Περιεχόμενα. Σειρά VII 2
|
|
- Σάρρα Μιχαηλίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2 Περιεχόμενα 1. Κυματική Θεωρία Stokes ης τάξης. Κυματική Θεωρία Stokes 5 ης τάξης 3. Κυματική Θεωρία Συνάρτησης ροής (Fourier 18 ης τάξης) 4. Cnoial waves 5. Θεωρία μοναχικού κύματος (Solitary wave) 6. Επιλογή κυματικής θεωρίας Σειρά VII
3 Θεωρία Airy ή Stokes 1 ης τάξης Γραμμικοί & Κανονικοί Κυματισμοί z=0 α z H c x Ταχύτητα μετάδοσης phase velocity wave celerity S.W.L t w u Ελεύθερη επιφάνεια (x,t) acos( kxt) z=- Wave Frequency, k ; T αριθμός κύματος Wave Number k μήκος κύματος, gk tanh( k) a coshk( y ) u sin( t kx) sinh( k) a sinh k( y ) v cos( t kx) sinh( k) Σειρά VII 3
4 Μη γραμμικότητα, Κανονικοί Κυματισμοί Όσο πιο «μεγάλο» ένα κύμα τόσο πιο σημαντική γίνεται η μη γραμμικότητα GG Stokes, θεωρία έως 5 η τάξη μη γραμμικότητας η τάξη θα έχει τη μορφή: H H k cosh( k) coskx t 3 16 sinh k coshk cos kx t H k coshk( y) u g coskx t cosh( k) 3 coshk y H k coskx t 4 16 sinh k H w k sinh k g sinh k y y 3 sinh k H k sin 4 16 sinh ( k) sin kx t kx t Εξίσωση διασποράς - Αμετάβλητη gk tanh k Ανοιχτές τροχιές σωματιδίων Σειρά VII 4
5 Πηγή: Θ. Καραμπάς, Καθηγητής Πανεπ. Αιγαίου Μη γραμμικότητα, Κανονικοί Κυματισμοί GG Stokes, θεωρία έως 5 η τάξη μη γραμμικότητας H η τάξη θα έχει τη μορφή: H k cosh( k) coskx t 3 16 sinh k coshk cos kx t + 1 st ή κύρια αρμονική. Περιγράφει ελευθερους κυματισμούς c k ΙΙ n αρμονική. Περιγράφει δεσμευμένους κυματισμούς στους ελεύθερους κυματισμούς c k k Typical (t) Εξηγεί: Ασυμμετρία κυματοκορυφής κοιλίας Μεταβολή της μέσης στάθμης νερού Σειρά VII 5
6 Πηγή: Prof. C. Swan, Inaugural Lecture Μη γραμμικότητα, Κανονικοί Κυματισμοί (a) Μία συχνότητα, μικρό εύρος α max = H/ H max max max H H (b) Μία Συχνότητα, μεγάλο εύρος α max > H/ max Σειρά VII 6
7 Πηγή: Prof. C. Swan, Inaugural Lecture Μη γραμμικότητα, Κανονικοί Κυματισμοί (a) Μία συχνότητα, μεγάλο εύρος α, γραμμική λύση max = H/ max H max H (b) Μία συχνότητα, μεγάλο εύρος α, μη-γραμμική λύση max > H/ Σειρά VII 7
8 Μη γραμμικότητα, Κανονικοί Κυματισμοί Δυστυχώς, όσο πιο «μεγάλοι» κυματισμοί τόσους περισσότερους όρους πρέπει να χρησιμοποιούμε: 1. Αναλυτικές λύσεις, μέχρι 5 ης τάξης. Fenton (1985) επέκταση της λύσης Stokes έως 5 η τάξη: Σειρά VII 8
9 Μη γραμμικότητα, Κανονικοί Κυματισμοί Stokes 5 th Ανοιχτές τροχιές σωματιδίων Εξίσωση διασποράς - μεταβλητή Σειρά VII 9
10 Μη γραμμικότητα, Κανονικοί Κυματισμοί Stokes 5 th Σειρά VII 10
11 Μη γραμμικότητα, Κανονικοί Κυματισμοί Stokes 5 th Σειρά VII 11
12 Μη γραμμικότητα, Κανονικοί Κυματισμοί Stokes 5 th Τυπικό μοτίβο αρμονικών Note: H k εκφράζει την καμπυλότητα. Όσο μεγαλύτερη η καμπυλότητα, τόσο περισσότερες αρμονικές πρέπει να συμπεριληφθούν. Phase velocity, uniform current. 0. orer (є) t kx t kx + mean 1 st. orer (є 1 ) n orer (є ) t kx 3t kx t kx 4t kx t kx 3t kx 5t kx t kx 4t kx 6t kx + mean + mean 3 r.orer (є 3 ) 4 th.orer (є 4 ) 5 th. orer (є 5 ) 6 th. orer (є 6 ) Σειρά VII 1
13 Μη γραμμικότητα, Κανονικοί Κυματισμοί. Λύσεις συνάρτησης ροής. Dean (1965), Fourier 18 th Για y=η c U c U 1 N 1 n4,6,8 sinh n k y U Μέση ταχύτητα ρεύματος αν υπάρχει X n n cos kx X n1 n sin kx Σειρά VII 13
14 Μη γραμμικότητα, Κανονικοί Κυματισμοί Λύσεις συνάρτησης ροής. Dean (1965), Fourier 18 th Εδώ πάλι: Η κυρίαρχη εξίσωση Laplace ψ = 0 ικανοποιείται πάντα. Οι οριακές συνθήκες στον πυθμένα ικανοποιούνται πάντα. X n άγνωστοι προσδιορίζονται με τη μέθοδο των ελαχίστων τετραγώνων που προσαρμόζεται στις οριακές συνθήκες της ελεύθερης επιφάνειας. Σημείωση: Το μοντέλο εφαρμόζεται σε ευρύτερο πεδίο βαθών (δες Fig.1 παρακάτω) Μπορεί να χρησιμοποιηθεί με δύο τρόπους Με δεδομένα τα H, T και η x και ψ(x, y) και άρα u, v Με δεδομένη χρονοσειρά η t ψ(x, y) και άρα u, v Σειρά VII 14
15 Μη γραμμικότητα, Κανονικοί Κυματισμοί 3. Cnoial Waves Για 1/50 < /λ <1/8 μαθηματική επίλυση του προβλήματος κάνοντας χρήση των Ιακωβιανών ελλειπτικών συναρτήσεων συνημιτόνου Σειρά VII 15
16 Μη γραμμικότητα, Κανονικοί Κυματισμοί 3. Cnoial Waves κατακόρυφη απόσταση του πυθμένα από την ελεύθερη επιφάνεια δίνεται Σειρά VII 16
17 Μοναχικό κύμα Σειρά VII 17
18 Μοναχικό κύμα Σειρά VII 18 q H.sec h Στάθμη νερού η στο σημείο x : Ταχύτητα μετάδοσης Tαχύτητες u, w στο σημείο x, z : Μέγιστη ταχύτητα u max : ). ( ) (3 1/ C t x q / g g C H / ( 0) x O Προσέγγιση Πρώτης Τάξης cosh cos.cosh cos 1.. x M z M x M z M C N u cosh cos.sinh sin.. x M z M x M z M C N w z M C N u cos 1. max
19 Μοναχικό κύμα Σειρά VII 19
20 Επιλογή Κυματικής Θεωρίας Σειρά VII 0
21 Παράδειγμα Υπολογισμού (α) Κύμα ύψους στα ανοικτά 1.8m και περιόδου 8 secs εισέρχεται σε παράκτια περιοχή βάθους 5m. Nα προταθεί η κατάλληλη θεωρία για την περιγραφή του κύματος. (β) Να επαναληφθεί το ίδιο εάν το κύμα μεταδίδεται σε βαθιά νερά =35m. (γ) Να υπολογιστεί για το (β) η μέγιστη ανύψωση του κυματισμού, η οριζόντια ταχύτητα και η οριζόντια επιτάχυνση για γραμμικό κυματισμό αλλά και σύμφωνά με τη θεωρία που προκύπτει από το διάγραμμα. Απάντηση (α) Από την εξίσωση διασποράς (Εξ. ( η ) στη σειρά ΙΙ) καταλήγουμε ότι λ= 53.1m Ο συντελεστής ρήχωσης (Εξ. (3ζ)) προκύπτει Κ s = 1.03 Συνεπώς Η=.0*1.03=.56m. Θα είναι /gt = και H gt = 0.003, συνεπώς, από το διάγραμμα Le Mehaute προκύπτει ότι θα πρέπει να χρησιμοποιηθεί η ελλειπτική θεωρία ή η θεωρία ροϊκής συνάρτησης. (β)με τον ίδιο τρόπο λ = 97.8m και Κ s = 0.964, H=1.8*0.964=1.735m. Συνεπώς, /gt = και H gt = 0.006, οπότε μπορεί να χρησιμοποιηθεί η θεωρία Stokes ης τάξης. Σειρά VII 1
22 Καραμπάς, Θ., «Στοιχεία Κυματομηχανικής», Διδακτικές σημειώσεις, Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο Αιγαίου. Κατσαρδή, Β., «Ακτομηχανική και Παράκτια Έργα», Διδακτικές Σημειώσεις, ΤΕΙ Αθήνας. Κουτίτας, Χ., «Εισαγωγή στην παράκτια Τεχνική και τα Λιμενικά Έργα», ΑΠΘ, Εκδόσεις Ζήτα, Θεσσαλονίκη Ματσούκης, Π.Φ., «Παράκτιες Διεργασίες», Διδακτικές Σημειώσεις, ΔΠΘ. Fenton, J.D., 1985, «A Fifth-Orer Stokes Theory for Steay Waves», J. Waterway, Port, Coastal an Ocean Engineering, Vol.111, No., Swan, C., «Coastal Engineering», Lecture Notes, Imperial College, Lonon. Swan, C., «Flui Mechanics», Lecture Notes, Imperial College, Lonon. Swan, C., «Inaugural Lecture», Imperial College, Lonon. Σειρά VΙΙ
Περιεχόμενα. Σειρά II 2
Περιεχόμενα 1. Δυναμικό Ροής και Ροϊκή Συνάρτηση 2. Κυματική Θεωρία Stokes 1 ης τάξης (Airy) 3. Κυματική Θεωρία Stokes 2 ης τάξης 4. Κυματική Θεωρία Stokes 5 ης τάξης 5. Κυματική Θεωρία Συνάρτησης ροής
Ακτομηχανική & Παράκτια Έργα 2/23/2012
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΕΡΙΕΧΟΜΕΝΑ A. Κανονικοί Κυματισμοί 1. Γραμμικοί και μη γραμμικοί κανονικοί κυματισμοί. Επανάληψη εννοιών. Προσομοίωση 2. Μετάδοση Κυματισμών μέσω μαθηματικών ομοιωμάτων. Ρήχωση
ΑΚΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΠΑΡΑΚΤΙΑ ΕΡΓΑ
ΑΚΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΠΑΡΑΚΤΙΑ ΕΡΓΑ ΔΟΜΗ ΜΑΘΗΜΑΤΟΣ i. ΣΤΟΙΧΕΙΑ ΚΥΜΑΤΟΜΗΧΑΝΙΚΗΣ ii. ΚΥΚΛΟΦΟΡΙΑ ΑΝΑΜΙΞΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΙΖΗΜΑΤΩΝ iii.παρακτια ΤΕΧΝΙΚΑ ΕΡΓΑ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑ ΑΚΤΩΝ ΣΤΟΙΧΕΙΑ ΚΥΜΑΤΟΜΗΧΑΝΙΚΗΣ 1. Εισαγωγικά
Πανεπιστήμιο Θεσσαλίας - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Δρ. Βασιλική Κατσαρδή
Πανεπιστήμιο Θεσσαλίας - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Δρ. Βασιλική Κατσαρδή Λιμενικά Έργα Σειρά Ι 2 Λιμάνι Βόλου- Κυματοθραύστης Σειρά Ι 3 Σανίδα σωτηρίας: Συντελεστές ασφαλείας Οικονομία;
Περιεχόμενα. 1. Ρήχωση 2. Διάθλαση 3. Περίθλαση 4. Αλληλεπίδραση κυματισμών - ρευμάτων 5. Ανάκλαση 6. Θραύση 7. Κυματογενή Ρεύματα.
Σειρά ΙΙΙ 1 Περιεχόμενα Κυματισμοί που προελαύνουν στα ρηχά νερά Παραδείγματα επίλυσης Επίδραση όρων 2 ης τάξης Κυματική Ενέργεια Ταχύτητα ομάδας Μετασχηματισμοί των κυματισμών 1. Ρήχωση 2. Διάθλαση 3.
2. Στοιχεία κυματομηχανικής
. Στοιχεία κυματομηχανικής Σύνοψη Στο κεφάλαιο αυτό δίνεται ο ορισμός των επιφανειακών θαλάσσιων κυματισμών, παρουσιάζονται οι βασικές εξισώσεις υδροδυναμικής και εξάγονται οι αναλυτικές λύσεις της γραμμικής
Πανεπιστήμιο Θεσσαλίας - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Δρ. Βασιλική Κατσαρδή
Πανεπιστήμιο Θεσσαλίας - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Δρ. Βασιλική Κατσαρδή Ακτομηχανική Σειρά Ι 2 Στην Ελλάδα 15.000 Κm ακτών! (Αφρική, 30.000 Κm) 200 κατοικημένα νησιά Σειρά Ι 3 ΠΡΟΒΛΗΜΑ-ΑΝΤΙΜΕΤΩΠΙΣΗ
Ακτομηχανική & Παράκτια Έργα 3/26/2012. Λεξιλόγιο Ανάλογα με την απόσταση από την ακτή. Σειρά V 2. Δρ. Βασιλική Κατσαρδή 1
Λεξιλόγιο Ανάλογα με την απόσταση από την ακτή Σειρά V 2 Δρ. Βασιλική Κατσαρδή 1 Λεξιλόγιο Ανάλογα με την απόσταση από την ακτή Backshore region: Οπίσθιο τμήμα ακτής: Μέρος της ακτής που καλύπτεται από
Μηχανισμοί μεταφοράς φερτών
Μηχανισμοί μεταφοράς φερτών Οι δυνάμεις κοντά στο όριο του πυθμένα υπό την επίδραση κυμάτων ή/και ρευμάτων αποτελούν τον κύριο λόγο αποσταθεροποίησης των κόκκων του ιζήματος. Η ισορροπία δυνάμεων σε επίπεδο
2 c. cos H 8. u = 50 n
Τεχνολογικό Πανεπιστήµιο Κύπρου Σχολή Μηχανικής και Τεχνολογίας Τµήµα Πολιτικών Μηχανικών και Μηχανικών Γεωπληροφορικής (Κατεύθυνση Πολιτικών Μηχανικών / Τοπογράφων Μηχανικών και Μηχανικών Γεωπληροφορικής)
Υπολογισμός Κυματικής Δύναμης σε σύστημα πασσάλων Θαλάσσιας Εξέδρας
Υπολογισμός Κυματικής Δύναμης σε σύστημα πασσάλων Θαλάσσιας Εξέδρας Περιγραφή Προβλήματος Απαιτείται η κατασκευή μιας θαλάσσιας εξέδρας σε θαλάσσια περιοχή με κυματικά χαρακτηριστικά Η = 4.65m, T = 8.5sec.
Παραδείγματα Λυμένες ασκήσεις Κεφαλαίου 5
Παραδείγματα Λυμένες ασκήσεις Κεφαλαίου 5 Παράδειγμα : Υπενθυμίζεται η γενική μορφή της σχέσεως διασποράς για την περίπτωση αλληλεπίδρασης κύματος-ρεύματος, παρουσία και των επιδράσεων της επιφανειακής
Πραγματικοί κυματισμοί
Πραγματικοί κυματισμοί Οι κυματισμοί που δημιουργεί η επίδραση του ανέμου στην επιφάνεια της θάλασσας, δεν είναι «μονοχρωματικοί». Η επιφάνεια της θάλασσας μπορεί να προσεγγιστεί με σύνθεση περισσοτέρων
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 2 η. Επιφανειακοί κυματισμοί- κύματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Παράκτια Ωκεανογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 7 η : Θραύση και αναρρίχηση κυματισμών Θεοφάνης Β. Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΑΚΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΠΑΡΑΚΤΙΑ ΕΡΓΑ
ΑΚΤΟΜΗΧΑΝΙΚΗ ΚΑΙ ΠΑΡΑΚΤΙΑ ΕΡΓΑ ΣΤΟΙΧΕΙΑ ΚΥΜΑΤΟΜΗΧΑΝΙΚΗΣ 3. ΔΙΑΜΟΡΦΩΣΗ ΤΟΥ ΚΥΜΑΤΟΣ ΣΤΙΣ ΑΚΤΕΣ ΡΗΧΩΣΗ ΔΙΑΘΛΑΣΗ ΠΕΡΙΘΛΑΣΗ ΑΝΑΚΛΑΣΗ ΘΡΑΥΣΗ ΑΝΑΡΡΙΧΗΣΗ ΡΗΧΩΣΗ Ρήχωση (shoaling) είναι η μεταβολή των χαρακτηριστικών
7.1.3 ΘΑΛΑΣΣΙΟΙ ΚΥΜΑΤΙΣΜΟΙ
Operational Programme Education and Lifelong Learning Continuing Education Programme for updating Knowledge of University Graduates: Modern Development in Offshore Structures AUTh TUC 7.1.3 ΘΑΛΑΣΣΙΟΙ ΚΥΜΑΤΙΣΜΟΙ
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 7 η. Περίθλαση, θραύση κυματισμών Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Χαρακτηριστικά Διάδοσης Κύματος Όλα τα κύματα μεταφέρουν ενέργεια.
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται
2010-2011 2 1 0 0 1-20 2 1 0 1 -1-
2011 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ρ. ΘΕΟΧΑΡΗΣ ΚΟΦΤΗΣ 2011-1- ΟΜΗ ΜΑΘΗΜΑΤΟΣ i. ΣΤΟΙΧΕΙΑ ΚΥΜΑΤΟΜΗΧΑΝΙΚΗΣ ii. ΚΥΚΛΟΦΟΡΙΑ ΘΑΛΑΣΣΙΩΝ ΜΑΖΩΝ ΑΝΑΜΙΞΗ ΚΑΙ ΜΕΤΑΦΟΡΑ ΙΖΗΜΑΤΩΝ iii.παρακτια ΤΕΧΝΙΚΑ
ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ
ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ Θαλάσσια κύματα 1.1. Ορισμός Θαλάσσια κύματα είναι περιοδικές μηχανικές ταλαντώσεις των μορίων του νερού, στην επιφάνεια ή στο βάθος, οποιασδήποτε περιόδου, με τις οποίες γίνεται
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κυματομηχανική Κωδικός
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Κυματομηχανική Κωδικός CE0 μαθήματος:
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ ΥΔΡΟΔΥΝΑΜΙΚΗΣ ΘΕΩΡΙΑ ΚΥΜΑΤΙΣΜΩΝ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ ΥΔΡΟΔΥΝΑΜΙΚΗΣ ΘΕΩΡΙΑ ΚΥΜΑΤΙΣΜΩΝ . Εισαγωγή Ενα από τα βασικά θέματα της ναυτικής υδροδυναμικής είναι τα θαλάσσια κύματα. Τα θαλάσσια κύματα που ενδιαφέρουν την ναυτική
7.1.3 Θαλάσσιοι Κυματισμοί (β)
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 8 η. Θραύση κυματισμών, παράκτια ρεύματα, ανάκλαση- αναρρίχηση ακτών Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Παράκτια Ωκεανογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 8 η : Θραύση και αναρρίχηση κυματισμών-2 Θεοφάνης Β. Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Το φαινόμενο της μετακίνησης των φερτών
Το φαινόμενο της μετακίνησης των φερτών Τα παράκτια τεχνικά έργα διαταράσσουν την προϋπάρχουσα δυναμική φυσική ισορροπία. Στόχος η φυσική κατανόηση και η ποσοτική περιγραφή της επίδρασης των έργων στην
Προσομοίωση Μεταφοράς και ιασποράς Ρύπων με τη χρήση ενός Συστήματος Καταγραφής Επιφανειακών Ρευμάτων στη Θαλάσσια Περιοχή Λήμνου Λέσβου - αρδανελίων
Προσομοίωση Μεταφοράς και ιασποράς Ρύπων με τη χρήση ενός Συστήματος Καταγραφής Επιφανειακών Ρευμάτων στη Θαλάσσια Περιοχή Λήμνου Λέσβου - αρδανελίων Θεοφάνης Καραμπάς Βασίλειος Ζερβάκης Τμήμα Επιστημών
Διάλεξη 11 η. Πρόγνωση κυματισμών, κλιματική αλλαγή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 11 η. Πρόγνωση κυματισμών, κλιματική αλλαγή Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΦΥΣ Διαλ.33 1 KYMATA
ΦΥΣ 131 - Διαλ.33 1 KYMATA q Κύµατα εµφανίζονται σε συστήµατα µε καταστάσεις ισορροπίας. Τα κύµατα είναι διαταραχές από τη θέση ισορροπίας. q Τα κύµατα προκαλούν κίνηση σε πολλά διαφορετικά σηµεία σε ένα
AΝΕΜΟΓΕΝΕΙΣ ΚΥΜΑΤΙΣΜΟΙ
ΝΕΜΟΓΕΝΕΙΣ ΚΥΜΑΤΙΣΜΟΙ ΓΕΝΕΣΗ ΑΝΕΜΟΓΕΝΩΝ ΚΥΜΑΤΙΣΜΩΝ: Μεταφορά ενέργειας από τα κινούμενα κατώτερα ατμοσφαιρικά στρώματα στις επιφανειακές θαλάσσιες μάζες. η ενέργεια αρχικά περνά από την ατμόσφαιρα στην
ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ Διμερής Ε&Τ Συνεργασία Ελλάδας-Κίνας ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ SEAWIND
ΕΚ ΤΤΓΚ ΠΛ Φ ΕΠ 7-3 Διμερής Ε&Τ υνεργασία Ελλάδας-Κίνας -4 ΕΕΥΤΚ ΠΓΜΜ SEWD χεδιασμός θαλάσσιων ανεμογεννητριών βάσει επιτελεστικότητας θανάσιος. Δήμας, ικόλαος Φουρνιώτης, Ευάγγελος Καραγεωργόπουλος Εργαστήριο
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως
Περιβαλλοντική Ακτομηχανική (Θεωρητική Προσέγγιση, Εφαρμογές & Προσομοιώσεις)
Περιβαλλοντική Ακτομηχανική (Θεωρητική Προσέγγιση, Εφαρμογές & Προσομοιώσεις) ρ. Γιώργος Συλαίος Επίκουρος Καθηγητής ιαχείρισης Παράκτιων Υδατικών Συστημάτων Εργαστήριο Οικολογικής Μηχανικής & Τεχνολογίας
ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα)
ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα) Εκτός από τα εγκάρσια και τα διαμήκη κύματα υπάρχουν και τα επιφανειακά κύματα τα οποία συνδυάζουν τα χαρακτηριστικά των δυο προαναφερθέντων
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
Ανεμογενείς Κυματισμοί
Ανεμογενείς Κυματισμοί Γένεση Ανεμογενών Κυματισμών: Μεταφορά ενέργειας από τα κινούμενα κατώτερα ατμοσφαιρικά στρώματα στις επιφανειακές θαλάσσιες μάζες. Η ενέργεια αρχικά περνά από την ατμόσφαιρα στην
Μοντέλα Boussinesq. Σειρά V 2
Μοντέλα Boussinesq Σειρά V Μοντέλα Boussinesq Η πρώτη ομάδα εξισώσεων εφαρμοσμένη σε μη σταθερό πυθμένα εξήχθη από τον Peregrine (1967) και είναι κοινώς γνωστές ως εξισώσεις Boussinesq. Η μαθηματική προσομοίωση
Βοηθητικά για το θέμα 2016
Βοηθητικά για το θέμα 016 Αποτελεσματικό ή ισοδύναμο (F effective) μήκος αναπτύγματος των κυματισμών F eff i i F i cos cos a i a i Σειρά ΙV Αποτελεσματικό ή ισοδύναμο (F effective) μήκος αναπτύγματος των
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
Ανεμογενείς Κυματισμοί
Ανεμογενείς Κυματισμοί Γένεση Ανεμογενών Κυματισμών: Μεταφορά ενέργειας από τα κινούμενα κατώτερα ατμοσφαιρικά στρώματα στις επιφανειακές θαλάσσιες μάζες. Η ενέργεια αρχικά περνά από την ατμόσφαιρα στην
2.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις
ΚΕ. Εισαγωγή στην φυσική της κυματικής κίνησης.-0.5. Απλές λύσεις κυματικών εξισώσεων σε δύο και τρεις διαστάσεις.5.1 Σφαιρικά κύματα ως απλές λύσεις της εξίσωσης d Alembet στις τρεις διαστάσεις.5. Κυλινδρικά
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 15 η. Υδροδυναμικές Φορτίσεις Παράκτιων Τεχνικών Έργων- Φορτίσεις ογκωδών σωμάτων Εύα Λουκογεωργάκη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Θεοφάνης Καραμπάς. Τμήμα Πολιτικών Μηχανικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 9 η. Ανάκλαση και αναρρίχηση στις ακτές Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
1 ον ΜΕΡΟΣ ΑΠΟ ΤΗ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ 2 ον ΜΕΡΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΔΙΑΦΟΡΕΣ ΠΕΡΙΟΧΕΣ ΤΗΣ ΦΥΣΙΚΗΣ. Η ΑΝΤΑΓΩΝΙΣΜΟΣ ΜΕ ΤΑ ΜΗ ΓΡΑΜΜΙΚΑ
ΜΕΡΟΣ 1 Κ. ΕΥΤΑΞΙΑΣ H TAXYTHTA OMAΔΟΣ! 1 ον ΜΕΡΟΣ ΑΠΟ ΤΗ ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΣΤΗΝ ΤΑΧΥΤΗΤΑ ΟΜΑΔΟΣ 2 ον ΜΕΡΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΔΙΑΦΟΡΕΣ ΠΕΡΙΟΧΕΣ ΤΗΣ ΦΥΣΙΚΗΣ. Η ΑΝΤΑΓΩΝΙΣΜΟΣ ΜΕ ΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΦΑΙΝΟΜΕΝΑ SOLITONS
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 14 η. Υδροδυναμικές Φορτίσεις Παράκτιων Τεχνικών Έργων Εύα Λουκογεωργάκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Ασκηση 1: Να διατυπώσετε το πρόβλημα οριακών τιμών το οποίο απαιτείται για τη μαθηματική επίλυση του φυσικού μοντέλου που φαίνεται στο σχήμα: y Λ 2
Ασκήσεις Κεφααίου 5 Ασκηση : Να διατυπώσετε το πρόβημα οριακών τιμών το οποίο απαιτείται για τη μαθηματική επίυση του φυσικού μοντέου που φαίνεται στο σχήμα: y K κυματιστήρας b b 4 M M 4 b 3 3 K κάτοψη
Ι ΑΣΚΩΝ. Αντώνης Τουµαζής. Τηλ Ε-mail:
Ι ΑΣΚΩΝ Αντώνης Τουµαζής Τηλ. 99 64 63 60 Ε-mail: adtoumazis@cytanet.com.cy ΕΙΣΑΓΩΓΗ 1 ΑΝΤΩΝΗΣ ΤΟΥΜΑΖΗΣ Εκπαίδευση ΒSc Civil Engineering, University College London MSc Soil Mechanics and Eng. Seismology,
d = 5 λ / 4 λ = 4 d / 5 λ = 4 0,5 / 5 λ = 0,4 m. H βασική κυματική εξίσωση : υ = λ f υ = 0,4 850 υ = 340 m / s.
1) Ένα κύμα συχνότητας f = 500 Hz διαδίδεται με ταχύτητα υ = 360 m / s. α. Πόσο απέχουν δύο σημεία κατά μήκος μιας ακτίνας διάδοσης του κύματος, τα οποία παρουσιάζουν διαφορά φάσης Δφ = π / 3 ; β. Αν το
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
Ακτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 21 η. Στερεομεταφορά/Μηχανισμοί μεταφοράς φερτών υλών-2 Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε:
Γενική άσκηση στη συμβολή κυμάτων (Λύση) α) Η χρονική στιγμή t 1 που το κύμα από την πρώτη πηγή φτάνει στο σημείο Ρ είναι: r1 r1 6 u = => t1 = => t1 = s => t1 = 0, 6s t u 10 1 Τα κύματα φτάνουν στο σημείο
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις
Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος
. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.
O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα
Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2
Περιεχόμενα Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης Σειρά ΙΙ 2 Πεδίο ταχύτητας Όγκος Ελέγχου Καρτεσιανές Συντεταγμένες w+(/)dz z y u dz u+(/ x)dx x dy dx w Σειρά ΙΙ 3 1. Εισαγωγή 1.1 Εξίσωση
HMY 220: Σήματα και Συστήματα Ι
HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε
KYMATA Ανάκλαση - Μετάδοση
ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω
Ακτομηχανική - Έργα Προστασίας Ακτών
ΘΕΟΦΑΝΗΣ ΚΑΡΑΜΠΑΣ Καθηγητής ΓΙΑΝΝΗΣ ΚΡΕΣΤΕΝΙΤΗΣ Καθηγητής ΧΡΙΣΤΟΦΟΡΟΣ ΚΟΥΤΙΤΑΣ Καθηγητής Ακτομηχανική - Έργα Προστασίας Ακτών 1 Ακτομηχανική Έργα Προστασία Ακτών Συγγραφή Θεοφάνης Καραμπάς Γιάννης Κρεστενίτης
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:
7. ΚΥΜΑΤΑ. 7.1 Γενικά
7. ΚΥΜΑΤΑ 7.1 Γενικά Η επιφάνεια της θάλασσας φαίνεται να βρίσκεται συνέχεια σε κίνηση µε διαρκείς αναταράξεις. Η πιο προφανής αιτία είναι τα ανεµογενή κύµατα που διαδίδονται από άκρο σε άκρο σε µια ωκεάνια
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤIΚΟ - ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ & ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ» ΠΡΟΣΟΜΟΙΩΣΗ ΘΡΑΥΣΗΣ ΜΟΝΟΧΡΩΜΑΤΙΚΩΝ ΚΥΜΑΤΙΣΜΩΝ ΚΑΙ ΤΡΙΒΗΣ ΠΥΘΜΕΝΑ ΣΕ ΕΝΑ
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 2013
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 013 ΘΕΜΑ Α [35 μόρια] Θεωρήστε τη Λαγκραντζιανή L(x, ẋ, t που εξαρτάται απο τη θέση x ενός σωματιδίου πάνω σε μια ευθεία, το χρόνο t,
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Ενότητα 5: Η Ομοιογενής Γραμμή Μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Τμήμα Ηλεκτρολόγων Μηχανικών
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
Δυναμική Μηχανών I. Διάλεξη 9. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 9 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Η διάλεξη σε MATLAB/simulink για όσους δήλωσαν συμμετοχή θα γίνει στις 16/1/2014 στο PC LAB Δεν θα γίνει διάλεξη
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης
ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης 1. Μια µάζα m είναι εξαρτηµένη από το άκρο ενός ελατηρίου µε φυσική συχνότητα ω. Η µάζα αφήνεται να κινηθεί από την κατάσταση
2.1 Τρέχοντα Κύματα. Ομάδα Δ.
2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά
ΚΕΦΑΛΑΙΟ 4 ΠΑΛΙΡΡΟΙΕΣ (TIDES)
ΚΕΦΑΛΑΙΟ 4 ΠΑΛΙΡΡΟΙΕΣ (TIDES) Παλίρροια ονομάζεται το φυσικό φαινόμενο που προκαλεί την εναλλαγή ανύψωσης και βύθισης της επιφάνειας της θάλασσας, με μέση περίοδο 12,4 hr (ή 24,8 hr σε ορισμένες περιοχές).
KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο
Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Βασικές Έννοιες Η επιστήμη της Φυσικής συχνά μελετάει διάφορες διαταραχές που προκαλούνται και διαδίδονται στο χώρο.
Φόρτος εργασίας. 4 ( ώρες): Επίπ εδο μαθήματος: Ώρες διδασκαλίας: 7 διδασκαλίας εβδομαδιαίως:
Γενικές π ληροφορίες μαθήματος: Τίτλος Υπ ολογιστική μαθήματος: Υδραυλική με Εφαρμογές σε Υδραυλικά Έργα Πιστωτικές μονάδες: 5 Κωδικός μαθήματος: CE07_H05 Φόρτος εργασίας ( ώρες): Επίπ εδο μαθήματος: Προπτυχιακό
x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί
Πίνακας Περιεχομένων 7
Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16
Μετασχηματισμοί των κυματισμών Μετασχηματισμοί Κυματισμών. Β.Κ. Τσουκαλά, Επίκουρος Καθηγήτρια ΕΜΠ
Μετασχηματισμοί των κυματισμών Μετασχηματισμοί Κυματισμών Β.Κ. Τσουκαλά, Επίκουρος Καθηγήτρια ΕΜΠ E-mail:v.tsoukala@hydro.civil.ntua.gr Μερικές από τις κυματικές παραμέτρους αλλάζουν όταν οι κυματισμοί
Βύρων Μωραΐτης, Φυσικός MSc.
Μελέτη της επίδρασης των δυναμικών θαλάσσιων συνθηκών στους παράκτιους οικότοπους. Εφαρμογή στην Αφάντου Ρόδου. ~ Study on the impact of dynamic sea conditions on coastal marine habitats. Application in
20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier
ΗΜΥ 429 8. Διακριτός Μετασχηματισμός Fourier 1 Μετασχηματισμός Fourier 4 κατηγορίες: Μετασχηματισμός Fourier: σήματα απεριοδικά και συνεχούς χρόνου Σειρά Fourier: σήματα περιοδικά και συνεχούς χρόνου Μετασχηματισμός
2-1 ΕΙΣΑΓΩΓΗ 2-2 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ
ΕΞΩΦΥΛΛΟ 43 Εικ. 2.1 Κύμα στην επιφάνεια της θάλασσας. 2-1 ΕΙΣΑΓΩΓΗ Η έννοια «κύμα», από τις πιο βασικές έννοιες της φυσικής, χρησιμοποιήθηκε για την περιγραφή φαινομένων που καλύπτουν ένα ευρύ φάσμα.
ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ και ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΤΑΞΗ: ΕΝΟΤΗΤΕΣ: ΕΙΣΗΓΗΤΗΣ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ και ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ (ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ) ΜΙΧΕΛΑΚΑΚΗΣ ΗΛΙΑΣ 1.Διδακτικός στόχοι: Να ορίζουν το στάσιμο
Διδακτορική Διατριβή Α : Αριθμητική προσομοίωση της τρισδιάστατης τυρβώδους ροής θραυομένων κυμάτων στην παράκτια ζώνη απόσβεσης
Διδακτορική Διατριβή Α : Αριθμητική προσομοίωση της τρισδιάστατης τυρβώδους ροής θραυομένων κυμάτων στην παράκτια ζώνη απόσβεσης Στη διδακτορική διατριβή παρουσιάζεται η αριθμητική μέθοδος προσομοίωσης
H ΥΠΕΝΘΥΜΙΖΕΤΑΙ ΟΤΙ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ
θ cot T H ΥΠΕΝΘΥΜΙΖΕΤΑΙ ΟΤΙ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ Η ΦΑΣΙΚΗ ΤΑΧΥΤΗΤΑ ΑΝΑΦΕΡΕΤΑΙ ΣΤΟ ΤΟ ΑΡΜΟΝΙΚΟ ΚΥΜΑ ΠΟΥ ΕΙΝΑΙ ΜΑΘΗΜΑΤΙΚΗ ΟΝΤΟΤΗΤΑ! x t TO AΡMONIKO KYMA ΕΧΕΙ ΑΠΕΙΡΗ ΧΡΟΝΙΚΗ ΔΙΑΡΚΕΙΑ
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 017 Πρόβλημα Α Ένα σημειακό σωματίδιο μάζας m βάλλεται υπό γωνία ϕ και με αρχική ταχύτητα μέτρου v 0 από το έδαφος Η κίνηση εκτελείται στο ομογενές
2.6 Κύματα που παράγονται από δύο σύγχρονες. 2.7 Κύματα που παράγονται από δύο σύγχρονες. 2.8 Κύματα παράγονται από δύο σύγχρονες
ΚΕΦΑΛΑΙΟ 2 Συμβολή κυμάτων 2.1 Το φαινόμενο της συμβολής των κυμάτων, ισχύει: α. μόνο στα μηχανικά κύματα, β. σε όλα τα είδη των κυμάτων, γ. μόνο στα ηλεκτρομαγνητικά. 2.2 Δύο σημεία Π, Π της ήρεμης επιφάνειας
max 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά
. Να αποδείξετε ότι σε ένα ταλαντούμενο σύστημα ενός βαθμού ελευθερίας, μάζας και σταθεράς ελατηρίου s με πολύ ασθενή απόσβεση (γω, όπου γ r/, r η σταθερά αντίστασης και s/ ) το πλήρες εύρος στο μισό του
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Η εργασία δημοσιεύτηκε στο 9ο τεύχος του περιοδικού Φυσικές Επιστήμες στην Εκπαίδευση,
L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
HMY 333 Φωτονική Διάλεξη 06. Εισαγωγή στις ταλαντώσεις και κύματα. Απλοί αρμονικοί ταλαντωτές. Γιατί εξετάζουμε την απλή αρμονική κίνηση;
HMY 333 Φτονική Διάλεξη 6 Εισαγγή στις ταλαντώσεις και κύματα Απλοί αρμονικοί ταλανττές Μάζα-ελατήριο Mss-spring H. Chrisin, K.U.Ln(Wikipdi Εκκρεμές Pndlm U. o Monn LC κύκλμα hp://www.grnndwhi.n/~chb/lc_oscillor.hm
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε