναι φανερό ότι οι εννέα συνιστώσες του αποτελούν τις συνιστώσες ενός τανυστή. ϑ ϑ U x κ Οτανυστής αυτός μπορεί να αναλυθεί σε δύο όρους, ένα συμμετρικό και ένα αντισυμμετρικό. ϑu 1 U U 1 U U ϑ ϑ ϑ ϑ ϑx 2 ϑx ϑx 2 ϑx ϑx j j = + + = j +Ωj j j j e

27 Είναι γνωστό από τη μηχανική ότι μια σχέση μεταξύ ταχύτητας du και σχετικής θέσης dx j μορφής j j σχετικής παριστάνει μια περιστροφή στερεού σώματος με γωνιακή ταχύτητα 1 1 ϑuκ ή ω = EjκΩ jκ = Ejκ 2 2 ϑx j Κατά συνέπεια, το αντισυμμετρικό μέρος Ω j παριστάνει περιστροφή στερεού σώματος. Το συμμετρικό μέρος e j του τανυστή παριστάνει την πραγματική παραμόρφωση του ρευστού και καλείται τανυστής ταχυτήτων παραμόρφωσης. Ο μηδενισμός του τανυστή ταχυτήτων παραμόρφωσης σημαίνει ότι η κίνηση είναι χωρίς παραμόρφωση, δηλαδή κίνηση στερεού (μεταφορά και περιστροφή). Ο τανυστής ταχυτήτων παραμόρφωσης, διαδραματίζει βασικό ρόλο στην μηχανική των ρευστών ω = 1 rotu 2 du = Ω dx

28 Μπορεί να αποδειχθεί ότι μία μικρή σφαίρα γύρω από το σωματίδιο ενός ρευστού σε κίνηση, παραμορφώνεται σε ένα ελλειψοειδές, του οποίου οι κύριοι άξονες δεν είναι γενικά παράλληλοι προς τους κυρίους άξονες του τανυστή ταχυτήτων παραμόρφωσης, της αρχικής σφαίρας. Μια τυχαία κίνηση ενός ρευστού μπορεί να αναλυθεί σε κάθε σημείο του ρευστού και για μικρά χρονικά διαστήματα σε μια ομοιόμορφη μεταφορά, σε μια μεταβολή μήκους κατά τρεις αμοιβαία κάθετους άξονες και σε μια στερεά περιστροφή αυτών των αξόνων. Στην ειδική περίπτωση που η κίνηση είναι τέτοια ώστε ϑu 0 ή ϑ ϑ rotu = 0 ϑu j Ω j = = xj x για κάθε σημείο του ρευστού, τότε προφανώς οι άξονες του ελλειψοειδούς γύρω από το σωματίδιο παραμένουν παράλληλοι προς τους κύριους άξονες του τανυστή ταχυτήτων παραμόρφωσης. Στην περίπτωση αυτή η κίνηση καλείται αστρόβιλη (rrotatonal)

29 Σε αντίθετη περίπτωση δηλ. όταν rotu 0 η κίνηση λέγεται στροβιλώδης (rotatonal).

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :

Διαβάστε περισσότερα

u u u u u u u u u u u x x x x

u u u u u u u u u u u x x x x Βασικοί συµβολισµοί και σχέσεις ϕ ϕ ui & ϕ=, ϕ, i=, ui, j= t x x u1 u1 u1 x1 x2 x u 3 1, 1 ui, j ui, j u1, 1 ui, j ui, j u u u u u u u u u u u i 2 2 2 i, j= = i, j 2, 2 i, j = i, j 2, 2 i, j = x j x1 x2

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ Στην αρχική περιοχή

Διαβάστε περισσότερα

p = p n, (2) website:

p = p n, (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ ΑΣΥΜΠΙΕΣΤΗ ΚΑΙ ΑΣΤΡΟΒΙΛΗ ΡΟΗ Μία ροή αποκαλείται αστρόβιλη, όταν ισχύει η σχέση ro όπου 3 3 3 3 3 e e e ro Η απόδειξη της παραπάνω σχέσης δεν αποτελεί αντικείμενο της εξέτασης Αποδείξαμε

Διαβάστε περισσότερα

Εφαρμοσμένη Υδραυλική. ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ

Εφαρμοσμένη Υδραυλική. ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ Εφαρμοσμένη Υδραυλική Πατήστε για προσθήκη Γ. Παπαευαγγέλου κειμένου ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ 1 Εισαγωγή Ρευστομηχανική = Μηχανικές ιδιότητες των ρευστών (υγρών και αερίων) Υδρομηχανική

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

Σχολή Μηχανολόγων Μηχανικών - Μηχανική των Ρευστών Ι Ακαδ. Έτος Άσκηση 2, Καθηγητής Σ. Τσαγγάρης ΑΣΚΗΣΗ 2

Σχολή Μηχανολόγων Μηχανικών - Μηχανική των Ρευστών Ι Ακαδ. Έτος Άσκηση 2, Καθηγητής Σ. Τσαγγάρης ΑΣΚΗΣΗ 2 Σχολή Μηχανολόγων Μηχανικών - Μηχανική των Ρευστών Ι Ακαδ. Έτος 3-4- Άσκηση, Πεδίο ταχυτήτων : u=, v=6x ΑΣΚΗΣΗ ) Ενα στοιχείο του ρευστού, κινούµενο στο πεδίο ταχυτήτων µεταφέρεται, περιστρέφεται και παραµορφώνεται

Διαβάστε περισσότερα

Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ

Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική μας ικανότητα του Φυσικού Χώρου, μας οδηγεί στον προσδιορισμό των σημείων του, μέσω τριών ανεξαρτήτων παραμέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή

Διαβάστε περισσότερα

Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.

Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Η εργασία δημοσιεύτηκε στο 9ο τεύχος του περιοδικού Φυσικές Επιστήμες στην Εκπαίδευση,

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διαφορική ανάλυση ροής

Διαφορική ανάλυση ροής Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Πολικές Συντεταγμένες Κυλινδρικές Συντεταγμένες Σφαιρικές Συντεταγμένες Στοιχειώδεις Όγκοι ΠΑΡΑΓΩΓΙΣΗ Ιδιότητες

Διαβάστε περισσότερα

Λύσεις στο επαναληπτικό διαγώνισμα 3

Λύσεις στο επαναληπτικό διαγώνισμα 3 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή

Διαβάστε περισσότερα

Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli

Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική - γενικά Ρευστά σε κίνηση Τμήματα με διαφορετικές ταχύτητες και επιταχύνσεις Αλλαγή μορφής

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

v = 1 ρ. (2) website:

v = 1 ρ. (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z Οκτώβριος 2017 Ν. Τράκας ΜΑΘΗΜΑΤΙΚΟ ΒΟΗΘΗΜΑ ΔΙΑΝΥΣΜΑΤΑ Διάνυσμα: κατεύθυνση (διεύθυνση και ϕορά) και μέτρο. Συμβολισμός: A ή A. Αναπαράσταση μέσω των συνιστωσών του: A = (A x, A y ) σε 2-διαστάσεις και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών. «Μηχανική Συνεχούς Μέσου» (ΕΜ257) Εαρινό Εξάμηνο , Διδάσκων: Ι.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών. «Μηχανική Συνεχούς Μέσου» (ΕΜ257) Εαρινό Εξάμηνο , Διδάσκων: Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών «Μηχανική Συνεχούς Μέσου» (ΕΜ57) Εαρινό Εξάμηνο 008-09 Διδάσκων: Ι Τσαγράκης ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ 1 μια βάση του Ευκλείδειου χώρου E Δείξτε ότι τα διανύσματα

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Αναπλ. Καθηγητής ΚΕΦΑΛΑΙΟ 5 ΣΤΡΩΤΗ ΡΟΗ ΓΥΡΩ ΑΠΟ ΣΤΕΡΕΗ ΣΦΑΙΡΑ ΓΙΑ ΜΙΚΡΟΥΣ ΑΡΙΘΜΟΥΣ REYNOLDS

Διαβάστε περισσότερα

6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ

6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ 6.1 ΚΙΝΗΜΑΤΙΚΗ ΡΟΪΚΟΥ ΣΤΟΙΧΕΙΟΥ 6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ -Λεπτοµέρειες της ροής Απειροστός όγκος ελέγχου - ιαφορική Ανάλυση Περιγραφή πεδίων ταχύτητας και επιτάχυνσης Euleian, Lagangian U U(x,y,,t)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2 Περιεχόμενα Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης Σειρά ΙΙ 2 Πεδίο ταχύτητας Όγκος Ελέγχου Καρτεσιανές Συντεταγμένες w+(/)dz z y u dz u+(/ x)dx x dy dx w Σειρά ΙΙ 3 1. Εισαγωγή 1.1 Εξίσωση

Διαβάστε περισσότερα

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1. ΕΙΣΑΓΩΓΗ Γράφημα μιας πραγματικής συνάρτησης : ή ( )/ σύνολο: f Οι θέσεις του κινητού σημείου G ( x, y)/ y f( x), xa. f A y f x A είναι το M x, y, ώστε

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που

Διαβάστε περισσότερα

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ETION 1 13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 13.1 Ορισµοί Μεγέθη Μια ποσότητα που εκφράζεται από ένα µόνο πραγµατικό αριθµό καλείται βαθµωτό µέγεθος. Μια ποσότητα που εκφράζεται από περισσότερους από έναν πραγµατικούς

Διαβάστε περισσότερα

EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA

EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA Kefˆlaio 9 EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA Σημειώσεις Γ. Γεωργίου, ΜΑΣ 1. 9.1 EpikampÔlia oloklhr mata Ορισμός Εστω f : R R βαθμωτό πεδίο συνεχές στη 1 καμπύλη σ : [a, b] R. ολοκλήρωμα α είδους

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΑΙ ΑΡΧΕΣ ΣΥΓΚΕΝΤΡΩΣΗ ΡΥΠΟΥ Έστω η συγκέντρωση

Διαβάστε περισσότερα

Ανασκόπηση εννοιών ρευστομηχανικής

Ανασκόπηση εννοιών ρευστομηχανικής Υδραυλική &Υδραυλικά Έργα Ανασκόπηση εννοιών ρευστομηχανικής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Φωτογραφίες σχηματισμού σταγόνων νερού Φωτογραφίες schlieren θερμικά

Διαβάστε περισσότερα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Σακελλάριος 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης

Διαβάστε περισσότερα

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης. Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 1 ( 1, 1 ) ορθογωνίου συστήματος r1 1 1 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ (, ) ορθογωνίου συστήματος r ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 3 ( 3, 3 ) ορθογωνίου συστήματος r3 3 3 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 4 ( 4, 4

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) Με τις Εξισώσεις Κίνησης αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Οι εξισώσεις αυτές προκύπτουν από τη

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης

Διαβάστε περισσότερα

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής

Διαβάστε περισσότερα

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση Έστω διάνυσμα a( t a ( t i a ( t j a ( t k Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει a( t Δt a ( t Δt i a ( t Δt j a ( t Δt k Εξετάζουμε την παράσταση z z a( t Δt - a( t Δa a ( t Δt - a ( t lim

Διαβάστε περισσότερα

Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή

Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Εισαγωγή στην Αστρόβιλη Άκυκλη Ροή Άδεια Χρήσης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Επικαμπύλιο Ολοκλήρωμα

Διαβάστε περισσότερα

Ακουστικό Ανάλογο Μελανών Οπών

Ακουστικό Ανάλογο Μελανών Οπών Ακουστικό Ανάλογο Μελανών Οπών ιάδοση ηχητικών κυµάτων σε ρευστά. Ηχητικά κύµατα σε ακίνητο ρευστό. Εξίσωση συνέχειας: ρ t + ~ (ρ~v) =0 Εξίσωση Euler: ~v t +(~v ~ )~v = 1 ρ ~ p ( ~ Φ +...) Μικρές διαταραχές:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ Ενότητα 1: Στοιχεία Διανυσματικού Λογισμού Σκορδύλης Εμμανουήλ Καθηγητής Σεισμολογίας,

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( ) Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Βασικές Έννοιες Μέχρι στιγμής αντιμετωπίζαμε κάθε σώμα που μελετούσαμε την κίνηση του ως υλικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - Τμήμα Εφαρμοσμένων Μαθηματικών «Μαθηματική Θεωρία Υλικών ΙΙ» (ΕΜ5) Εαρινό Εξάμηνο 007-08, Διδάσκων: Ι Τσαγράκης Ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ (ΕΠΑΝΑΛΗΨΗ ΣΤΗ «ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι») μια

Διαβάστε περισσότερα

Εξισώσεις Κίνησης (Equations of Motion)

Εξισώσεις Κίνησης (Equations of Motion) Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια

Διαβάστε περισσότερα

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος)

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος) Αν σε σύστημα που διατηρείται σε σταθερές συνθήκες κάνουμε Ν παρατηρήσεις και από αυτές στις Ν Α παρατηρήθηκε το γεγονός Α, τότε λέμε ότι η πιθανότητα να συμβεί αυτό το γεγονός δίνεται από τη σχέση: P

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΡΕΥΣΤΩΝ. Α. Παϊπέτης. 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών

ΚΙΝΗΜΑΤΙΚΗ ΡΕΥΣΤΩΝ. Α. Παϊπέτης. 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΚΙΝΗΜΑΤΙΚΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Η κινηματική είναι η μελέτη της κίνησης χωρίς να λαμβάνονται υπόψη τα αίτια που την προκαλούν (δυνάμεις, ροπές) Η μελέτη της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ Ορισμός. Αν τα και είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα η συνάρτηση που ορίζεται από τη σχέση όπου (συνιστώσες) είναι

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i, Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον

Διαβάστε περισσότερα

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3) Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα

Διαβάστε περισσότερα

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις

Διαβάστε περισσότερα

Τα θέματα συνεχίζονται στην πίσω σελίδα

Τα θέματα συνεχίζονται στην πίσω σελίδα ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ ΑΚΑΔ. ΕΤΟΣ 16-17 Διδάσκων : Χ. Βοζίκης Τ. Ε. Ι. ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής

Διαβάστε περισσότερα

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ SECTION 4 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 4. Γενικοί Ορισµοί Η θέση ενός σηµείου P στον τρισδιάστατο Ευκλείδειο χώρο µπορεί να καθορισθεί µε ορθογώνιες καρτεσιανές συντεταγµένες (x y οι οποίες µετριώνται

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα

(x(x 2 + y 2 + z 2 ) 1/2,y(x 2 + y 2 + z 2 ) 1/2,z(x 2 + y 2 + z 2 ) 1/2) =0 x y z. div A =0

(x(x 2 + y 2 + z 2 ) 1/2,y(x 2 + y 2 + z 2 ) 1/2,z(x 2 + y 2 + z 2 ) 1/2) =0 x y z. div A =0 1 Pìblhma 1 α) gad = (x 2 + y 2 + z 2 ) 1/2 = (x(x 2 + y 2 + z 2 ) 1/2,y(x 2 + y 2 + z 2 ) 1/2,z(x 2 + y 2 + z 2 ) 1/2) β) = div = x x + y y + z z =3 cul = x y z γ) Εχουμε A = ω x ω y ω z x y z =(ω yz

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

dv 2 dx v2 m z Β Ο Γ

dv 2 dx v2 m z Β Ο Γ Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον

Διαβάστε περισσότερα

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000 Τµήµα Π Ιωάννου & Θ Αποστολάτου 2/2000 Μηχανική ΙI Λογισµός των µεταβολών Προκειµένου να αντιµετωπίσουµε προβλήµατα µεγιστοποίησης (ελαχιστοποίησης) όπως τα παραπάνω, όπου η ποσότητα που θέλουµε να µεγιστοποιήσουµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Καρτεσιανό Σύστηµα y. y A. x A

Καρτεσιανό Σύστηµα y. y A. x A Στη γενική περίπτωση µπορούµε να ορίσουµε άπειρα συστήµατα συντεταγ- µένων τα οποία να µας επιτρέπουν να προσδιορίσουµε τη θέση ενός σηµείου. Στη Φυσική χρησιµοποιούνται αρκετά. Τα βασικά από αυτά θα εξετάσουµε

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα