ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ τάξη. Λυκείου.
|
|
- Λευκοθέα Καλύβας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Να προσδιορίσετε τις τιμές της παραμέτρου m για τις οποίες το εμβαδόν του τριγώνου που f x = x+, g( x) = mx, m ορίζεται από τις γραφικές παραστάσεις των συναρτήσεων ( ) 6 και τον άξονα των x ισούται με Γ τάξη y Λυκείου y =mx Μ Ο Α(,0) x Από το σύστημα y = mx, y = x+ 6 προκύπτει ότι οι συντεταγμένες του σημείου Μ είναι 6 6m,, οπότε έχουμε: m+ m+ 6m 6m 6m E( ΟΑΜ ) = = = ή = m= ή m= + m + m + m Πρόβλημα Έστω H το ορθόκεντρο και O το περίκεντρο οξυγωνίου τριγώνουabγ Έστω ακόμη Δ, Ε και Ζ τα μέσα των πλευρών του ΒΓ, ΑΓ και ΑΒ, αντίστοιχα Θεωρούμε τα σημεία, λ και λ, με Δ, Εκαι Ζ έτσι ώστε: ΟΔ = λ ΟΔ ΟΕ = ΟΕ ΟΖ = ΟΖ λ > Ο κύκλος C α που έχει κέντρο το σημείο Δ και διέρχεται από το H τέμνει την ευθεία ΒΓ στα σημεία Α και Cβ Ε, ΕΗ και Cγ Ζ, ΖΗ ορίζουν τα σημεία B, B και Γ, Γ στις ευθείες ΑΓ και ΑΒ, αντίστοιχα Να αποδείξετε ότι τα σημεία Α, Α, Β, Β, Γ και Γ είναι ομοκυκλικά Α Όμοια, οι κύκλοι ( ) ( ) Έστω Η το ορθόκεντρο του τριγώνου ΑΒΓ Επειδή τα σημεία Δ, ΕΖ, είναι τα μέσα των πλευρών του ΒΓ, ΑΓ και ΑΒ αντίστοιχα, τα τρίγωνα ΑΒΓ και ΔΕΖ έχουν τις πλευρές τους παράλληλες Τα τρίγωνα ΔΕΖ και ΔΕΖ έχουν επίσης τις πλευρές τους παράλληλες, γιατί ΟΔ = ΟΔ, ΟΕ = λ ΟΕ και ΟΖ = λ ΟΖ λ Η ΔΖ είναι μεσοκάθετη της κοινής χορδής ΚΗ των κύκλων C α και C γ Επειδή η ΔΖ είναι παράλληλη με την ΑΓ, έπεται ότι ΚΗ ΑΓ Επειδή όμως ισχύει και ότι ΒΗ ΑΓ καταλήγουμε στο συμπέρασμα, ότι τα σημεία ΒΚΗ,, είναι συνευθειακά
2 Με όμοιο τρόπο, αν ΜΗ, ΛΗ είναι η κοινή χορδή των κύκλων C β, C γ και C α, C β, αντίστοιχα, καταλήγουμε στο συμπέρασμα ότι τα σημεία Α, ΜΗ, και τα σημεία ΓΛΗείναι,, συνευθειακά Από τη δύναμη του σημείου Β ως προς τους κύκλους C α και C γ, έχουμε: ΒΚ ΒΓ = ΒΑ ΒΑ = ΒΓ ΒΓ, οπότε τα σημεία Α, Α, Γ, Γ είναι ομοκυκλικά στο κύκλο με κέντρο το Ο, που είναι το σημείο τομής των μεσοκαθέτων των τμημάτων ΑΑ και ΓΓ Όμοια εργαζόμαστε και με τα άλλα ζευγάρια σημείων, οπότε τα σημεία Α, Α, Β, Β, Γ και Γ βρίσκονται σε κύκλο κέντρου Ο Πρόβλημα Να προσδιορίσετε την τιμή του θετικού ακέραιου k και μη σταθερό πολυώνυμο ( ) βαθμού, με πραγματικούς συντελεστές, έτσι ώστε να ισχύει: x k P x = k x P x, για κάθε x ( ) ( ) ( ) ( ) P x, Έστω P( x) = ax + a x + + ax+ a0, a 0,, το ζητούμενο πολυώνυμο Τότε εξισώνοντας τους συντελεστές των μεγιστοβάθμιων όρων των δύο μελών της δεδομένης ισότητας πολυωνύμων, λαμβάνουμε a = ka k = Έτσι η δεδομένη ισότητα γίνεται: x P x = x P x,, για κάθε x () Από την () για ( ) ( ) ( ) ( ) x = προκύπτει ότι ( ) ( k P ) = 0 Συνεχίζοντας έτσι λαμβάνουμε τις σχέσεις ( ) P = 0, οπότε στη συνέχεια για x = προκύπτει P = 0, για k =,
3 Επίσης από την () για x = λαμβάνουμε: 0= P = 0 P = 0 ( ) ( ) ( ) k Άρα το ζητούμενο πολυώνυμο βαθμού έχει τις ρίζες, k =,,,, οπότε ( ) ( )( ) ( ) P x = a x x x, a Πρόβλημα 4 Δίνεται η συνάρτηση f : με πεδίο ορισμού και σύνολο τιμών, το σύνολο των πραγματικών αριθμών ( f ( ) = ) Αν για οποιουσδήποτε πραγματικούς αριθμούς x, y ισχύει η σχέση: f ( f ( f( x) ) f( y) ) = f( x) f ( f( y) ), () να αποδείξετε ότι η συνάρτηση f, είναι περιττή Θέτουμε στη δεδομένη σχέση όπου y το f ( x ) και έχουμε: f f f ( x ) f f ( x ) = f ( x ) f f f ( x ) Από τη σχέση () έχουμε τις ισότητες f f f f ( ( ) ( )) ( ( )) f (0) = f( x) f ( f ( f( x) )) f ( f ( f( x) )) = f( x) f(0) ( f f f )( x) = f( x) f(0) () ( )( x ) = f ( f ( x ) f (0 )) ( f f f f )( x ) = f ( f ( x )) f (0 ) από τις οποίες προκύπτει ότι: f ( f ( x ) f (0 )) = f ( f ( x )) f (0 ) () Από την () για x = 0 παίρνουμε: f f (0 ) f (0 ) = f f (0 ) f (0 ( ) ( ) ) f (0) = f ( f(0) ) f(0) f ( f(0) ) f(0) = (4) Από τη σχέση () για x = y = 0 και σε συνδυασμό με τη σχέση (4), έχουμε: f f f (0 ) f (0 ) = f (0 ) f f (0 ) ( ( ) ) ( ) f ( f(0) f(0) ) f(0) f(0) f ( f(0) ) f(0) = = (5) Από τις σχέσεις (4) και (5) έχουμε: f (0 ) = 0 Αν τώρα στη σχέση () θέσουμε x = 0 καταλήγουμε στη σχέση: f f f (0 ) f ( y ) = f (0 ) f f ( y ) ( ( ) ) ( ) f ( f( y) ) = f ( f( y) ) Επειδή όμως σύνολο τιμών της συνάρτησης f είναι το, έπεται ότι για κάθε x θα υπάρχει ένα τουλάχιστον y τέτοιο, ώστε f ( y ) = x Άρα έχουμε f ( x ) = f ( x ), για κάθε x, δηλαδή η συνάρτηση f είναι περιττή,
4 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 00 Γ Λυκείου Πρόβλημα * Η ακολουθία a,, ορίζεται αναδρομικά από τις σχέσεις * a = a + + k,, όπου k θετικός ακέραιος και a = Να βρείτε για ποια τιμή του k ο αριθμός 0 είναι όρος * της ακολουθίας a, Από τη δεδομένη αναδρομική σχέση έχουμε a = a = a+ k a = a + k ( ) ( ) a = a + k a = a + k από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε k( ) a = + k( ) = + k( ) = + Επομένως, αρκεί να προσδιορίσουμε τις τιμές των k και για τις οποίες ισχύει η ισότητα: k( ) a = + = 0 k( ) = 400 k( ) = 5 67,, k =,,00 ή,, k =,,670 ( ) ( ) ( ) ( ) Επομένως, για k = 00 είναι a = 0 και για k = 670 είναι a = 0 Πρόβλημα Δίνεται οξυγώνιο και σκαληνό τρίγωνο ABC και έστω M, M, M τυχόντα σημεία των πλευρών του BC, AC, AB, αντίστοιχα Έστω ακόμη τα ύψη του AH, BH, CH Να αποδείξετε ότι οι περιγεγραμμένοι κύκλοι των τριγώνων AH H, BMH, CMH περνάνε από το ίδιο σημείο (έστω K ), οι περιγεγραμμένοι κύκλοι των τριγώνων BHH, AMH, CMH περνάνε από το ίδιο σημείο (έστω K ) και οι περιγεγραμμένοι κύκλοι των τριγώνων CHH, AM H, BM H περνάνε από το ίδιο σημείο (έστω K ) Στη συνέχεια να αποδείξετε ότι οι ευθείες AK, BK, CK συντρέχουν, δηλαδή περνάνε από το ίδιο σημείο, αν, και μόνο αν, οι ευθείες AM, BM, CM συντρέχουν Έστω (c ) ο περιγεγραμμένος κύκλος του τριγώνου BM H, (c ) ο περιγεγραμμένος κύκλος του τριγώνου CM H, (c ) ο περιγεγραμμένος κύκλος του τριγώνου AH H και (c) ο περιγεγραμμένος κύκλος του εγγράψιμου τετραπλεύρου BH H C
5 Σχήμα 5 Θεωρώντας τις τέμνουσες AB και AC του κύκλου (c), συμπεραίνουμε: AB AH = AC AH Το γινόμενο όμως AB AH εκφράζει τη δύναμη του σημείου A ως προς το κύκλο (c ) ενώ το γινόμενο AC AH εκφράζει τη δύναμη του σημείου A ως προς το κύκλο (c ) Άρα το σημείο A, ανήκει στον ριζικό άξονα των κύκλων (c ) και (c ) Έστω τώρα ότι οι κύκλοι (c ) και (c ) τέμνονται στο σημείο K (εκτός βέβαια από το σημείο M ) Τότε η ευθεία που ορίζουν τα σημεία αυτά (δηλαδή τα K και M ) είναι ο ριζικός άξονας των κύκλων (c ) και (c ) Από τους παραπάνω συλλογισμούς προκύπτει ότι τα σημεία A,K και M είναι συνευθειακά Θα αποδείξουμε ότι και ο κύκλος (c ) περνάει από το σημείο K, δηλαδή ότι το τετράπλευρο AH KH είναι εγγράψιμο Από το εγγράψιμο τετράπλευρο BH H C έχουμε: ˆ ω = Bˆ Από το εγγεγραμμένο τετράπλευρο BM KH έχουμε: ˆ ϕ = Bˆ Άρα είναι ˆ ω = ˆ ϕ και κατά συνέπεια το τετράπλευρο AH KH είναι εγγράψιμο Με όμοιο τρόπο αποδεικνύουμε ότι και οι δύο άλλες τριάδες κύκλων, περνάνε από το ίδιο σημείο Προφανώς τώρα οι ευθείες AK,BK, CK συντρέχουν, αν, και μόνο αν, συντρέχουν οι ευθείες AM,BM, CM (δεδομένου ότι τα σημεία A,K, M, τα σημεία B,K, M και τα σημεία C,K, M, είναι συνευθειακά Πρόβλημα Αν,,, abxy με ( ab, ) ( 0,0) και (, ) ( 0,0) xy και ισχύουν ( ) ( ) ( ) ( ) a x y bxy = x a b aby b x y + axy = y a b + abx, να αποδείξετε ότι x = a και y = b
6 Σύμφωνα με τον ορισμό της ισότητας μιγαδικών αριθμών, προκύπτει ότι το σύστημα των δύο δεδομένων εξισώσεων είναι ισοδύναμο με την εξίσωση: a ( x y ) bxy b( x y ) axy i x( a b ) aby y ( a b ) abx + + = + + i ( a + bi) ( x y ) xyi ( a b ) abi + = + ( x + yi) ( a + bi) ( x + yi) = ( a + bi) ( x + yi) x+ yi = a+ bi (αφού ( α, β) ( 0,0) και ( x, y) ( 0,0 )) x= a, y = b Πρόβλημα 4 Σημείο Μ βρίσκεται στο εσωτερικό κύκλου C ( O, r), όπου r = 5cm, σε απόσταση 9cm από το κέντρο του κύκλου Να βρείτε τον αριθμό των χορδών του κύκλου C ( O, r) που περνάνε από το σημείο Μ και το μήκος τους είναι ακέραιος αριθμός Σχήμα 6 Θεωρούμε τη χορδή ΑΒ που περνάει από το σημείο Μ και το κέντρο O του κύκλου, καθώς και την κάθετη προς αυτήν χορδή ΓΜΔ, οπότε το σημείο Μ είναι το μέσο της χορδής ΓΔ Η χορδή ΑΒ έχει ακέραιο μήκος 0cm Από το θεώρημα τεμνομένων χορδών έχουμε ότι: ΓΔ ΓΔ ΓΔ ΓΜ ΜΔ = ΑΜ ΜΒ = 6 ( 9 + 5) = 44 = ΓΔ = 4 C O, r που περνάνε από το σημείο Μ και Έτσι μέχρι τώρα έχουμε βρει δύο χορδές του κύκλου ( ) έχουν ακέραιο μήκος Θεωρούμε τυχούσα χορδή ΚΛ του κύκλου C ( O, r) που περνάει από το Μ και έστω ΜΕ = x, ΜΟΕ ˆ = θ, όπου Ε είναι το μέσο της ΚΛ, σχήμα 6 Αν υποθέσουμε ότι π 0 θ, τότε έχουμε θεωρήσει όλες τις χορδές του κύκλου C ( O, r) που περνάνε από το Μ και τα άκρα τους Κ και Λ βρίσκονται στα ελάσσονα τόξα ΑΓ και ΒΔ, αντίστοιχα Για κάθε μία από αυτές τις χορδές αντιστοιχεί και μία ακόμη που είναι η συμμετρική της ως προς τη διάμετρο ΑΒ
7 Για τη χορδή ΚΛ, αν συμβολίσουμε το μήκος της ως ( θ ) ( ) 5 8, 0, έχουμε π θ = συν θ θ 8ημ θ π Επειδή είναι ( θ) = > 0, θ 0,, έπεται ότι η συνάρτηση ( θ ) είναι 5 8συν θ π γνησίως αύξουσα στο διάστημα 0,, οπότε η συνάρτηση ( ) θ έχει σύνολο τιμών το διάστημα ( 0, ) = [ 4,0] π Άρα το μήκος της χορδής ΚΛ μπορεί να πάρει όλες τις ακέραι- 4,0 Αν λάβουμε υπόψιν και τη συμμετρική χορδή της ΚΛ ως ες τιμές του διαστήματος [ ] προς τη διάμετρο ΑΒ, τότε τα πέντε μήκη 5, 6, 7, 8, 9 λαμβάνονται δύο φορές το καθένα, ενώ τα μήκη 4 και 0 λαμβάνονται από μία φορά Έτσι έχουμε συνολικά χορδές που περνάνε από το Μ με ακέραιο μήκος Παρατήρηση Θα μπορούσαμε επίσης να χρησιμοποιήσουμε το θεώρημα μέγιστης και ελάχιστης τιμής για τη π συνεχή συνάρτηση ( θ) = 5 8 συν θ, 0 θ, η οποία έχει ελάχιστη τιμή την π ( 0) = 4 και μέγιστη τιμή την = 0 Αυτό προκύπτει από την παρατήρηση ότι τα μήκη των χορδών είναι αντιστρόφως ανάλογα από τα αποστήματά τους και ότι το μέγιστο απόστημα π λαμβάνεται για θ = 0, ενώ το ελάχιστο απόστημα λαμβάνεται για θ = Παρατήρηση Σημειώνουμε ακόμη ότι οι χορδές με ακέραια μήκη 5, 6, 7, 8, 9, μπορούν να κατασκευαστούν γεωμετρικά, αφού αν θέσουμε ΚΜ = x και ΜΛ= y, τότε έχουμε { } x+ y = m, m 5,6,7,8,9 και xy = 44 = Έτσι εξασφαλίζουμε την ύπαρξη αυτών των χορδών με ακέραιο μήκος, χωρίς τη χρήση του διαφορικού λογισμού
8 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Γ τάξη Λυκείου Πρόβλημα Αν οι αβγ,, είναι θετικοί πραγματικοί αριθμοί με άθροισμα, να αποδείξετε ότι: ( ) ( ) ( ) α + 4β γ β + 4γ α γ + 4α β + + > 4αβ 4βγ 4γα Από τις γνωστές ανισότητες α + 4β 4 αβ, β + 4γ 4 βγ, γ + 4α 4γα, () λαμβάνουμε τις ανισότητες: α + 4β 4αβ ( α + 4β ) γ = ( η ισότητα ισχύει για α = β) γ () 4αβ 4αβ 4αβ β + 4γ 4βγ ( β + 4γ ) α = (ηισότητα ισχύει για β= ) γ α () 4βγ 4βγ 4βγ γ + 4α 4γα ( γ + 4α ) β = (ηισότητα ισχύει για γ = α) β (4) 4γα 4γα 4γα Από τις (), () και (4) με πρόσθεση κατά μέλη λαμβάνουμε: ( 4 ) ( 4 ) ( 4 ) α + β γ β + γ α γ + α β + + α+β + γ = (5) 4αβ 4βγ 4γα Η ισότητα στη σχέση (5) ισχύει, αν, και μόνον αν, ισχύουν οι ισότητες και στις τρεις σχέσεις (), () και (4) ή ισοδύναμα: α= β, β= γ, γ= α, από τις οποίες προκύπτει ότι α=β=γ= 0, που είναι άτοπο, αφού οι αριθμοί αβγ,, είναι θετικοί Επομένως έχουμε αποδείξει ότι: ( α + 4β ) γ ( β + 4γ ) α ( γ + 4α ) β + + > 4αβ 4βγ 4γα Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + xy = 5 ( Σ ) y xy = Αν υποθέσουμε ότι υπάρχει λύση ( x, y ) του συστήματος ( Σ ), με x= 0 ή y = 0, τότε λαμβάνουμε 0 = 5 ή 0 = -, άτοπο Για xy 0, η μία εξίσωση του συστήματος μπορεί να αντικατασταθεί με αυτήν που προκύπτει από τις δύο εξισώσεις του συστήματος, με διαίρεση κατά μέλη:
9 y + m 5 + = 5m m+ = 0 x + xy 5 x 5 m m = = y y xy y y y m m = = x x x x m= ή m= m= 5 m = 5 ή y y = x x = m y = x 5 Επομένως έχουμε: 7x 5 7 x + xy = 5 = x x =± x + xy = x = =± ή ή ή 7 Σ x y = x y = y = x x y x x 5 y = y = = ( xy, ) = (,) ή ( xy, ) = (, ) ή ( xy, ) =, ή ( xy, ) =, ( ) Πρόβλημα Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R Ο περιγεγραμμένος κύκλος του τριγώνου ΑOB (έστω ( c ) ), τέμνει την AΓ στο σημείο K και την ΒΓ στο σημείο Ν Έστω ( c ) ο περιγεγραμμένος κύκλος του τριγώνου ΓΚΝ και ( c ) ο περιγεγραμμένος κύκλος του τριγώνου OΓΚ Να αποδείξετε ότι οι κύκλοι ( c ), ( c ) και ( c ) είναι ίσοι μεταξύ τους Έστω R,R, R οι ακτίνες των κύκλων ( c ),( c ) και ( c ) αντίστοιχα Θα αποδείξουμε ότι R = R = R Από το εγγεγραμμένο τετράπλευρο AKOB έχουμε: Α ˆ ˆ = B Από το εγγεγραμμένο τετράπλευρο AOΝB έχουμε: Α ˆ ˆ = Β Από το ισοσκελές τρίγωνο OBΓ, έχουμε: Β ˆ ˆ = Γ Από το ισοσκελές τρίγωνο OΑΓ, έχουμε: Α ˆ ˆ = Γ Από τις παραπάνω ισότητες των γωνιών, προκύπτει ΝΑΓ ˆ = ΚΒΓ ˆ = Γˆ, δηλαδή τα τρίγωνα ΝΑΓ και ΚΒΓ είναι ισοσκελή, οπότε ΝΑ = ΝΓ και ΚΒ = ΚΓ Τα τρίγωνα τώρα ΟΚΒ και ΟΚΓ είναι ίσα διότι έχουν: ΟΒ = ΟΓ (ακτίνες του κύκλου ( c ) ) ΟΚ (κοινή) ΚΒ = ΚΓ (από το ισοσκελές τρίγωνο ΚΒΓ ) Εφόσον λοιπόν τα τρίγωνα ΟΚΒ και ΟΚΓ είναι ίσα, θα έχουν ίσους τους περιγεγραμμένους κύκλους τους ( c ) και ( c ) Απόδειξη της Ισότητας των Κύκλων ( c ) και ( c ) ( ος τρόπος) Θεωρούμε τώρα τα τρίγωνα ΚΝΒ και ΚΝΓ που έχουν περιγεγραμμένους κύκλους ( c ) και ( c ) αντίστοιχα
10 αβγ Θα χρησιμοποιήσουμε στη συνέχεια τον τύπο E = (ΑΒΓ) = που εκφράζει το εμβαδό 4R τριγώνου συναρτήσει του μήκους των πλευρών και της ακτίνας του περιγεγραμμένου κύκλου Έστω λοιπόν E = (ΚΝΒ) το εμβαδό του τριγώνου ΚΝΒ και E = (ΚΝΓ) το εμβαδό του τριγώνου ΚΝΓ Τότε: ΝΒ ΝΚ ΒΚ E = (ΚΝΒ) = 4R Ε 4R ΝΒ ΝΚ ΒΚ Ε = R ΝΒ =, () ΝΓ ΝΚ ΓΚ Ε 4R ΝΓ ΝΚ ΓΚ E = (ΚΝΓ) = Ε R ΝΓ 4R (για τη τελευταία συνεπαγωγή χρησιμοποιήσαμε την ισότητα ΚΒ = ΚΓ, που προκύπτει από το ισοσκελές τρίγωνο ΚΒΓ ) Σχήμα 5 Τα τρίγωνα ΚΝΒ και ΚΝΓ έχουν τις γωνίες τους Άρα: E ΝΒ ΝΚ Ε = = E ΝΓ ΝΚ Ε Από τις σχέσεις () και () έχουμε R = R ΝΒ ΝΓ ˆ ΚΝΒ και ˆ ΚΝΓ παραπληρωματικές () Απόδειξη της Ισότητας των Κύκλων ( c ) και ( c ) ( ος τρόπος) Για την απόδειξη, θα χρησιμοποιήσουμε το νόμο των ημιτόνων: a β γ = = = R ημα ημβ ημγ Εφαρμόζοντας το νόμο των ημιτόνων στα τρίγωνα ΚΝΒ και ΚΝΓ έχουμε: ΚΝ ΚΝ = R και = R ημ( ΚΒΝ ˆ ) ημ( Γˆ ) Από την ισότητα τώρα των γωνιών ΚΒΝ ˆ = Γ ˆ, καταλήγουμε: R = R Πρόβλημα 4 Η ακολουθία * a,, ορίζεται αναδρομικά από τις σχέσεις
11 k * a = a +,, a =, όπου k θετικός ακέραιος (i) Να προσδιορίσετε το γενικό όρο a της ακολουθίας ως συνάρτηση των και k (ii) Να αποδείξετε ότι υπάρχουν μοναδικοί θετικοί ακέραιοι k, τέτοιοι ώστε : a = 000 (i) Από τις υποθέσεις έχουμε a = a k, a = a k,, a k = a, =,,, από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε: a = a k k = + k a = + k k = ( k) +, =,,, (ii) Έστω ότι: k a = 000 ( k) + = 000 ( k) + k =, όπου k θετικός ακέραιος και *, > Τότε έχουμε ( ) = k k = > 0, k Ά () Αν υποθέσουμε ότι > 000 > 00, τότε από τη σχέση () προκύπτει, ότι k ( 0,), άτοπο Αν υποθέσουμε ότι < 000 < 00, τότε έχουμε: k = = = οπότε θα είναι 0< k <, που είναι άτοπο Άρα είναι = 000 = 00, οπότε από την () προκύπτει ότι k =,
12 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou) Street GR Athes - HELLAS Tel Fax: ifo@hmsgr wwwhmsgr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΕNΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Γ τάξη Λυκείου Πρόβλημα Να βρεθεί η αριθμητική πρόοδος αν, ν =,,, που έχει πρώτο όρο α = α 0, διαφορά ω 0 και είναι τέτοια ώστε ο λόγος του αθροίσματος α + + αν των ν πρώτων όρων της προς το άθροισμα αν α ν των επόμενων ν το πλήθος όρων της είναι σταθερός, δηλαδή ανεξάρτητος του ν Από την υπόθεση δίνεται ότι: Σ ν α + α ν = = c (ανεξάρτητο του ν ) () Σ ν Σ ν αν+ + αν Επειδή είναι α + ( ν ) ω ν Σ ν = α + + αν = και α + ( ν ) ω ν α + ( ν ) ω ν 4α + ( 8ν ) ω ν Σ ν Σ ν = =, η σχέση () γίνεται α + ( ν ) ω = c ( 8cω ω) ν + 4αc α cω+ ω = 0 4α + ( 8ν ) ω 8c ων + c α ω = 0,για κάθε ν =,,, ( ) ( )( ) Στην τελευταία ισότητα θεωρούμε ν = και ν = και αφαιρούμε κατά μέλη τις ισότητες που προκύπτουν, οπότε λαμβάνουμε ( 8c ) ω = 0 και από αυτή ( c )( α ω) χουμε το σύστημα: = 0, οπότε έ- ( 8c ) ω 0 = c = 8, αφού ω 0 ( c )( a ω) = 0 ω = α α, α,5 α,, ν α, Επομένως η αριθμητική πρόοδος που ζητάμε είναι η: ( ) Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x = z, y = x, z = y z 6 + x 6 + y
13 Παρατηρούμε ότι 4 8z 8z 8z x = = z z,αφού ισχύει :, z 4 + ( z ) 4 + ( z ) και ομοίως λαμβάνουμε ότι: z y και y x Επομένως, έχουμε: x = y = z Τότε από την πρώτη εξίσωση λαμβάνουμε: 4 8x 4 x = x 4 ( x 8x + 6) = 0 x ( x 4) = x x= 0 ή x= ή x= (όλες με πολλαπλότητα ) Για x = 0, προκύπτει η λύση ( 0,0,0 ) Για x =, προκύπτουν οι λύσεις: (,, ), (,, ),(,, ) και (,, ) Για,,,,,,,, και,, x =, προκύπτουν οι λύσεις: ( ) ( ) ( ) ( ) Πρόβλημα Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο cor (, ) Τα ύψη του ΑΔ, ΒΕ, ΓΖ τέμνουν τον περιγεγραμμένο κύκλο στα σημεία Α, Β, Γ αντίστοιχα Αν Α, Β, Γ είναι τα μέσα των ευθυγράμμων τμημάτων ΟΔ, ΟE, Ο Z αντίστοιχα, να αποδείξετε ότι οι ευθείες ΑΑ,ΒΒ,ΓΓ περνάνε από το ίδιο σημείο ( ος τρόπος) Παρατηρούμε ότι το σημείο Α είναι συμμετρικό του ορθοκέντρου Η ως προς την πλευρά ΒΓ Πράγματι, αν θεωρήσουμε το σημείο Η συμμετρικό του Η ως προς την πλευρά ΒΓ, τότε έχουμε ˆ ˆ ΒΗ ˆ Γ = ΒΗΓ = 80 Α Άρα το τετράπλευρο ΑΒΗΓ είναι εγγεγραμμένο στον περιγεγραμμένο κύκλο του τριγώνου ΑΒΓ, οπότε το σημείο Η συμπίπτει με το σημείο Α Έστω Κ το αντιδιαμετρικό του σημείου Α και Μ το σημείο τομής της ΑΑ με την ΗΚ Τότε στο τρίγωνο ΑΗΚ έχουμε ότι το σημείο Ο είναι μέσο της πλευράς ΑΚ και ότι το σημείο Δ είναι μέσο της πλευράς ΑΗ(*) Άρα το τμήμα ΟΔ είναι ίσο και παράλληλο με το τμήμα ΗΚ Σχήμα 7
14 ΗΚ Επειδή τώρα ΟΔ = και η ΑΑ είναι διάμεσος στο τρίγωνο ΑΟΔ, συμπεραίνουμε ότι η ΑΜ είναι διάμεσος του τριγώνου ΑΗΚ Έστω ότι οι διάμεσες ΑΜ και ΗΟ (του τριγώνου ΑΗΚ) τέμνονται στο σημείο G Τότε θα ισχύει GΗ = GΟ, δηλαδή το σημείο G χωρίζει το τμήμα HO σε δύο τμήματα με λόγο : Με ανάλογο τρόπο αποδεικνύουμε ότι και οι ΒΒ, ΓΓ διέρχονται από το σημείο G ος τρόπος (με ομοιοθεσία), Σχήμα 8 Χρησιμοποιώντας τη πρόταση: Τα συμμετρικά του ορθοκέντρου τριγώνου, ως προς τις πλευρές του, βρίσκονται στο περιγεγραμμένο κύκλο του, που αποδείξαμε στην αρχή της προηγούμενης λύσης, συμπεραίνουμε ότι το Δ είναι μέσο του ΑΗ, το Ε είναι μέσο του ΒΗ και το Δ είναι μέσο του ΓΗ Άρα το τρίγωνο ΑΒΓ είναι ομοιόθετο του (ορθικού) τριγώνου ΔΕΖ στην ομοιοθεσία με κέντρο το ορθόκεντρο Η και λόγο, ( ΗΑ = ΗΔ) Το Α είναι μέσο του ΟΔ, το Β είναι μέσο του ΟΕ και το Γ είναι μέσο του ΟΖ Άρα το ορθικό τρίγωνο ΔΕΖ, είναι ομοιόθετο του τριγώνου ΑΒΓ στην ομοιοθεσία με κέντρο το Ο και λόγο, ( ΟΔ = ΟΑ ), δηλαδή το τρίγωνο ΑΒΓ είναι ομοιόθετο του τριγώνου ΑΒΓ Άρα οι ευθείες ΑΑ, ΒΒ, ΓΓ (που συνδέουν τις ομόλογες κορυφές) θα συντρέχουν στο κέντρο της ομοιοθεσίας (έστω Κ ) το οποίο θα βρίσκεται επάνω στην OΗ Πρόβλημα 4 Βρείτε όλες τις ρητές τιμές του x για τις οποίες είναι ρητός ο αριθμός 4x ax + b, όπου abρητοί, τέτοιοι ώστε a < 6b Επειδή από υπόθεση a 6b< 0, έπεται ότι 4x ax+ b> 0, για κάθε x Αν υποθέσουμε ότι οι αριθμοί x, 4x ax + b = y είναι και οι δύο ρητοί, τότε και η διαφορά y x= r θα είναι ρητός Έτσι έχουμε
15 b r x ax+ b x= r x ax+ b = x+ r x ax+ b= x + rx+ r x= a + 4r a εφόσον r 4 Αντίστροφα, αν είναι b x= r, όπου r ρητός με r a, τότε έχουμε a+ 4r 4 b r a( b r ) 4x ax+ b= 4 + b a+ 4r a+ 4r , οπότε, αφού από υπόθεση δηλαδή ο y είναι ρητός ( ) ( r + ar+ b) 4 4r + a r + 4b + 8br + 4abr + 4ar = = a+ 4r a+ 4r ( ) a 6b< 0, θα είναι r + ar+ b a y = 4 x ax+ b =, r, a+ 4r 4,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. B τάξη Γυμνασίου. Α= 2 1 : και :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 0 665-067784 - Fax: 0 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα x + 4y = 4a ax y = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το
[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.
Ευκλείδης Γ' Λυκείου 1995-1996 1. Να ορίσετε συνάρτηση με πεδίο ορισμού και σύνολο τιμών το N* και η οποία να ικανοποιεί τη σχέση: [ f 1 ] [ f ]... [ f ν ] = [ f 1 f 1... f ν ], για κάθε ν N.. Ο Α και
Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m
B τάξη Γυμνασίου Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς (β) Αν ισχύει ότι: και αβγ 0,
7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΓΔ + ΔΓΕ = ΚΓΒ + ΓΒΚ = 180 ΓΚΒ = = 90
ˆ ˆ ˆ ˆ 0 ˆ 0 ΕΓΔ + ΔΓΕ = ΚΓΒ + ΓΒΚ = 80 ΓΚΒ = 80 90 = 90, αφού οι γωνίες ΓΒΚ ˆ και ΚΓΒ ˆ είναι οι δύο οξείες γωνίες του ορθογώνιου τριγώνου ΓΚΒ Επειδή οι δύο χορδές είναι κάθετες θα είναι και ΑΚ ΓΔ, δηλαδή
B τάξη Γυμνασίου ( ) ΕNΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. 6αβγ 6αβγ α β γ 6. Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς 3. (β) Αν ισχύει ότι:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 Τηλ. 6165-617784 - Fax: 64105 4, Panepistimiou (Εleftheriou Venizelou) Street Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 3645 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Paepistimiou (Εleftheriou Veizelou)
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.
ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ B τάξη Γυμνασίου (α) Να συγκρίνετε τους αριθμούς 3 3 0 3 3 1 1 1 8 3 Α= + + : και Β= : 4 +. 4 31 8 4 4 1 3 9 Μονάδες (β) Αν ισχύει ότι: 6( αβ + βγ + γα) = 11αβγ και αβγ 0, να βρείτε την
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.
Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,
x , οπότε : Α = = 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Αν ισχύει ότι Γ τάξη Γυμνασίου a+ b=, να βρείτε την τιμή της παράστασης Α= ( 6a+
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 66-067784 - Fax: 0 640 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β
Ευκλείδης Ά Λυκείου 1994-1995 1. Έχουμε στο επίπεδο 4 διαφορετικές ευθείες. Είναι γνωστό ότι κάθε άλλη ευθεία του ίδιου επιπέδου τέμνει ή ή 4 από τις ευθείες. Να βρείτε πόσες από τις ευθείες είναι παράλληλες..
B τάξη Γυμνασίου : : και 4 :
Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepistiiou (Εleftheriou Veizelou)
2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου ενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α
Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.
Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 9 ΑΘΗΝΑ Τηλ 36653-3684 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μικρών τάξεων ΠΡΟΒΛΗΜΑ 1 Έστω τρίγωνο ΑΒΓ με ˆ ΒΑΓ = 10. Αν Δ είναι το μέσον της
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ 1 Να λύσετε στους ακέραιους την εξίσωση 4 xy y x =
β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις
Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ. 665-677 - Fax: 605 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ
: :
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)
Τάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 66-67784 - Fax: 640 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 Β ΓΥΜΝΑΣΙΟΥ 2 : 2.
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 1 17 1 1 3 7 1 : 5 1 7 14
B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Θέματα μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης"
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις
Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-al : fo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepstou (Εleftherou Vezelou) Street
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και
Β ΓΥΜΝΑΣΙΟΥ. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και α + β = 4. (β) Για το μικρότερο από τα κλάσματα του προηγούμενου ερωτήματος να βρείτε την τιμή της παράστασης:
Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία
Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε
B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79
Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.
ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Μαθηματικά προσανατολισμού Β Λυκείου
Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Ασκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι
ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ
ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;
ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; Γιώργου Τσαπακίδη Είναι εύκολο να παρατηρήσουμε ότι τα συμμετρικά σχήματα έχουν πολύ περισσότερες ιδιότητες από τα μη συμμετρικά σχήματα. Το ισοσκελές τρίγωνο, που έχει άξονα