1. Εισαγωγή. 2. Τεχνικές και «κρατούμενα»

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Εισαγωγή. 2. Τεχνικές και «κρατούμενα»"

Transcript

1

2 1. Εισαγωγή Η προσέγγιση των Μαθηματικών της Β Δημοτικού από το παιδί προϋποθέτει την κατανόηση των μαθηματικών εννοιών που παρουσιάστηκαν στην Α Δημοτικού και την εξοικείωση του παιδιού με τις πράξεις (πρόσθεση και αφαίρεση) στο σύνολο των αριθμών 1 ως 20. Τα Μαθηματικά έχουν μιαν απόλυτη συνέχεια. Χτίζονται λιθαράκι-λιθαράκι, το ένα πάνω στο άλλο, και δεν είναι δυνατόν να προχωρήσει κανείς χωρίς να έχει κατανοήσει τις προηγούμενες έννοιες και να έχει εξοικειωθεί με την ύλη που έχει ήδη παρουσιαστεί. Αν, λοιπόν, το παιδί δεν είναι έτοιμο ακόμα να προχωρήσει στα Μαθηματικά της Β Δημοτικού, θα πρέπει (τουλάχιστον για τρεις-τέσσερις βδομάδες) να ασχοληθεί συστηματικά με τον τρόπο που αναφέρεται στο βιβλίο μας «Μαθηματικά Α Δημοτικού». Η ύλη της Β τάξης περιλαμβάνει τις τέσσερις πράξεις (πρόσθεση, αφαίρεση, πολλαπλασιασμό και διαίρεση) με τους αριθμούς 1 ως 100. Περιλαμβάνει, επίσης, τις πρώτες γεωμετρικές έννοιες και την πρώτη «ανάγνωση» της ώρας (του ρολογιού). 2. Τεχνικές και «κρατούμενα» Στη Β τάξη διατίθεται αρκετός χρόνος για την εξάσκηση και την ανάπτυξη της τεχνικής των πράξεων. Το γεγονός αυτό δεν θα πρέπει να μας κάνει να χάνουμε τον πραγματικό στόχο μας, που είναι να κατανοήσει το παιδί τις μαθηματικές έννοιες. Ο πιο συνηθισμένος κίνδυνος βρίσκεται στην πρόσθεση και την αφαίρεση με «κρατούμενα». Ο κίνδυνος συνίσταται στην προσπάθεια πολλών εκπαιδευτικών να διδάσκουν την τεχνική με τα «κρατούμενα» χωρίς να επιμένουν όσο χρειάζεται στην κατανόηση της σημασίας αυτών των «κρατούμενων» ιδιαίτερα στην αφαίρεση. Θα πρέπει να γνωρίζουμε ότι μια τεχνική μπορεί να κατακτηθεί οποτεδήποτε ακόμα και αργότερα (σε μεγαλύτερη τάξη). Αν, όμως, δεν έχει κατανοηθεί η αντίστοιχη έννοια πριν κατακτηθεί η τεχνική τότε το παιδί δεν θα γίνει ποτέ ικανό να καταλάβει τι πραγματικά κάνει ακολουθώντας τη σχετική τεχνική. Δεν θα πρέπει να ξεχνάμε ότι αυτό που μας ενδιαφέρει κυρίως είναι η κατανόηση των λογικο-μαθηματικών εννοιών. Από την έγκαιρη κατανόηση αυτών των εννοιών θα εξαρτηθεί αποκλειστικά η δυνατότητα προσέγγισης των

3 Μαθηματικών από το παιδί. Και θα πρέπει να γνωρίζουμε πως, αν ένα παιδί κατανοήσει κάποιες λογικο-μαθηματικές έννοιες, τότε είναι πολύ εύκολο να κατακτήσει στη συνέχεια και τις αντίστοιχες τεχνικές. 3. Η έννοια του χρόνου Ο χρόνος είναι μία από τις δυσκολότερες έννοιες. Αποτελεί συνδυασμό φυσικών και μαθηματικών εννοιών που αποκτούν νόημα για τον άνθρωπο μόνο μέσα από τα βιώματα της ζωής του. Ακόμα και για έναν ενήλικο δεν σημαίνει σχεδόν τίποτα ένα χρονικό διάστημα, ας πούμε, τριών εκατομμυρίων ετών. Ένα άτομο 40 χρόνων μπορεί να έχει συνείδηση των τελευταίων 20 ετών, όχι όμως και των τελευταίων ετών. Επίσης, η αίσθηση του χρόνου από τον άνθρωπο είναι πολύ σχετική: όταν ασχολούμαστε με κάτι που μας αρέσει, ο χρόνος μοιάζει να περνάει πολύ γρήγορα. Αντίθετα, αν αυτό που κάνουμε δεν μας αρέσει, ο χρόνος φαίνεται να περνάει βασανιστικά αργά. Υπάρχει, όμως, έξω από μας, ο «αντικειμενικός» χρόνος, ο χρόνος που περνάει με σταθερό ρυθμό, ανεξάρτητα από την αίσθηση που κάθε φορά μας αφήνει, ο χρόνος της ημέρας που τον έχουμε διαιρέσει σε ώρες, λεπτά και δευτερόλεπτα. Η προσέγγιση της έννοιας του χρόνου από το παιδί πρέπει να γίνει σταδιακά και με προσοχή. Ο κανόνας είναι: αρχίζουμε από το «εδώ και τώρα» και προχωράμε σιγά-σιγά στο «αλλού και άλλοτε». Φυσικά, η επαφή του παιδιού με την έννοια του χρόνου έχει αρχίσει πολύ νωρίτερα συνδυαζόμενη με τον ύπνο του. Όταν ξυπνάει από τον βραδινό ύπνο βρίσκεται σε μια νέα μέρα, ενώ όταν ξυπνάει από τον μεσημεριανό ύπνο βρίσκεται στην ίδια μέρα (είναι απόγευμα). Ακόμα δυσκολεύεται να προσδιορίσει αν προτού κοιμηθεί ήταν η χθεσινή μέρα ή το πρωί της σημερινής. Σιγά-σιγά το παιδί αρχίζει να αντιλαμβάνεται τις έννοιες του σήμερα, του χθες και του αύριο και, αργότερα, τις έννοιες του προχθές και του μεθαύριο. Τώρα, όμως, έρχεται η ανάγκη ενός πιο συγκεκριμένου προσδιορισμού του χρόνου με τη βοήθεια της ώρας (και των λεπτών της ώρας). Τι ώρα πρέπει να βρίσκεται στο σχολείο; Τι ώρα θα φάει; Τι ώρα πρέπει να κοιμηθεί; Είναι η κατάλληλη στιγμή για να δώσουμε στο παιδί ένα ρολόι του χεριού (υπάρχουν σήμερα ωραία και φθηνά παιδικά ρολόγια). Τι είδους ρολόι, όμως, θα δώσουμε στο παιδί; Υπάρχουν τα ψηφιακά ρολόγια, που δείχνουν την ώρα με τη μορφή ενός αριθμού:

4 Φυσικά, τα παιδιά προτιμούν τα ρολόγια αυτού του είδους γιατί έχουν την ψευδαίσθηση ότι μπορούν να «διαβάσουν» την ώρα, αφού ξέρουν να διαβάζουν δύο διψήφιους αριθμούς. Στην πραγματικότητα, βέβαια, δεν καταλαβαίνουν αυτό που διαβάζουν δεν αισθάνονται τον χρόνο. Τι σημαίνει για ένα παιδί «21:53»; Τίποτα. Και το πρόβλημα είναι πως, αν το παιδί χρησιμοποιεί ένα τέτοιο ρολόι, όχι μόνο θα αργήσει πολύ να μάθει να «διαβάζει» ένα «παραδοσιακό» ρολόι, αλλά και δεν θα μπορέσει να αποκτήσει την αίσθηση του χρόνου. Γι αυτό, θα πρέπει να του δώσουμε ένα ρολόι με δείκτες, ακόμα και αν στην αρχή δεν μπορεί να «διαβάσει» αυτό το ρολόι: Σιγά-σιγά το παιδί θα μάθει να «διαβάζει» την ώρα σ αυτό το ρολόι. Εκείνα που θα πρέπει να προσέξουμε αγοράζοντας το ρολόι είναι τα εξής: α) η επιφάνεια του ρολογιού να είναι «καθαρή», χωρίς πολύπλοκα σχέδια και χρώματα, β) οι ώρες να παρουσιάζονται με ευανάγνωστους αραβικούς αριθμούς (1, 2, 3, ) και όχι με λατινικούς αριθμούς (Ι, ΙΙ, ΙΙΙ, ) ή με απλές γραμμές και γ) το ρολόι να έχει μόνο τις βασικές λειτουργίες (και όχι διάφορες εξεζητημένες λειτουργίες). 4. Οι γεωμετρικές έννοιες Στη Β τάξη αρχίζουν να εμφανίζονται οι πρώτες γεωμετρικές έννοιες. Μαζί με τις έννοιες εμφανίζεται και η αντίστοιχη ορολογία. Όχι μόνο δεν πρέπει να διστάζετε να χρησιμοποιείτε την ορολογία αυτή με το παιδί, αλλά είναι αναγκαία η σωστή χρήση της.

5 ΟΔΗΓΙΕΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Σελ. 1. Το παιδί θα πρέπει να ενώσει με τη σειρά τα σημεία ξεκινώντας από τον μικρότερο αριθμό. Θα χρησιμοποιήσει μολύβι και χάρακα. Σελ. 2 ως 7. Επαναληπτικές ασκήσεις από την ύλη της Α τάξης. Υπενθυμίζουμε ότι στην πρόσθεση πρέπει να καθοδηγούμε το παιδί να βάζει πάντα πρώτο (στον νου του) τον μεγαλύτερο από τους δύο αριθμούς που θέλει να προσθέσει, ανεξάρτητα από τη σειρά με την οποία είναι γραμμένοι. Σελ. 8. Το παιδί συμπληρώνει τους δύο πίνακες της πρόσθεσης. Ο πρώτος πίνακας είναι απλός: σε κάθε λευκό τετράγωνο θα πρέπει να γραφτεί το άθροισμα των αριθμών που βρίσκονται στις αρχές της αντίστοιχης στήλης και της αντίστοιχης γραμμής. Για παράδειγμα, στο πρώτο λευκό τετραγωνάκι της πρώτης γραμμής πρέπει να γραφτεί ο αριθμός 12, που είναι το άθροισμα του 7 και του 5. Δεξιά του πρέπει να γραφτεί ο αριθμός 14, που είναι το άθροισμα του 9 και του 5 κ.ο.κ.: Ο δεύτερος πίνακας είναι πιο δύσκολος (μοιάζει με σταυρόλεξο). Για να συμπληρωθεί χρειάζεται να υπολογιστούν αρχικά η πρώτη οριζόντια και η πρώτη κατακόρυφη λωρίδα. Ξεκινώντας από την προτελευταία οριζόντια λωρίδα, παρατηρούμε ότι το πρώτο λευκό τετράγωνο πρέπει να έχει τον αριθμό 0, ώστε 0+1=1 (τελευταίο τετράγωνο). Το πρώτο τετράγωνο της δεύτερης οριζόντιας λωρίδας πρέπει να είναι 7, ώστε 7+9=16. Το πρώτο τετράγωνο της δεύτερης κατακόρυφης λωρίδας πρέπει να είναι 6, ώστε 2+6=8, και το πρώτο τετράγωνο της τρίτης κατακόρυφης λωρίδας πρέπει να είναι 5, ώστε 0+5=5:

6 Σελ. 9. Οι λύσεις των προβλημάτων: = =9, 9-5= =13, 13-4= =10, 7+10= =6, 9+6=15 Σελ. 10. Μονοψήφιοι και διψήφιοι αριθμοί. Το παιδί συμπληρώνει την άσκηση όπως στο παράδειγμα της πρώτης γραμμής. Οι αριθμοί 8 και 3 έχουν 0 δεκάδες. Σελ. 11. Πρόσθεση με «κρατούμενα». Στα παραδείγματα το παιδί βλέπει ότι δέκα από τις μονάδες σχηματίζουν μία νέα δεκάδα. Αυτή τη δεκάδα, που σχηματίζεται όταν προσθέσουμε τις μονάδες, την «κρατάμε» στον νου μας για να την προσθέσουμε στις δεκάδες. Στο πρώτο παράδειγμα έχουμε να προσθέσουμε τους αριθμούς 17 και 15. Ο αριθμός 17 έχει 7 μονάδες και ο αριθμός 15 έχει 5 μονάδες. Η πρόσθεση των 7 και των 5 μονάδων δίνει τον αριθμό 12, δηλαδή μια νέα δεκάδα (αυτή που σχηματίζεται από το άθροισμα των 7 μονάδων του πρώτου αριθμού και των 3 από τις 5 μονάδες του δεύτερου αριθμού) και 2 μονάδες (αυτές που «περισσεύουν» από τις 5 μονάδες του δεύτερου αριθμού). Επομένως, το άθροισμα θα έχει 2 μονάδες και 3 δεκάδες (τις δύο δεκάδες των αριθμών 17 και 15 και τη μία δεκάδα που σχηματίστηκε από τις 7+3 μονάδες των αριθμών αυτών). Σελ. 12. Το παιδί συμπληρώνει τις πράξεις, εξηγώντας τι ακριβώς σκέφτεται (με τη δική μας βοήθεια). Στην τρίτη άσκηση το καθοδηγούμε να ξεκινήσει την πρόσθεση των μονάδων από τον δεύτερο αριθμό, αφού αυτός έχει τις περισσότερες μονάδες. Σελ. 13. Αφαίρεση διψήφιου ή μονοψήφιου αριθμού από διψήφιο (χωρίς «δανεισμό»). Στα τρία παραδείγματα το παιδί βλέπει ότι πρέπει να αφαιρέσει χωριστά τις δεκάδες και χωριστά τις μονάδες. Το καθοδηγούμε να ξεκινάει πρώτα από την αφαίρεση των μονάδων. Βλέπει, για άλλη μια φορά, ότι ο πρώτος αριθμός ενός διψήφιου έχει διαφορετική αξία (εκφράζει δεκάδες) από εκείνη που έχει ο δεύτερος αριθμός (που εκφράζει μονάδες). Σελ. 14. Το παιδί συμπληρώνει τις ασκήσεις. Σελ. 15. Αφαίρεση με «δανεισμό». Είναι ίσως η δυσκολότερη πράξη που πρέπει να κατανοήσει ένας μαθητής της Β τάξης. Ας δούμε το πρώτο παράδειγμα:

7 Από τον αριθμό 35 πρέπει να αφαιρέσουμε τον αριθμό 18. Πρέπει, λοιπόν, να αρχίσουμε αφαιρώντας τις μονάδες, δηλαδή πρέπει να αφαιρέσουμε τον αριθμό 8 από τον αριθμό 5. Αυτό, φυσικά, δεν μπορεί να γίνει, αφού το 5 είναι μικρότερο από το 8 πώς θα πάρουμε 8 μονάδες από τις 5; Για να αντιμετωπίσουμε αυτό το πρόβλημα, παίρνουμε μία δεκάδα από τον αριθμό 35, την οποία χωρίζουμε σε 8 και 2. Έτσι, αφαιρούμε τις 8 μονάδες του αριθμού 18 από τις 8 μονάδες της «σπασμένης» δεκάδας. Μας μένουν, λοιπόν, 2 μονάδες της «σπασμένης» δεκάδας, καθώς και οι 5 αρχικές μονάδες του αριθμού 35, δηλαδή μας μένουν συνολικά 7 μονάδες) όσες προκύπτουν από την αφαίρεση 15-8=7). Στη συνέχεια πρέπει να αφαιρέσουμε τις δεκάδες. Ο αριθμός 18 έχει μία δεκάδα, που πρέπει να αφαιρεθεί από τις τρεις δεκάδες του αριθμού 35. Έχουμε, όμως, ξοδέψει ήδη μία δεκάδα από τον αριθμό 35. Επομένως, αφαιρούμε συνολικά 1+1=2 δεκάδες από τις 3 δεκάδες του αριθμού 35. Άρα το αποτέλεσμα θα είναι 3-2=1 δεκάδα. Έτσι, το υπόλοιπο της αφαίρεσης του αριθμού 18 από τον αριθμό 35 είναι: 35-18=17. Σελ. 16. Το παιδί συμπληρώνει τις ασκήσεις σύμφωνα με τα παραδείγματα της σελίδας 15. Σελ. 17. Πρόσθεση τεσσάρων αριθμών με ένα «κρατούμενο» Σελ. 18 και 19. Προσοχή: Τα κομμάτια δεν έχουν την ίδια κατεύθυνση με εκείνη της εικόνας (έχουν στραφεί κατά 90 ή 180 μοίρες). Η αντιστοιχία τους είναι η εξής:

8 Τα τετραγωνάκια από τα οποία αποτελείται κάθε κομμάτι είναι: Σελ. 20. Οι λύσεις των προβλημάτων: = = =21, 50-21=29 ή 50-14=36, 36-7= =75, 82-75=7 ή 82-36=46, 46-39= =82, =18 Σελ. 21. Το παιδί συμπληρώνει τις ασκήσεις (πολλαπλασιασμός). Σελ. 22. Παρουσίαση του «κατακόρυφου» πολλαπλασιασμού. Στο πρώτο παράδειγμα δείχνουμε στο παιδί ότι 2 φορές το 23 είναι ίσο με 2 φορές το 3 και 2 φορές το 20, δηλαδή είναι ίσο με 6+40=46. Σελ. 23. Το παιδί λύνει το πρόβλημα και συμπληρώνει τις ασκήσεις. Ο κήπος έχει 3x4=12 φυτά και τα φυτά έχουν 12x2=24 λουλούδια. Σελ. 24. Πολλαπλασιασμοί με ένα «κρατούμενο». Χρησιμοποιούμε την ανάλογη παρουσίαση με αυτήν που κάναμε στην πρόσθεση. Τονίζουμε στο παιδί ότι ο πολλαπλασιασμός δεν είναι τίποτε άλλο παρά μια «γρήγορη» πρόσθεση πολλών ίσων αριθμών. Σελ. 25. Το παιδί συμπληρώνει τις ασκήσεις.

9 Σελ. 26. Πολλαπλασιασμοί με δύο «κρατούμενα». Το παιδί συμπληρώνει την άσκηση όπως στο παράδειγμα. Σελ. 27. Το παιδί συμπληρώνει τις ασκήσεις. Σελ. 28. Οι λύσεις των προβλημάτων: 1. 10x6= x7= x4=52, 24x2=48, 52+48= x3= x2=34, 17+34= x6=72, 5x4=20, 72+20= x4=52 Σελ. 29. Μονοί και ζυγοί αριθμοί. Σελ. 30. Αισθητοποίηση του τετραγώνου και του ορθογώνιου παραλληλογράμμου. Σελ. 31. Το ρολόι Η ώρα. Εξηγούμε στο παιδί ότι η απόσταση ανάμεσα σε δύο αριθμούς (για παράδειγμα, ανάμεσα στο 1 και στο 2) χωρίζεται σε πέντε ίσα μέρη το καθένα από αυτά αντιστοιχεί σε ένα λεπτό. Άρα η απόσταση ανάμεσα σε δύο αριθμούς είναι 5 λεπτά. Γι αυτό, μισή στροφή του λεπτοδείκτη αντιστοιχεί σε 6x5=30 λεπτά (μισή ώρα) και μια ολόκληρη στροφή του λεπτοδείκτη αντιστοιχεί σε 12x5=60 λεπτά (μία ώρα). Σελ. 32 ως 34. Χαρακτηριστικά παραδείγματα «ανάγνωσης» της ώρας. Σελ. 35 ως 38. Το παιδί συμπληρώνει τις ασκήσεις. Σελ. 39. Παρουσίαση των εκατοντάδων. Μία εκατοντάδα αποτελείται από δέκα δεκάδες. Σελ. 40. Οι τριψήφιοι αριθμοί. Το παιδί συμπληρώνει την άσκηση σύμφωνα με το παράδειγμα της πρώτης γραμμής. Σελ. 41 ως 44. Αισθητοποίηση των τριψήφιων αριθμών. Το παιδί συμπληρώνει τις ασκήσεις. Σελ. 45 και 46. Διασταυρούμενες λωρίδες (έννοια του διατεταγμένου ζεύγους). Η εικόνα που θα σχηματιστεί στη σελίδα 46 είναι η ακόλουθη:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,

Διαβάστε περισσότερα

Επιμέλεια: Θ. Ι. ΚΑΨΑΛΗΣ Σελ. 1

Επιμέλεια: Θ. Ι. ΚΑΨΑΛΗΣ Σελ. 1 ΘΕΜΑ 1 ο Να προτείνετε ένα μοντέλο με το οποίο θα παρουσιάσετε μία στρατηγική κατακόρυφης πρόσθεσης και, αντίστοιχα, μίας κατακόρυφης αφαίρεσης διψήφιων αριθμών που να είναι διαφορετικές από τον τυπικό

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης

ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης ΠΑΛΙΕΣ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΛΙΕΣ ΑΝΤΙΛΗΨΕΙΣ

Διαβάστε περισσότερα

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς:

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς: Λύνω τις ασκήσεις 1. Γράφω δίπλα με ψηφία τους παρακάτω αριθμούς: Εκατόν ενενήντα εννέα:.. Τριακόσια ένα: Τετρακόσια πενήντα οκτώ:... Πεντακόσια εννέα:.. Οχτακόσια ογδόντα οκτώ:.... Εννιακόσια δύο: Εννιακόσια

Διαβάστε περισσότερα

Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη

Αγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη Αγαπητοί γονείς, Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Γ Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια και λειτουργεί παράλληλα αλλά και συμπληρωματικά με

Διαβάστε περισσότερα

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα.

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Είδαμε τι είναι πρόβλημα, τι είναι αλγόριθμος και τέλος τι είναι πρόγραμμα. Πρέπει να μπορείτε να ξεχωρίζετε αυτές τις έννοιες και να αντιλαμβάνεστε

Διαβάστε περισσότερα

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής:

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής: ...δεν σημαίνει χαμηλή νοημοσύνη Ονομάζεται δυσαριθμησία και είναι η μαθησιακή δυσκολία στα μαθηματικά. Τα παιδιά που παρουσιάζουν δυσκολίες στα μαθηματικά, δε σημαίνει πως έχουν χαμηλή νοημοσύνη. Της

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην ΤΑΞΗ: Γ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Γ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, β τεύχος Τετράδιο

Διαβάστε περισσότερα

ονομασία αριθμός ψηφίων αριθμοί έχουν 1 ψηφίο έχουν 2 ψηφία έχουν 3 ψηφία έχουν 4 ψηφία...

ονομασία αριθμός ψηφίων αριθμοί έχουν 1 ψηφίο έχουν 2 ψηφία έχουν 3 ψηφία έχουν 4 ψηφία... Μαθηματικά Κεφάλαιο 1 Φυσικοί αριθμοί Όνομα: Ημερομηνία: / / Θεωρία Φυσικός αριθμός είναι οποιοσδήποτε αριθμός μπορεί να γραφεί μόνο με τη βοήθεια των ψηφίων 0,1,2,3,4,5,6,7,8 και 9. Οι αριθμοί 0,1,2,3,,9,10,11,,100,101,,

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ

ΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και Εκτίμηση Αρ3.12 Εκτιμούν και υπολογίζουν το άθροισμα, τη διαφορά, το γινόμενο και το πηλίκο αριθμών μέχρι το 100 000 και επαληθεύουν

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO 1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Διαχειρίζομαι αριθμούς έως το 10.000

Διαχειρίζομαι αριθμούς έως το 10.000 Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,

Διαβάστε περισσότερα

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις 3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 9 + 1 7 + 1 8 + 1 + 1 3 + 1 4 + 1 5 + 1 6 + 1 1 + 1 0 + 1 0 1 3 4 5 6 7 8 9 10 Κάνω τις ασκήσεις 1. Γράφω με τη σειρά μέσα στα κυκλάκια

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

Περιεχόµενα: 5 Ο στάδιο: γράφω και διαβάζω τρισύλλαβες λέξεις 6 ο στάδιο: γράφω και διαβάζω λέξεις που αρχίζουν µε φωνήεν 7 ο στάδιο: γράφω και διαβάζω λέξεις που έχουν τελικό σίγµα (-ς) 8 ο στάδιο: γράφω

Διαβάστε περισσότερα

Το βιβλίο της Μ. Autism Resource CD v Resource Code RC115

Το βιβλίο της Μ. Autism Resource CD v Resource Code RC115 Το βιβλίο της Μ Γεια σας με λένε Μ. Είμαι 9 χρονών και μένω στο με τους γονείς μου και τα 2 αδέρφια μου, τον Γιάννη που είναι 10 και τον Βασίλη που είναι 3. Έχω κι ένα σκυλάκι που το λένε Κάντι και είναι

Διαβάστε περισσότερα

Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου

Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή

Φίλη μαθήτρια, φίλε μαθητή Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,

Διαβάστε περισσότερα

Η προβληματική κατάσταση Χρήστος Πανούτσος

Η προβληματική κατάσταση Χρήστος Πανούτσος Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 1 ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 Συγκρίνουν και διατάσσουν τους

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5. Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 5. Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου

Σταυρούλα Πατσιομίτου Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;

Διαβάστε περισσότερα

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx Διαγράμματα Στα περισσότερα από τα Φύλλα Εργασίας που εργαστήκατε και συμπληρώσατε, είχατε να σχεδιάσετε και ένα διάγραμμα. Ίσως ήταν η πρώτη φορά που ασχοληθήκατε με αυτό το αντικείμενο και να σας φάνηκε

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η πρόσθεση και η αφαίρεση στους φυσικούς αριθμούς

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η πρόσθεση και η αφαίρεση στους φυσικούς αριθμούς ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Η πρόσθεση και η αφαίρεση στους φυσικούς αριθμούς 8 Η πρόσθεση και η αφαίρεση στους φυσικούς αριθμούς 8 Πρόσθεση είναι η πράξη με την οποία ενώνουμε δύο ή περισσότερους

Διαβάστε περισσότερα

ιεύθυνση Πρωτοβάθµιας Εκπαίδευσης Καρδίτσας Γραφείο Σχολικού Συµβούλου Μουζακίου ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Γλώσσα Μαθηµατικά

ιεύθυνση Πρωτοβάθµιας Εκπαίδευσης Καρδίτσας Γραφείο Σχολικού Συµβούλου Μουζακίου ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Γλώσσα Μαθηµατικά ιεύθυνση Πρωτοβάθµιας Εκπαίδευσης Καρδίτσας Γραφείο Σχολικού Συµβούλου Μουζακίου ΦΥΛΛΑ ΑΞΙΟΛΟΓΗΣΗΣ Γλώσσα Μαθηµατικά Μαρία Θ. Παπαδοπούλου Σχολική Σύµβουλος Π.Ε. E-mail: grssmoukar@dipe.kar.sch.gr Οκτώβριος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ- ΣΤΡΑΤΗΓΙΚΕΣ Ε.Κολέζα

ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ- ΣΤΡΑΤΗΓΙΚΕΣ Ε.Κολέζα ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ- ΣΤΡΑΤΗΓΙΚΕΣ Ε.Κολέζα Οι νοεροί υπολογισμοί απαιτούν ικανότητα οπτικοποίησης: να μπορείς να φανταστείς κάτι και να δουλέψεις με το νου.. Είναι ένα είδος νοητικού πειράματος, η νοερή

Διαβάστε περισσότερα

Το παιδί και το βιβλίο Ανάγνωση

Το παιδί και το βιβλίο Ανάγνωση Το παιδί και το βιβλίο Ανάγνωση του Τάσου Ανθουλιά (https://www.helidoni.info/) Το σημερινό παιδί μεγαλώνει μέσα σε ένα κόσμο που αντιστρατεύεται την ισόρροπη ανάπτυξή του. Όλες του οι αισθήσεις βομβαρδίζονται

Διαβάστε περισσότερα

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν. Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4

ΕΝΟΤΗΤΑ 9 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας

Διαβάστε περισσότερα

1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ...

1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ... Eλέγχω τις γνώσεις μου Aσκήσεις 1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό:......

Διαβάστε περισσότερα

Προγράμματα παρέμβασης στα Μαθηματικά, Μαρία Θ. Παπαδοπούλου, PhD, Σχολική Σύμβουλος 6ης Περιφέρειας Π.Ε. ν. Λάρισας

Προγράμματα παρέμβασης στα Μαθηματικά, Μαρία Θ. Παπαδοπούλου, PhD, Σχολική Σύμβουλος 6ης Περιφέρειας Π.Ε. ν. Λάρισας ΠΡΟΓΡΑΜΜΑ ΠΑΡΕΜΒΑΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ-Α Φ.Α. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΣΧΟΛΕΙΟ: ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΝΗΣΗΣ:... ΤΑΞΗ: ΗΜΕΡΟΜΗΝΙΑ ΑΞΙΟΛΟΓΗΣΗΣ: ΗΜΕΡΟΜΗΝΙΑ ΕΝΑΡΞΗΣ ΠΑΡΕΜΒΑΣΗΣ: ΔΙΑΡΚΕΙΑ: ΑΝΑΛΥΣΗ ΕΡΓΟΥ Κατανοεί βασικές χωρικές

Διαβάστε περισσότερα

ΔΕΙΚΤΕΣ ΕΠΑΡΚΕΙΑΣ ΑΝΤΙΣΤΟΙΧΑ ΔΙΔΑΚΤΕΑ. Διδακτέα: Πληροφορίες, Έννοιες, Δεξιότητες, Στρατηγικές / Τρόπος Σκέψης. Παραδείγματα

ΔΕΙΚΤΕΣ ΕΠΑΡΚΕΙΑΣ ΑΝΤΙΣΤΟΙΧΑ ΔΙΔΑΚΤΕΑ. Διδακτέα: Πληροφορίες, Έννοιες, Δεξιότητες, Στρατηγικές / Τρόπος Σκέψης. Παραδείγματα ΤΑΞΗ: Α ΔΗΜΟΤΙΚΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ Οι μαθητές και οι μαθήτριες να είναι σε θέση να: ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΜΑΘΗΜΑΤΙΚΑ (ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ) ΔΕΙΚΤΕΣ ΕΠΑΡΚΕΙΑΣ ΑΝΤΙΣΤΟΙΧΑ ΔΙΔΑΚΤΕΑ

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014

Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014 Ελληνική Μαθηματική Εταιρεία Παράρτημα Καστοριάς Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ 3ου ΔΙΑΓΩΝΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΩΝ 2η ΦΑΣΗ 5 Απριλίου 2014 Αγαπητοί μαθητές, σας καλωσορίζουμε στην δεύτερη φάση του τρίτου τοπικού διαγωνισμού

Διαβάστε περισσότερα

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2010 Χρόνος: 60 λεπτά Δ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Ποια από τις ακόλουθες παραστάσεις έχει το ίδιο αποτέλεσμα με (15-5) + 6 ; Α) (15-6)

Διαβάστε περισσότερα

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω:

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: - «Όταν κανείς επιθυµεί να ξέρει να διαιρεί οποιονδήποτε

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

Στην Ε τάξη μάθαμε...

Στην Ε τάξη μάθαμε... 7 Στην Ε τάξη μάθαμε... Αριθμοί και Πράξεις (1) Παραδείγματα 1. Να εκτελέσετε τις πράξεις νοερά. (α) 42 + 36 (β) 15 + 17 (γ) 199 + 199 (δ) 403-299 (ε) 342-143 Λύση: (α) 42 + 36 = 40 + 2 + 30 + 6 = 40 +

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο. Στο εργαστήρι πληροφορικής. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 7 ο. Στο εργαστήρι πληροφορικής. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 7 ο εκαδικά κλάσµατα δεκαδικοί αριθµοί Στο εργαστήρι πληροφορικής Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να διαβάζουµε, να γράφουµε και να συγκρίνουµε δεκαδικούς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΑΡΙΘΜΟΙ ΩΣ ΤΟ 100

ΕΝΟΤΗΤΑ 5 ΑΡΙΘΜΟΙ ΩΣ ΤΟ 100 ΑΡΙΘΜΟΙ ΩΣ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος, διαιρέτης, διαιρετέος,

Διαβάστε περισσότερα

ΔΙΜΕΠΑ Πρακτική Άσκηση Μαθηματικών Β' Φάση. Εργασία πειραματισμού με μαθητή

ΔΙΜΕΠΑ Πρακτική Άσκηση Μαθηματικών Β' Φάση. Εργασία πειραματισμού με μαθητή ΔΙΜΕΠΑ Πρακτική Άσκηση Μαθηματικών Β' Φάση Εργασία πειραματισμού με μαθητή Διδάσκων: Χαράλαμπος Λεμονίδης Φοιτήτρια: Χατζή Κυριακή- Ιωάννα ΑΕΜ: 3659 Εξάμηνο: ΣΤ Περιεχόμενα 1. Εισαγωγή... 2. Περιγραφή

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών

ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ Γράφω καλά στο τεστ των Μαθηματικών E, ΔΗΜΟΤΙΚΟΥ Ανακεφαλαίωση της θεωρίας με πίνακες και παραδείγματα Διαγωνίσματα Αναλυτικές απαντήσεις με έμφαση στα δύσκολα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ Και οι απαντήσεις τους Ποια είναι η διαφορά ανάμεσα στο «παλιό» και στο «σύγχρονο» μάθημα των Μαθηματικών; Στο μάθημα παλαιού τύπου η γνώση παρουσιάζεται στο μαθητή από τον διδάσκοντα

Διαβάστε περισσότερα

Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία. Στόχος έρευνας

Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία. Στόχος έρευνας Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία Πουλιτσίδου Νιόβη- Χριστίνα Τζιρτζιγάνης Βασίλειος Φωκάς Δημήτριος Στόχος έρευνας Να διερευνηθούν οι παράγοντες, που επηρεάζουν την επιλογή

Διαβάστε περισσότερα

οι αναλυτικές λύσεις όλων των ασκήσεων και προβλημάτων του σχολικού βιβλίου

οι αναλυτικές λύσεις όλων των ασκήσεων και προβλημάτων του σχολικού βιβλίου Αγαπητοί γονείς Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Β Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια με επαναληπτικά μαθήματα και λειτουργεί παράλληλα αλλά

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΑΘΗΜΑΤΙΚΑ (Γ ΤΑΞΗ) ΟΝΟΜΑ:. (ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΣΤΟΥΣ ΔΕΚΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ) ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΛΑΤΕ ΝΑ ΣΚΕΦΤΟΥΜΕ ΜΑΖΙ: Υπάρχουν άραγε αριθμοί ανάμεσα στο 0 και

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10. Αρ2.7 Ανακαλύπτουν, διατυπώνουν και εφαρμόζουν τα κριτήρια διαιρετότητας του 2, 5 και του 10.

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10. Αρ2.7 Ανακαλύπτουν, διατυπώνουν και εφαρμόζουν τα κριτήρια διαιρετότητας του 2, 5 και του 10. ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας αντικείμενα,

Διαβάστε περισσότερα

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.

Κάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό. A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της

Διαβάστε περισσότερα

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 2 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Αριθμοί μέχρι το 20. -Αξία θέσης ψηφίου - Έννοια δεκάδας και μονάδας. -Πρόσθεση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα

ΑΛΓΕΒΡΑ. Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα ΑΛΓΕΒΡΑ Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα 1 Εξισώσεις 1. Η Αντωνία διάβασε τις πρώτες 78 σελίδες ενός βιβλίου, που έχει συνολικά 130 σελίδες. Ποια μαθηματική πρόταση μπορεί να χρησιμοποιήσει η Αντωνία,

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

Θέμα 1 ο. Λύση θέματος 1 ο Α.

Θέμα 1 ο. Λύση θέματος 1 ο Α. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θέματα δόθηκαν στις εξετάσεις Ιουνίου 013 στο 17 ο ΓΕΛ από τους καθηγητές Ν.Κ, Κ.Μ, Δ.Α. Παρακάτω παρατίθενται τα θέματα και οι λύσεις ανεπτυγμένες σε κάποια σημεία, με σχόλια καθώς

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 7 ο, Τμήμα Α Δεδομένα Συχνότητα Μέτρα θέσης Μέτρα διασποράς Στοχαστικά μαθηματικά διαφέρουν από τα κλασσικά μαθηματικά διότι τα φαινόμενα δεν είναι αιτιοκρατικά,

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27 Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός

Διαβάστε περισσότερα

Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο

Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο Περιεχόμενα Προλογικό σημείωμα... 9 Ενότητα 1 Κεφάλαιο 1 Υπενθύμιση Α μέρος... 13 Κεφάλαιο

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

3 ος Παγκύπριος Διαγωνισμός Δεξιοτήτων Σκέψης

3 ος Παγκύπριος Διαγωνισμός Δεξιοτήτων Σκέψης ΕΠΙΠΕΔΟ 3 4 Γ ΚΑΙ Δ ΔΗΜΟΤΙΚΟΥ Ἡ παιδεία, καθάπερ εὐδαίμων χώρα, πάντα τ ἀγαθά φέρει. μτφρ: η μόρφωση, όπως ακριβώς μια εύφορη γη, φέρνει όλα τα καλά Σωκράτης (469-399 π.χ., Φιλόσοφος) 0 ΣΕ ΚΑΘΕ ΕΡΩΤΗΣΗ

Διαβάστε περισσότερα

Κεφάλαιο 53 : Αριθμοί μέχρι το Κλάσματα και δεκαδικοί

Κεφάλαιο 53 : Αριθμοί μέχρι το Κλάσματα και δεκαδικοί 10-0059MATHIMATIKAGDIMOTIKOU4_10 MAΘHTHΣ MAΘHM Γ 13/2/2013 10:31 πμ Page 1 9 η ενότητα Αριθμοί μέχρι το 10.000 Κλάσματα και δεκαδικοί Πράξεις γεωμετρία 53 54 55 56 57 58 59 Κεφάλαιο 53 : Αριθμοί μέχρι

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ:

ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ: ΑΛΛΑΓΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ: σύγχρονες αναγνώσεις Καβάλα 14/11/2015 ΜΑΡΙΑΝΝΑ ΤΖΕΚΑΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 2 Γιατί αλλαγές; 1 3 Για ουσιαστική μαθηματική ανάπτυξη, Σύγχρονο πρόγραμμα

Διαβάστε περισσότερα

Εισηγήσεις για δημιουργική και αποτελεσματική διαχείριση του χρόνου της Εμπέδωσης

Εισηγήσεις για δημιουργική και αποτελεσματική διαχείριση του χρόνου της Εμπέδωσης Εισηγήσεις για δημιουργική και αποτελεσματική διαχείριση του χρόνου της Εμπέδωσης Η Εμπέδωση αποτελεί ένα νέο στοιχείο του ωρολογίου προγράμματος του σχολείου και έχει ως στόχο τη διαφοροποίηση και εξατομίκευση

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ

Διαβάστε περισσότερα