Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α
|
|
- Ἀνδρομάχη Δοξαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 7 ο, Τμήμα Α Δεδομένα Συχνότητα Μέτρα θέσης Μέτρα διασποράς Στοχαστικά μαθηματικά διαφέρουν από τα κλασσικά μαθηματικά διότι τα φαινόμενα δεν είναι αιτιοκρατικά, υπάρχει αμφιβολία. Πιθανότητες αβεβαιότητα Δεδομένα
2 Ποσοτικά έχουν αριθμητική τιμή και μπορούμε να τα μετρήσουμε, π.χ. το ύψος και το βάρος των μαθητών. Συνεχή τα ομαδοποιούμε για να τα παρουσιάσουμε, από μία τιμή έως μία άλλη με όλες τις ενδιάμεσες τιμές, π.χ. τα ύψη τα παρουσιάζουμε ως 1,60-1,70 και όχι 1,60, 1,61, 1,62,... γιατί δεν μας βολεύει. Διακριτά ακέραιες τιμές πάντα, διακριτές τιμές, π.χ. ο αριθμός παιδιών σε μία οικογένεια μπορεί να είναι μέχρι 10 δεν μπορεί όμως να είναι 100 ή 4,5. Ποιοτικά έχουν κάποια ποιότητα, π.χ. χρώμα ματιών, χρώμα μαλλιών. Πρωτογενή δεδομένα που προκύπτουν από έρευνες που διεξάγουμε εμείς, π.χ. κάνουμε έρευνα στην τάξη μας. Δευτερογενή δεδομένα που τα παίρνουμε έτοιμα από άλλες έρευνες που έχουν κάνει άλλοι, π.χ. αν πάρουμε μία έρευνα έτοιμη από το internet. Συχνότητα Συχνότητα (ν i ) ο αριθμός εμφάνισης του κάθε δεδομένου, πόσο συχνά δηλαδή επαναλαμβάνεται κάτι πράσινο, μπλε, μωβ, ροζ, μαύρο, πράσινο, μπλε, μωβ, κόκκινο, μπλε, μωβ, ροζ, μπλε, πράσινο, μπλε, ροζ, πράσινο, μωβ, πράσινο, ροζ, μπλε, μαύρο, μπλε, κόκκινο, λευκό.
3 Ενδεικτικές ερωτήσεις Χρώμα Διαλογή Συχνότητα Μπλε 7 Πράσινο 5 Μωβ 4 Ροζ 4 Κόκκινο 2 Λευκό 1 Μαύρο 2 Σύνολο 25 Διαλογή με γραμμούλες πόσες φορές εμφανίζεται το κάθε χρώμα. Τα δεδομένα αυτά είναι πρωτογενή και ποιοτικά.
4 1. Πόσους ανθρώπους ρωτήσαμε για να συλλέξουμε τα παραπάνω δεδομένα; Ρωτήσαμε 25 ανθρώπους για να συλλέξουμε τα παραπάνω δεδομένα. 2. Ποιο χρώμα αρέσει στους περισσότερους ανθρώπους; Το μπλε, γιατί έχει την μεγαλύτερη συχνότητα. 3. Ποιο χρώμα αρέσει στους λιγότερους ανθρώπους; Το λευκό, γιατί έχει την μικρότερη συχνότητα. Σχετική συχνότητα (f i = v ν i ) Γνωρίζουμε ότι: ν 1 +ν ν κ = ν Επίσης: f 1 +f 2 + +f κ = 1 Απόδειξη ν f 1 +f 2 + +f κ = 1 ν + 2 ν + + κ ν = v v v ν2... ν 1 ν κ = v ν =1
5 Μέτρα θέσης Μέσος όρος (προσθέτουμε όλες τις τιμές και διαιρούμε με το πλήθος τους) Π.χ. 1. Δίνονται τα ύψη εφτά παιδιών:129, 125, 123, 129, 124, 129, 123 cm. Να υπολογιστεί ο μέσος όρος τους. x = = = 126 cm 7 Π.χ. 2. Ο μέσος όρος 12 αριθμών είναι το 4,9. Αν προσθέσουμε δύο άλλους αριθμούς, ο μέσος όρος γίνεται 5,8. Ποιος είναι ο μέσος όρος των δυο νέων αριθμών; Ο Μ.Ο. των δώδεκα αριθμών θα είναι ως εξής: Θέτουμε x = x 1 +x 2 + +x 12. Άρα 4,9 = 12 x x = 4,9 12 = 58,8 Έστω y+z οι δύο αριθμοί που προσθέσαμε, άρα θα έχουμε 12+2 = 14 αριθμούς. Ο Μ.Ο.των 14 αριθμών θα είναι: 5,8 = x y z 14 5,8 14 = 58,8+y+z 58,8+y+z = 81,2 y+z = 81,2-58,8 = 22,4 Μ.Ο.(y+z): y z 22, 4 = = 11,2 2 2 Άρα ο Μ.Ο. των δύο καινούργιων αριθμών θα είναι 11,2.
6 Ενδεικτική δραστηριότητα για την κατανόηση του Μ.Ο. (Μ.Τ.) 1. Ποιοι μπορεί να είναι οι άλλοι τρεις αριθμοί έτσι ώστε ο μέσος όρος για το παρακάτω σύνολο δεδομένων να είναι το 10; 12,.,.,.. Θέτουμε x, y, z τους άλλους τρεις αριθμούς. Μ.Ο.: 12 x y z = x+y+z = 40 x+y+z = x+y+z=28 4 Έχουμε πολλές επιλογές και θέλουμε το άθροισμα των τριών αριθμών να είναι πάντα 28. Π.χ. x=10, y=10, z=8 Ή x=7, y=11, z=10 Ή x=12, y=12, z=4 Ή x=0, y=0, z=28 2. Ο μέσος όρος από τους βαθμούς τριών τεστ είναι 74. Ποιος πρέπει να είναι ο βαθμός στο τέταρτο τεστ για να βγει μέσος όρος 78; Έστω x το άθροισμα των βαθμών των τριών τεστ. Ο Μ.Ο. των τριών τεστ θα είναι: 74 = 3 x x = 74 3 = 222 Έστω y ο βαθμός του τέταρτου τεστ. Ο Μ.Ο. των τεσσάρων τεστ θα είναι: 78 = Άρα ο βαθμός στο τέταρτο τεστ θα πρέπει να είναι 90. x y 78 4 = 222+y 312 = 222+y y = = 90 4
7 ΠΟΤΕ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ Ο ΜΕΣΟΣ ΟΡΟΣ/ΜΕΣΗ ΤΙΜΗ Όταν δεν υπάρχουν ακραίες παρατηρήσεις στο σύνολο των δεδομένων μας. Π.χ. Π.χ. θέλουμε να υπολογίσουμε τον Μ.Ο. των βαθμών ενός μαθητή: 1, 1, 1, 5, 10, 10 Μ.Ο.: 28 = 4, Δεν είναι ένδειξη για εμάς αν αυτός ο μαθητής είναι καλός ή κακός, γιατί παρατηρούμε ότι σε τρία μαθήματα πήρε μονάδα, άρα είναι πολύ κακός. Το γεγονός όμως ότι είχε σε τρία μαθήματα μονάδα και σε δύο μαθήματα 10 μάς οδηγεί στο συμπέρασμα ότι οι αριθμοί είναι πολύ ακραίοι. Άρα δεν μπορούμε να υποθέσουμε και να πούμε ότι είναι μέτριος μαθητής, γιατί δεν θα είναι σωστό συμπέρασμα και γι αυτό δεν μπορούμε να στηριχτούμε στην Μ.Τ. όταν έχουμε ακραίες παρατηρήσεις. Γι αυτό χρησιμοποιούμε κάποιο άλλο μέτρο θέσης και συγκεκριμένα την διάμεσο. Περιττό πλήθος Π.χ. 7, 3, 4, 5, 11 Διάμεσος (είναι ακριβώς η μεσαία παρατήρηση) Πρώτη δουλειά είναι να βάλουμε σε μια αύξουσα ή φθίνουσα σειρά τους αριθμούς. 3, 4, 5, 7, 11 δ=5 Άρτιο πλήθος Π.χ. 7, 3, 4, 5, 11, 8 3, 4, 5, 7, 8, 11 Σβήνουμε έναν από κάτω έναν από πάνω, έναν από κάτω έναν από πάνω και περισσεύουν στη μέση δύο, άρα η διάμεσός μας θα είναι το ημιάθροισμα των δύο μεσαίων παρατηρήσεων.
8 δ= = = ΠΟΤΕ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ Η ΔΙΑΜΕΣΟΣ Όταν υπάρχουν ακραίες παρατηρήσεις και δεν υπάρχουν μεγάλα «κενά» στις μεσαίες τιμές του συνόλου των παρατηρήσεων. Σ αυτό το σημειόγραμμα παρατηρούμε ότι οι περισσότερες τιμές συγκεντρώνονται από το 10 έως το 25 και έχουμε ακραίες παρατηρήσεις καθώς ξεκινάει από το 0 και φτάνει έως το 39. Από το 25 όμως έως το 39 δεν έχουμε καθόλου παρατηρήσεις. Άρα δεν είναι σωστό να χρησιμοποιήσουμε την διάμεσο, γιατί δεν είναι αξιόλογο (στην μέση δεν έχουμε καθόλου παρατηρήσεις και δεν θα βγάλουμε σωστά συμπεράσματα). Επικρατούσα τιμή (Κορυφή) Ως επικρατούσα τιμή ή κορυφή ορίζεται η τιμή (μέτρηση) που εμφανίζεται περισσότερες φορές. Είναι το μοναδικό από τα μέτρα θέσης που μπορεί να χρησιμοποιηθεί σε ποσοτικά αλλά και σε ποιοτικά δεδομένα. Μπορεί να υπάρχουν δύο επικρατούσες τιμές ή και καμία. SOS! Η Μ.Τ. και η διάμεσος δεν χρησιμοποιούνται για ποιοτικά δεδομένα, η κορυφή όμως χρησιμοποιείται και για ποιοτικά και για ποσοτικά δεδομένα. Π.χ. αν το σύνολο δεδομένων μας είναι οι αριθμοί 1, 2, 3, 4, 2, 5, 6, 2, η κορυφή είναι το 2 καθώς είναι η μέτρηση που εμφανίζεται τις περισσότερες φορές. ΠΟΤΕ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ Η ΕΠΙΚΡΑΤΟΥΣΑ ΤΙΜΗ Όταν υπάρχουν πολλές ίδιες παρατηρήσεις γιατί μέσω αυτής περιγράφουμε τι είναι σύνηθες για το σύνολο των δεδομένων μας.
9 Π.χ. Υπολογίστε τον μέσο όρο, την διάμεσο και την κορυφή για τα σύνολα Α και Β. Οι βαθμοί ενός μαθητή για δύο τρίμηνα. Να βρεθεί σε ποιο τρίμηνο πήγε καλύτερα με τα μέτρα θέσης. Σύνολο Α: Σύνολο Β: Απάντηση Σύνολο Α 253 Μ.Ο.= = δ= 20 κορυφή= 20 Σύνολο Β 253 Μ.Ο.= = δ= 20 κορυφή= 20 Παρατήρηση: Και τα δύο σύνολα έχουν μέσο όρο ίσο με 23, διάμεσο ίση με 20 και κορυφή το 20. Μπορούμε να στηριχτούμε, επομένως, στα μέτρα θέσης για να εξάγουμε συμπεράσματα; Όχι, δεν μπορούμε να εξάγουμε συμπεράσματα γι αυτό και πάμε στα μέτρα διασποράς. Για το δεύτερο σύνολο δεν θα έπρεπε να χρησιμοποιήσουμετον Μ.Ο. γιατί υπάρχουν ακραίες τιμές (παρατηρούμε ότι από το 1 φτάνει έως το 78).
10 Μέτρα διασποράς ΕΥΡΟΣ Το εύρος είναι η διαφορά μεταξύ της μεγαλύτερης και της μικρότερης παρατήρησης σε ένα σύνολο δεδομένων. Είναι ένας αριθμός και όχι ένα διάστημα. Π.χ. στο παράδειγμα 4 το εύρος για το σύνολο Α είναι 20(33-13) ενώ για το σύνολο Β είναι 77(78-1) (έχει πάρει από πολύ υψηλούς έως πολύ χαμηλούς βαθμούς, δεν είναι σταθερός). ΔΙΑΚΥΜΑΝΣΗ-ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ Τα παρακάτω είναι τα βήματα που πρέπει να ακολουθούνται για τον υπολογισμό της τυπικής απόκλισης ενός συνόλου δεδομένων. Υπολογίζουμε τον μέσο όρο. Βρίσκουμε την διαφορά κάθε μέτρησης από τον μέσο όρο. Υπολογίζουμε τα τετράγωνα των διαφορών αυτών. Υπολογίζουμε τον μέσο όρο των τετραγώνων των διαφορών. Υπολογίζουμε την τετραγωνική ρίζα αυτού του μέσου όρου για την εύρεση της τυπικής απόκλισης. x 1, x 2, x 3 x1 x2 x3 M.O. = = α 3 (x 1 -α) 2 ή (α-x 1 ) 2 (x 2 -α) 2 (x 3 -α) 2
11 2 2 (x - α) (x2 - α) 3 1 (x 3 - α) 2 = διακύμανση (s 2 ) (x1 - α) (x2 - α) (x3 - α) Τυπική απόκλιση = διακ ύμανσης = 3 Η διακύμανση και η τυπική απόκλιση είναι πάντα θετικοί αριθμοί ως προς το πρόσημο. ΠΑΡΑΔΕΙΓΜΑ Το βάρος τριών μαθητών της ΣΤ τάξης είναι 58, 65 και 51 κιλά. Με τι ισούται η τυπική απόκλιση του βάρους τους; Βήμα 1 ο : Υπολογισμός του Μ.Ο = 58 3 Βήμα 2 ο : Αφαιρούμε τον Μ.Ο. από κάθε παρατήρηση και υψώνουμε στο τετράγωνο την κάθε διαφορά = 0, = 7, 7 2 = = (-7), (-7) 2 = 49 Βήμα 3 ο : Βρίσκουμε τον Μ.Ο. των τετραγώνων = 32,6 (διακύμανση ή διασπορά) 3 Βήμα 4 ο : υπολογίζουμε την ρίζα του 3 ου Βήματος (τυπική απόκλιση) 32,6 = 5,709
12 Τυπική απόκλιση 2 2 (x1 - x) (x2 - x)... (x n n - x) 2 Τα μέτρα διασποράς, δηλαδή το πόσο μεγάλη ή μικρή είναι η τυπική απόκλιση είναι ένδειξη για το πόσο διαφέρουν τα δεδομένα μας, δηλαδή συγκεντρώνονται όλα σε μία τιμή ή είναι μακριά από αυτή; Παράδειγμα: Γνωρίζοντας μόνο τον Μ.Ο. δεν μπορούμε να εξάγουμε πάντα συμπεράσματα. Στα παρακάτω σημειογράμματα ο Μ.Ο. είναι 5. Τι παρατηρείτε; Έχουν την ίδια τυπική απόκλιση τα παρακάτω σύνολα; Χωρίς να υπολογίσετε μπορείτε να βγάλετε κάποιο συμπέρασμα; Δεν έχουν όλα την ίδια μορφή. Πρέπει να στηριχτούμε στα μέτρα θέσης και τα μέτρα διασποράς για να βγάλουμε ένα συμπέρασμα. Στο πρώτο η τυπική απόκλιση είναι 0, γιατί όλα τα δεδομένα μας είναι μαζεμένα στο 5. Την μεγαλύτερη ποικιλία δεδομένων την έχουμε στο πέμπτο παράδειγμα καθώς και στο τρίτο. Η τυπική απόκλιση μάς δείχνει την διαφορά των παρατηρήσεών μας από τον Μ.Ο. Αν έχουμε μικρή τυπική απόκλιση, τα δεδομένα μας βρίσκονται κοντά στον Μ.Ο., ενώ αν έχουμε μεγάλη τυπική απόκλιση βρίσκονται μακριά από τον Μ.Ο.
13 Γραφικές Αναπαραστάσεις Δεδομένων Εικονόγραμμα Με κάποια εικόνα παρουσιάζουμε τα δεδομένα μας. Στο εικονόγραμμα πρέπει πάντα να βλέπουμε πιο είναι το κλειδί, δηλαδή η κάθε εικόνα σε ποιον αριθμό αντιστοιχεί. Στην συγκεκριμένη εικόνα μάς λέει ότι κάθε αυτοκινητάκι αντιστοιχεί σε 2 αυτοκίνητα. Στο διπλανό εικονόγραμμα αναπαριστάνονται τα αυτοκίνητα που βρίσκονται σε ένα χώρο στάθμευσης ανάλογα με την ηλικία τους. α) Πόσα είναι συνολικά τα αυτοκίνητα που αναπαριστάνονται στο εικονόγραμμα, αν κάθε «αυτοκινητάκι» αντιστοιχεί σε 2 αυτοκίνητα; = 38 αυτοκίνητα β) Ποιος είναι ο μέσος όρος ηλικίας τους; 2* 0 3*1 4 *2 2*3... 2*10 Μ.Ο. ηλικίας= = Χρησιμοποιείται για την αναπαράσταση ποιοτικών δεδομένων και διακριτών ποσοτικών δεδομένων. Προσοχή στην εικόνα-κλειδί! Είναι ένα από τα πρώτα με τα οποία έρχονται σε επαφή οι μαθητές από την Α δημοτικού.
14 Σημειόγραμμα Μας δείχνει με σημειάκια πόσες φορές εμφανίζονται τα δεδομένα, δηλαδή το 2 εμφανίζεται 1 φορά, το 3 εμφανίζεται 2 φορές,... α) Βρείτε τον μέσο όρο (μέση τιμή). Δείξτε πώς τον υπολογίσατε. Μ.Ο.= 1*2 2*3 4 *1 6*2 = 6 Ραβδόγραμμα Χρησιμοποιείται για την αναπαράσταση ποιοτικών δεδομένων και διακριτών ποσοτικών δεδομένων. (επισήμανση) Επίσης χρησιμοποιείται ραβδόγραμμα το οποίο έχει είτε κάθετη είτε οριζόντια κατεύθυνση. Έχουμε ράβδους και αφήνουμε κενό ανάμεσά τους σε αντίθεση με το ιστόγραμμα.
15 Διπλό Ραβδόγραμμα Αναπαριστάνουμε δύο ομάδες δεδομένων, π.χ. εδώ το μπλε είναι τα αγόρια και το κόκκινο τα κορίτσια. α) Πόσα αγόρια παρουσιάζονται στο ραβδόγραμμα; = 20 αγόρια β) Ποιος είναι ο αριθμός των μαθητών συνολικά; = 37 μαθητές Γράφημα Γραμμής ή Χρονόγραμμα Το συγκεκριμένο γράφημα το χρησιμοποιούμε όταν τα δεδομένα μας αλλάζουν με την πάροδο του χρόνου.
16 α) Ποιος ήταν ο μικρότερος αριθμός βακτηριδίων; Ποια ώρα συνέβη αυτό; Ο μικρότερος αριθμός βακτηριδίων ήταν 1 εκατομμύριο στην πρώτη ώρα. β) Ποιος ήταν ο αριθμός των βακτηριδίων 6 ώρες μετά την χορήγηση της αντιβίωσης; 7 εκατομμύρια γ) Ποιος πιστεύετε ότι θα είναι ο αριθμός των βακτηριδίων στον οργανισμό 11 ώρες μετά τη χορήγηση της αντιβίωσης; Θα είναι από 2 και κάτω, το πολύ 2 εκατομμύρια. Φυλλόγραμμα Στην πραγματικότητα χωρίζουμε τις μονάδες από τις δεκάδες. Το 0 και το 3 είναι 3 λεπτά. Το 0 και το 5 είναι 5 λεπτά. Το 1 και το 0 είναι 10 λεπτά,... Στο διπλανό φυλλόγραμμα αναπαριστάνονται οι χρόνοι που κάνουν οι μαθητές μιας τάξης καθημερινά για να πάνε στο σχολείο. α) Πόσους μαθητές έχει η τάξη; Έχει 26 μαθητές. β) Πόσοι μαθητές χρειάζονται πάνω από 30 λεπτά για να φτάσουν στο σχολείο; 2 μαθητές. γ) Ποιος είναι ο περισσότερος και ποιος ο λιγότερος χρόνος που χρειάζεται ένας μαθητής για να πάει στο σχολείο; Ο περισσότερος χρόνος είναι 45 λεπτά ενώ ο λιγότερος είναι 3 λεπτά.
17 δ) Πόσοι μαθητές θέλουν 23 λεπτά για να μπουν στο σχολείο; 3 μαθητές. ε) Πόσοι μαθητές θέλουν από 12 έως 20 λεπτά για να πάνε στο σχολείο; 8 μαθητές. Χρησιμοποιείται για ποσοτικά δεδομένα. Προσοχή στην κατασκευή του! Για το σύνολο των δεδομένων που δίνονται στον παρακάτω πίνακα φτιάξτε το φυλλόγραμμα Αν είχαμε εκατοντάδες, π.χ. 112 τότε 1 1 2
18 Κυκλικό Διάγραμμα Μπορούμε να το χρησιμοποιήσουμε για 2 έως 8 κατηγορίες, δεν μπορούμε όμως να το χρησιμοποιήσουμε για πάρα πολλά δεδομένα. Επίσης είναι και για ποιοτικά και για ποσοτικά δεδομένα. Σε αυτό το κυκλικό διάγραμμα δίνονται το μέσο με τα οποίο οι 250 μαθητές ενός δημοτικού πηγαίνουν καθημερινά στο σχολείο τους. α) Με ποιον τρόπο πηγαίνουν οι περισσότεροι μαθητές στο σχολείο; β) Πόσοι μαθητές πηγαίνουν με το ποδήλατο στο σχολείο; γ) Με ποιον άλλο τύπο γραφήματος θα μπορούσαν να αναπαρασταθούν τα δεδομένα του διπλανού γραφήματος; Τι πρέπει να γίνει πρώτα; Επισήμανση: Διδάσκεται μόνο η ερμηνεία του και όχι η κατασκευή του (Β Γυμνασίου). Ο δάσκαλος πρέπει να ξέρει τον τρόπο κατασκευής του! Χρήση Kατασκευή Κυκλικού Διαγράμματος Χρησιμοποιείται για την αναπαράσταση δεδομένων ως μέρος του όλου, για την παρουσίαση διαφορών σε κατηγορίες-δεδομένα (ποιοτικά ή διακριτά ποσοτικά). Ο αριθμός των κατηγοριών είναι περιορισμένος (2-8). Όλος ο κύκλος είναι 360 ο.
19 Τρόπος κατασκευής: Μοίρες του κάθε κυκλικού τομέα = σχετική συχνότητα x 360 ο Ποδήλατο: Στα 100 παιδιά τα 12 πάνε με ποδήλατο. Στα 360 παιδιά x = 360*12 12 = 36*1,2 = 43,2 πάνε με ποδήλατο. Ή 12%*360 = * Μπορούμε επίσης να τα αναπαραστήσουμε με το ραβδόγραμμα αλλά θα έπρεπε πρώτα να μετατρέψουμε τα ποσοστά σε αριθμούς. Ιστόγραμμα Επισήμανση: Δεν διδάσκεται στο Δημοτικό αλλά στην επόμενη βαθμίδα εκπαίδευσης. Απαραίτητη η γνώση του. Αναπαριστάνονται συνεχή δεδομένα τα οποία έχουν ομαδοποιηθεί σε διαστήματα. Σε αντίθεση με το ραβδόγραμμα οι ράβδοι είναι ενωμένες μεταξύ τους.
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
15, 11, 10, 10, 14, 16, 19, 18, 13, 17
ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,
Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.
1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.
ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1
ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ. 1. Στον πιο κάτω πίνακα παρουσίαζονται οι μέρες της άδειας ασθενείας των υπαλλήλων μιας εταιρείας. Μέρες Άδειας Ασθενείας
ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ 1. Στον πιο κάτω πίνακα παρουσίαζονται οι μέρες της άδειας ασθενείας των υπαλλήλων μιας εταιρείας. Μέρες Άδειας Ασθενείας 5 6 7 8 9 10 Υπάλληλοι 9 13 6 9 5 4 Α. Να βρεθεί πόσοι υπάλληλοι
Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων
Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl
Περιγραφική Στατιστική
Περιγραφική Στατιστική Παναγιώτα Λάλου. Βασικές έννοιες Ορισμός: Στατιστικός πληθυσμός ονομάζεται το σύνολο των πειραματικών μονάδων π.χ άνθρωποι, ζώα, επιχειρήσεις κ.λπ, οι οποίες συμμετέχουν στην έρευνα
ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ
ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη
ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ
ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ 2. Ο αριθμός των ανθρώπων που παρακολουθούν μια συγκεκριμένη τηλεοπτική εκπομπή είναι διακριτή
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν
Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική
Έτος 2017-2018: Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Επανάληψη βασικών εννοιών Στατιστικής- Χρήση gretl/excel 1
Η αριθμητική κλίμακα μπορεί να είναι είτε στην οριζόντια είτε στην κατακόρυφη. πλευρά, οπότε οι ράβδοι είναι αντίστοιχα οριζόντιες ή κατακόρυφες.
Μαθηματικά Κεφάλαιο 45 Απεικονίζω δεδομένα με ραβδογράμματα ή εικονογράμματα Όνομα: Ημερομηνία: / / Θεωρία Το ραβδόγραμμα είναι ένα διάγραμμα που αποτελείται από ορθογώνια ίσου πλάτους σε ίσες αποστάσεις
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής
ΕΙΣΑΓΩΓΗ. Βασικές έννοιες
ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις
i Σύνολα w = = = i v v i=
ΜΕΤΡΑ ΘΕΣΗΣ ΆΣΚΗΣΗ Η βαθμολογία στα 0 μαθήματα ενός μαθητή είναι: 3, 9, 6, 0, 5,,, 0, 0, 4. Να υπολογίσετε: α) Τη μέση τιμή. β) Τη διάμεσο. Απάντηση t t + t + t 0 = = = = 3 + 9 + 6 + 0 + 5 + + + 0 + 0
Μάθηµα 14. Κεφάλαιο: Στατιστική
Μάθηµα 4 Κεφάλαιο: Στατιστική Θεµατικές Ενότητες:. Μέτρα θέσης. Εισαγωγή. Για πιο σύντοµη, αποδοτική και συγκρίσιµη θεώρηση της κατανοµής συχνοτήτων µιας µεταβλητής, έχουµε ορίσει και χρησιµοποιούµε κάποια
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ
Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.
ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0
ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο
ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο ΘΕΜΑ 1 Ο : Aς υποθέσουμε ότι x 1,x 2,,x k είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους ν, όπου k,ν μη μηδενικοί φυσικοί αριθμοί με k ν, ν i η απόλυτη
Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη
Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ
Ασκήσεις. Μη ομαδοποιημένες παρατηρήσεις
Ασκήσεις Μη ομαδοποιημένες παρατηρήσεις 1. Η χαμηλότερη ημερήσια θερμοκρασία που είχε η Αθήνα το μήνα Μάρτιο ήταν η εξής: 15 14 15 18 17 19 10 16 18 17 16 14 19 15 10 17 18 19 16 15 10 17 18 18 15 14 16
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων
Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη
Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές Διάλεξη 13-3-2015 Υπολογισμός Σταθμικού Μέσου Αριθμητικού X weighted n 1 n 1 w i w X i i Παράδειγμα Υποψήφιος της Δ' Δέσμης πήρε στις εξετάσεις τους εξής
2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ
.3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι
Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,
Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;
σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.
Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)
Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Ονοματεπώνυμα Σπουδαστριών: Μποτονάκη Ειρήνη (5422), Καραλή Μαρία (5601) Μάθημα: Β06Σ03 Στατιστική
ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ
1 1) Δίνεται ο διπλανός πίνακας 43 παρατηρήσεων της μεταβλητής Χ και οι αντίστοιχες συχνότητές τους ν i. Αν 116 η μέση τιμή των παρατηρήσεων είναι x =, η διάμε- 43 σος είναι δ=3 και ισχύει κ>10, να υπολογιστούν
, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 10 ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α είναι f 1, για κάθε. Μονάδες
Μέτρα θέσης και διασποράς
Μέτρα θέσης και διασποράς Η επικρατούσα τιμή ως μέτρο κεντρικής τάσης Εύκολο στον υπολογισμό Επικρατούσα τιμή Η πιο συχνή ή η πιο συχνά εμφανιζόμενη τιμή σε ένα σύνολο τιμών 11, 3, 8, 2, 1, 5, 3, 7 Επικρατούσα
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα
f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα
1 ΣΤΑΤΙΣΤΙΚΗ 1) Οι παρακάτω αριθμοί παρουσιάζουν τα ύψη σε cm, των φυτών ενός θερμοκηπίου 4 3 6 5 3 1 4 5 4 6 6 3 3 1 4 3 α) Να κάνετε τον πίνακα όλων των συχνοτήτων β) Από τον προηγούμενο πίνακα να βρείτε,
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν
ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)
ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε - ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού
ΜΑΘΗΜΑΤΙΚΑ Β ΚΥΚΛΟΥ Τ.Ε.Ε ΟΜΑΔΑ Α ΕΠΑ.Λ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια : Κοσόγλου Ιορδάνη μαθηματικού ΑΣΚΗΣΗ Το βάρος μαθητών σε κιλά είναι : 5, 5, 57, 5, 6, 5, 5, 5, 57, 5 Να υπολογίσετε : α ) τη μέση τιμή
ν ν = 6. όταν είναι πραγµατικός αριθµός.
Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ /0/0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:ΕΝΝΕΑ (9) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ
ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.
Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα
ν ν = 6. όταν είναι πραγµατικός αριθµός.
Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη
ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. Δίνεται η συνάρτηση με τύπο: 7. f ( x) x x x, x α. Να βρείτε τη μονοτονία της συνάρτησης καθώς και τις θέσεις και το είδος των τοπικών ακρότατων που παρουσιάζει.
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ(3)
Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη
Δείκτες Κεντρικής Τάσης και Διασποράς Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που γεννιούνται κατά την σύγκριση
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ»
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος ΚΕΦΑΛΑΙΟ ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των μαθηματικών ο οποίος ως έργο έχει την συγκέντρωση
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α Ερώτηση θεωρίας Τι λέγεται ιστόγραμμα αθροιστικών απολύτων σχετικών συχνοτήτων; Ιστόγραμμα αθροιστικών απολύτων ή σχετικών συχνοτήτων είναι μια σειρά από
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:
Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το
Χρονογράμματα Τα χρονογράµµατα είναι διαγράµµατα, τα οποία χρησιµοποιούµε για να παραστήσουμε τη χρονική εξέλιξη ενός φαινόμενου.
ΜΕΡΟΣ Α 4.2 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 153 4.2 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Εικονογράμματα Στα εικονογράµµατα χρησιµοποιούµε την εικόνα ενός αντικειμένου για να δείξουμε πόσες φορές παρουσιάζεται αυτό στην έρευνά µας.
Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις
2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες 1 Ερμηνεία και κατασκευή γραφικών παραστάσεων 1. Η αγαπημένη γεύση παγωτού των παιδιών Γεύση
Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Στατιστική Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 1 7 / 5 / 2 0 1 6 Γενικής κεφάλαιο 2 154 ασκήσεις και τεχνικές σε 24 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για
P(A ) = 1 P(A). Μονάδες 7
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΑΚΕΛΟΣ ΜΑΘΗΤΗ/ΤΡΙΑΣ ΣΤΑΤΙΣΤΙΚΗ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΑΚΕΛΟΣ ΜΑΘΗΤΗ/ΤΡΙΑΣ ΣΤΑΤΙΣΤΙΚΗ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 2019 ΕΚΠΟΝΗΣΗ Εξωτερικοί εμπειρογνώμονες Διαμαντίδης Δημήτριος, Εκπαιδευτικός
Στατιστική. 2. Να κατασκευάσετε το κυκλικό διάγραµµα των. x i. ν i Σε ένα κυκλικό διάγραµµα παριστάνεται η.
Στατιστική 1. Σε µια εταιρεία εργάζονται 10 εργάτες, 30 διοικητικοί υπάλληλοι και 60 επιστήµονες. Να κατασκευάσετε πίνακα συχνοτήτων, σχετικών συχνοτήτων, επί % πίνακα σχετικών συχνοτήτων, ραβδόγραµµα
Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)
ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ»
1. Να αντιστοιχίσετε κάθε μεταβλητή της αριστερής στήλης του παρακάτω πίνακα με την κατηγορία που βρίσκεται στη δεξιά στήλη: ΜΕΤΑΒΛΗΤΗ ΚΑΤΗΓΟΡΙΑ 1. ΦΥΣΙΚΗ ΚΑΤΑΣΤΑΣΗ 2. ΜΙΣΘΟΣ 3.ΑΡΙΘΜΟΣ ΤΗΛΕΦΩΝΟΥ Α. ΠΟΙΟΤΙΚΗ
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων
Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η
Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που
Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 017 Λύσεις των θεμάτων Έκδοση η (0/06/017, 1:00) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ
Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς
Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές
ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΝΝΟΙΕΣ ΜΕΤΡΗΣΗΣ
ΕΝΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΝΝΟΙΕΣ ΜΕΤΡΗΣΗΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ
ΑΝΕΣΤΗΣ ΤΣΟΜΙΔΗΣ - ΜΑΘΗΜΑΤΙΚΟΣ 1) ΣΤΑΤΙΣΤΙΚΗ 1. Οι παρακάτω αριθμοί παρουσιάζουν τις ενδείξεις ενός ζαριού το οποίο ρίξαμε 20 φορές. 5 5 5 1 2 5 4 3 2 3 1 3 6 4 1 4 6 6 5 4 i) Να κατασκευάσετε πίνακα α)
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Μαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.
ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ. Η αγαπημένη γεύση παγωτού των παιδιών
ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ 1. Η αγαπημένη γεύση παγωτού των παιδιών Γεύση παγωτού Βανίλια Αριθμός παιδιών Σοκολάτα Φράουλα Λεμόνι Κάθε αντιστοιχεί σε 4 παιδιά Πόσα παιδιά προτιμούν το παγωτό βανίλιας; Απάντηση:
ΣΕΜΙΝΑΡΙΟ: Β06Σ03 «Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική» ΘΕΜΑ ΕΡΓΑΣΙΑΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2011-2012 ΣΕΜΙΝΑΡΙΟ: Β06Σ03 «Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική» Διδάσκων: Κ. Χρήστου
2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται
.1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών, στη Στατιστική στο τέλος του β τριµήνου. Πήραµε τις επόµενες βαθµολογίες: 15, 11, 10, 10, 14, 16, 19, 18, 13, 17. Να βρείτε: α) Ποιος είναι
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40
ΣΤΑΤΙΣΤΙΚΗ 1.Να συμπληρωθούν οι πίνακες x i v i f i f i % x 1 7 x 2 5 x 3 15 x 4 14 x 5 9 Άθροισμα 50 x i v i f i f i % 1 12 2 3 24 40 5 0,05 Σύνολο x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40
1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.
ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε
Το άθροισµα των σχετικών συχνοτήτων ισούται µε 100. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ
ΜΕΡΟΣ Α 4.3 ΚΑΤΑΝΟΜΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ 161 4.3 ΚΑΤΑΝΟΜΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ Συχνότητες Σχετικές συχνότητες Για να βρούμε τη σχετική συχνότητα µιας τιµής, διαιρούµε τη συχνότητα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε
Mέτρα (παράμετροι) θέσεως
Mέτρα (παράμετροι) θέσεως Είδη παραμέτρων Σκοπός μέτρων θέσεως Μέτρα θέσεως Αριθμητικός μέσος Επικρατούσα τιμή Διάμεσος Τεταρτημόρια Σύντομη περιγραφή Το πρώτο βήμα της ανάλυσης των δεδομένων, είναι η
Το υπουργείο μας. Ατυχήματα - πρώτες βοήθειες στο σχολείο
Αθήνα 29 Το υπουργείο μας Ατυχήματα - πρώτες βοήθειες στο σχολείο Χρήστος Τριπόδης Αναστάσιος Χριστάκης Παναγιώτα Γ. Ψυχογιού Νικόλαος Τριπόδης Αθήνα 29 Ατυχήματα - πρώτες βοήθειες στο σχολείο Συγγραφείς:
σ αυτή την περίπτωση; = 610 και το άθροισμα των 12 πρώτων όρων της S 12 = 222. Να βρείτε τη διαφορά και τον 1 ο όρο της.
ΚΕΦΑΛΑΙΟ 5ο ΑΡΙΜΗΤΙΚΗ ΚΑΙ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σε μια αριθμητική πρόοδο είναι 6 και 9. Να βρείτε α) τη διαφορά και β) τον 0 ο όρο της προόδου.. Σε μια αριθμητική πρόοδο είναι 3 και 7.
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
3 ος Παγκύπριος Διαγωνισμός Δεξιοτήτων Σκέψης
ΕΠΙΠΕΔΟ 3 4 Γ ΚΑΙ Δ ΔΗΜΟΤΙΚΟΥ Ἡ παιδεία, καθάπερ εὐδαίμων χώρα, πάντα τ ἀγαθά φέρει. μτφρ: η μόρφωση, όπως ακριβώς μια εύφορη γη, φέρνει όλα τα καλά Σωκράτης (469-399 π.χ., Φιλόσοφος) 0 ΣΕ ΚΑΘΕ ΕΡΩΤΗΣΗ
Στόχοι- Υποστόχοι- Δραστηριότητες. Κωσταρόπουλος Κώστας, Πίππος Ιωάννης, Φράγγος Χρήστος
Στόχοι- Υποστόχοι- Δραστηριότητες Κωσταρόπουλος Κώστας, Πίππος Ιωάννης, Φράγγος Χρήστος Συλλογή, οργάνωση και καταγραφή δεδομένων Αναπαράσταση δεδομένων Στατιστικά μέτρα θέσης ΣΥΛΛΟΓΗ, ΟΡΓΑΝΩΣΗ ΚΑΙ ΚΑΤΑΓΡΑΦΗ
ΕΝΟΤΗΤΑ 3 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ. ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα (!,!,!,!,! ) ενός συνόλου ή μιας επιφάνειας,!!!!! χρησιμοποιώντας αντικείμενα, εικόνες και εφαρμογίδια.
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την
ΕΝΟΤΗΤΑ 9 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4
ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,
Εύρεση ν-στού πρώτου αριθμού
Εύρεση ν-στού πρώτου αριθμού Ορισμός Πρώτος αριθμός λέγεται κάθε φυσικός αριθμός (εκτός της μονάδας) που έχει φυσικούς διαιρέτες μόνο τον εαυτό του και τη μονάδα. Ερώτημα: Να υπολογιστεί ο ν-στός πρώτος
Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)
Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) 1. Οργάνωση και Γραφική παράσταση στατιστικών δεδομένων 2. Αριθμητικά περιγραφικά μέτρα Εφαρμοσμένη Στατιστική Μέρος 1 ο Κ. Μπλέκας (1/13) στατιστικών
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ Ονοματεπώνυμο:.. Τμήμα:. Αριθ.:
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2016 2017 ΜΑΘΗΜΑ: Μαθηματικά ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2017 ΤΑΞΗ: Α Βαθμός: ΗΜΕΡΟΜΗΝΙΑ: 02 / 06 / 2017 ΧΡΟΝΟΣ: 2 Ώρες Ολογρ.:... Υπογραφή:. Ονοματεπώνυμο:..