ARIKETAK (I) : KONPOSATU ORGANIKOEN LOTURAK [1 5. IKASGAIAK]

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ARIKETAK (I) : KONPOSATU ORGANIKOEN LOTURAK [1 5. IKASGAIAK]"

Transcript

1 Arikk-I (1-5 Ikasgaiak) 1 ARIKETAK (I) : KPSATU RGAIKE LTURAK [1 5. IKASGAIAK] formula molekularreko 8 egitur-formula marraztu. 2.- Azido bentzoiko solidoararen disolbagarritasuna urn honako hau da (g/litro-tan): 10ºtara 2,5g 75º 37,2g 25ºtara 4,4g 98º 72,8g Kalkula ezazu zenbat ur beharko den 12g azido bentzoiko disolbatzeko 75º-tara. Eta 98º-tara?. Zenbat gramo azido bentzoiko hauspeatuko da aurreko disoluzio bakoitza 10º-tara hoztuz?. 2 azido bentzoikoa 3.- idrokarburo baten 14,42mg oxigeno soberaz erre gero, 44,12mg 2 21,63mg 2 lortzen da. idrokarburo horren portzentaiak formula enpirikoa kalkulatu. 4.- Konposatu baten 21,38mg oxigeno soberaz erre gero, 47,02mg 2 25,63mg 2 lortzen da. Konposatu horren portzentaiak formula enpirikoa kalkulatu. 5.- Konposatu organiko baten ehuneko konposizioa hauxe da:, %50,60, %3,75, %6,56 l, %16,58 Masa espektrometriaz kalkulatutako masa molekularra 210 mau (dalton) da. Kalkula ezazu bere formula molekularra. 6.- Kalkula ezazu konposatu hauen ehuneko konposizioa: 3 (azido azetiko (formaldehio (azetileno (etileno (bentzeno (ziklohexano

2 2 1. Partzialeko arikk Formula enpirikoko A konposatu batek, bromoarekin erreakzionatzen du B konposatua emanez. Azken honen analisia hauxe da:, %29,75 ;, %4,13; Br, %66,11 masa espektrometriaz kalkulatutako masa 242 mau (dalton). Kalkulatu A B-ren formula molekularrak. 8.- ndorengo molekulen Lewis-en egiturak marraztu. 4 (mnol 3 6 (propeno (azido azetiko 2 7 (dimetilamin 3 6 (azeton 2 3 (nonitrilo 9.- ndorengo molekulen Lewis-en egiturak marraztu. 3 F Pl 5 a B S ndorengo Lewis-en egiturei falta zaizkien karga edo loturak osatu formula enpirikoari hiru Lewis-en egitura desberdin dagozkio, balentzia arauak behar bezala bete ezkero. ndorengo egiturtik zeintzuk dira desegokiak? 12.- Lewis-en egitura hauek okerrak dira. Esan kasu bakoitzean zergatik egitura zuzenak marraztu. (hidrogeno zianuro (azetileno (nal F B F (boro trifluoruro F (amoniako (propino

3 Arikk-I (1-5 Ikasgaiak) Marraz itzazu orbital molekularrak propino molekularentzat. Lotura kimiko bakoitzean parte hartzen duten orbitalak zeintzuk diren adierazi zein lotura mota ematen duten ere bai Azpiko konposatuko -atomoen hibridazioak azierazi. 3 = 2 (propeno 2 (mnal 3 (propino 2 =l (binil kloruro 15.- ndorengo egitura kimikoa kokainarena da. Esan markatutako atomoen hibridazioa marraztu kokainarentzat ahal dituzun erresonantzia egitura guztiak ndorengo konposatuak kontutan hartuta, adierazi: Markatutako atomoen hibridazioa. Zein lotura diren kobalenteak, zeintzuk ionikoak, kobalenteen artean, zeintzuk dauden polarizatuta nola Si 3 2 Li Azpiko konposatuko -atomoen hibridazioak azierazi. 2 l l 2 3 3

4 4 1. Partzialeko arikk 18.- ndorengo konposatuen Lewis-en egiturak (elektroi-pare guztiekin osatuak) marraztu. B,, Eta atomoen hibridazioa adierazi kasu bakoitzeko orbital molekular lokarriak ez-lokarriak marraztu l 3 B a 19.- Zein geometria izango dute molekula hauek?: l 3 (kloroformo Pl 3 (forsforo trikloruro Si 3 l (klorosilano l 2 S (tionil kloruro Znl 2 (zink kloruor PF 5 (fosforo pentakloruro 20.- Metil tiozianatoa S 3 metil isotiozianatoa S 3 isomeroak dira. Adierazi: Molekula bakoitzaren Lewis-en egiturak, S atomoen hibridazioak egitura bakoitzean 21.- Eman, gutxigorabehera, molekula hauen lotura angeluak: F 3 2 l 2 l 2 l 3 l 3 AlF 3 Sl Esan zenbat σ sigma π pi lotura dituen ondorengo molekula bakoitzak: noa bentzenoa azetilenoa mnola 23.- loturak alde batera utziz, ondorengo molekula bakoitzeko loturen energia mailak marraztu energia diagrama batean. noa etilenoa propenoa bentzenoa azetilenoa nala 24.- Esan zenbat σ sigma π pi lotura dituen ondorengo molekula bakoitzak: metileno kloruroa binilo kloruroa klorobentzenoa 1,3-butadienoa 1,3,5-hexatrienoa butadiinoa

5 Arikk-I (1-5 Ikasgaiak) ,3,5-exatrienoak hiru lotura konjokatu ditu. Esan: Zein den bere 6 atomoen hibridazioa Zenbat π orbital dituen π rbital horien energia diagrama π rbital horien gutxigorabeharazko irudia M LUM orbitalak oinarrizko egoeran Lotura bateko bi atomoen arteko elektronegatibotasun diferentzia 2 edo handiagoa bada, lotura hori ionikoa da. Elektronegatibotasun-taula kontutan izanik, esan ea azpiko lotura hauek ionikoak, partzialki ionikoak ala apolarrak izango diren: a l F Mg F l l l 3 3 a ,3,5-exatrieno, 2 = = = 2 molekularen erresonantzia egitura adierazgarri guztiak marraztu ,4-Pentadienala, 2 = = = molekularen 4 erresonantzia egitura adierazgarrienak marraztu ndorengo konposatuen erresonantzia-forma adierazgarrienak marraz itzazu Azal ezazu, arrazonatuz, ondorengo erresonantzia egitura bikoteen artean, zein den egonkorrena. 3 3

6 6 1. Partzialeko arikk 31.- Karbono dioxidoaren egitura elektronikoa adierazteko ondorengo erresonantzia egiturak erabil daitezke. Adieraz ezazu nola elkar-trukatu egitura hauek elektroi bikoteen geziak erabiliz ndorengo konposatuen erresonantzia egiturak marraztu kasu bakoitzeko forma kanonikoak beren egonkortasunaren arabera sailkatu Lewis-en egitura-bikote hauko bakoitzean esan zeintzuk diren erresonantzia mesomeroak zeintzuk ez. 2 = 3 = 3 l l l l

7 Arikk-I (1-5 Ikasgaiak) X molekulan, X taldea azpiko egitura batez ordezkatuz gero, esan zeintzuk sortuko duten +I eragin induktiboa zeintzuk I eragina. F F i) Mg I g) 2 j) 2 3 k) Si 3 m) 3 h) l) S 35.- Ioi hauek erreakzio organiko batzuren artekariak dira (espezie oso erreaktiboak). Proposa itzazu ahalik hobekien deskribatzen dituzten erresonantzia egitura taldeak kasu bakoitzerako. 2 = 2 2 l 36.- Azulenoa kolore urdineko solido egonkorra da, naftalenoaren isomeroa. eurk espektroskopikoei esker ezagutzen da 5 mailako eraztukan karga negatibo sobera duela 7 mailako eraztunak karga falta. Ezaugarri hau azulenoaren egonkortasuna azal itzazu erresonantzia egiturak erabiliz azulenoa Azulenoak ez bezala, pentalenoa heptalenoa oso ezegonkorrak dira. Azal itzazu propite hauek erresonantzia egiturak erabiliz. pentalenoa heptalenoa 38.- Borazola, B izaera aromatikoko molekula ezorganikoa da. Proposatu egitura esan zergatik den aromatikoa.

8 8 1. Partzialeko arikk 39.- ndorengo egituren artean esan zeintzuk diren aromatikoak. Azaldu kasu bakoitzean erresonantzia egitura adierazgarrienak. g) h) 40.- Molekula bikote hauko bakoitzarentzat esan zein den molekula aromatiko(en)a Molekula hauek lauak direla jakinez, esan zeintzuk diren aromatikoak zergatik fenalenuro anioia fluorenuro anioia ziklopentadienilenziklopentatrienoa [10]anulenoa [10]anuleno dikatioia [16]anuleno dianioia

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK]

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK] 1. Partzialeko ariketak 1 ARIKETAK (1) : KNPSATU RGANIKEN EGITURA KIMIKA [1 3. IKASGAIAK] 1.- ndorengo konposatuak kontutan hartuta, adierazi: Markatutako atomoen hibridazioa. Zein lotura diren kobalenteak,

Διαβάστε περισσότερα

3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA:

3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA: 3. Ikasgaia. MLEKULA RGAIKE GEMETRIA: RBITALE IBRIDAZIA KARB DERIBATUE ISMERIA ESPAZIALA Vant off eta LeBel-en proposamena RBITAL ATMIKE IBRIDAZIA ibridaio tetragonala ibridaio digonala Beste hibridaioak

Διαβάστε περισσότερα

7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i

7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i 7.GAIA. ESTATISTIKA DESKRIBATZAILEA 1. Osatu ondorengo maiztasun-taula: x i N i f i 1 4 0.08 2 4 3 16 0.16 4 7 0.14 5 5 28 6 38 7 7 45 0.14 8 2. Ondorengo banaketaren batezbesteko aritmetikoa 11.5 dela

Διαβάστε περισσότερα

DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( )

DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( ) DERIBAZIO-ERREGELAK.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. Izan bitez D multzo irekian definituriko f funtzio erreala eta puntuan deribagarria dela esaten da baldin f ( f ( D puntua. f zatidurak

Διαβάστε περισσότερα

ARIKETAK (7) : ALKENOAK ETA ALKINOAK [ IKASGAIAK]

ARIKETAK (7) : ALKENOAK ETA ALKINOAK [ IKASGAIAK] 2. Partzialeko ariketak 1 ARIKETAK (7) : ALKEAK ETA ALKIAK [22-25. IKASGAIAK] 1.- ndorengo konposatuen IUPAC izenak eman: b ) 3 C 3 C 2 C e) f) g) 2 C 2.- ndorengo erreakzioa kontutan harturik: C3 Marraztu

Διαβάστε περισσότερα

UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA

UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA UNIBERTSITATERA SARTZEKO HAUTAPROBAK ATOMOAREN EGITURA ETA SISTEMA PERIODIKOA. LOTURA KIMIKOA 1. (98 Ekaina) Demagun Cl - eta K + ioiak. a) Beraien konfigurazio elektronikoak idatz itzazu, eta elektroi

Διαβάστε περισσότερα

1. Gaia: Mekanika Kuantikoaren Aurrekoak

1. Gaia: Mekanika Kuantikoaren Aurrekoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 12 Laburpena 1 Uhin-Partikula Dualtasuna 2 Trantsizio Atomikoak eta Espektroskopia Hidrogeno Atomoaren Espektroa Bohr-en Eredua 3 Argia: Partikula (Newton)

Διαβάστε περισσότερα

ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea

ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ERREAKZIAK Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ADIZI ELEKTRZALEK ERREAKZIAK idrogeno halurozko adizioak Alkenoen hidratazioa

Διαβάστε περισσότερα

= 32 eta β : z = 0 planoek osatzen duten angelua.

= 32 eta β : z = 0 planoek osatzen duten angelua. 1 ARIKETA Kalkulatu α : 4x+ 3y+ 10z = 32 eta β : z = 0 planoek osatzen duten angelua. Aurki ezazu α planoak eta PH-k osatzen duten angelua. A'' A' 27 A''1 Ariketa hau plano-aldaketa baten bidez ebatzi

Διαβάστε περισσότερα

C, H, O, N, (S, P, Cl, Br...)

C, H, O, N, (S, P, Cl, Br...) 1. Ikasgaia. KIMIKA RGAIKA SARRERA KIMIKA RGAIKA ZER DA ETA ZERTARAK BALI DU? Kimika rganikoaren definizioa Zer du karbonoak Taula Periodikoko beste elementu kimikoek ez dutena? Zertarako balio du Kimika

Διαβάστε περισσότερα

LOTURA KIMIKOA :LOTURA KOBALENTEA

LOTURA KIMIKOA :LOTURA KOBALENTEA Lotura kobalenteetan ez-metalen atomoen arteko elektroiak konpartitu egiten dira. Atomo bat beste batengana hurbiltzen denean erakarpen-indar berriak sortzen dira elektroiak eta bere inguruko beste atomo

Διαβάστε περισσότερα

2011ko EKAINA KIMIKA

2011ko EKAINA KIMIKA 2011ko EKAINA KIMIKA A AUKERA P.1. Hauek dira, hurrenez hurren, kaltzio karbonatoaren, kaltzio oxidoaren eta karbono dioxidoaren formazioberoak: 289; 152 eta 94 kcal mol 1. Arrazoituz, erantzun iezaiezu

Διαβάστε περισσότερα

1.- KIMIKA ORGANIKOA SARRERA. 1.- Kimika organikoa Bilakaera historikoa eta definizioa Kimika organikoaren garrantzia

1.- KIMIKA ORGANIKOA SARRERA. 1.- Kimika organikoa Bilakaera historikoa eta definizioa Kimika organikoaren garrantzia SAEA 1.- Kimika organikoa. 1.1.- Bilakaera historikoa eta definizioa 1.2.- Kimika organikoaren garrantzia 1.- KIMIKA GANIKA 1.1.- Bilakaera historikoa eta definizioa. Konposatu organikoak antzinatik ezagutzen

Διαβάστε περισσότερα

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043

Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043 KIMIKA OREKA KIMIKOA UZTAILA 2017 AP1 Emaitzak: a) 0,618; b) 0,029; 1,2 EKAINA 2017 AP1 Emaitzak:a) 0,165; 0,165; 1,17 mol b) 50 c) 8,89 atm UZTAILA 2016 BP1 Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35;

Διαβάστε περισσότερα

Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea

Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea Hirukiak, Poligonoa: elkar ebakitzen diren zuzenen bidez mugatutako planoaren zatia da. Hirukia: hiru aldeko poligonoa da. Hiruki baten zuzen bakoitza beste biren batuketa baino txiakiago da eta beste

Διαβάστε περισσότερα

2011ko UZTAILA KIMIKA

2011ko UZTAILA KIMIKA A AUKERA 2ko UZTAILA KIMIKA P.. 8 g hidrogeno eta 522.8 g iodo (biak gasegoeran eta molekula gisa) berotzen ditugunean, orekan 279 g hidrogeno ioduro (gasegoeran) sortzen dira 55 ºCan (arinki exotermikoa

Διαβάστε περισσότερα

2011 Kimikako Euskal Olinpiada

2011 Kimikako Euskal Olinpiada 2011 Kimikako Euskal Olinpiada ARAUAK (Arretaz irakurri): Zuzena den erantzunaren inguruan zirkunferentzia bat egin. Ordu bete eta erdiko denbora epean ahalik eta erantzun zuzen gehien eman behar dituzu

Διαβάστε περισσότερα

KIMIKA UZTAILA. Ebazpena

KIMIKA UZTAILA. Ebazpena KIMIKA 009- UZTAILA A1.- Hauspeatze-ontzi batean kobre (II) sulfatoaren ur-disoluzio urdin bat dugu, eta haren barruan zink-xafla bat sartzen dugu. Kontuan hartuta 5 C-an erredukzio-- potentzialak E O

Διαβάστε περισσότερα

Kimika Organikoa EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA

Kimika Organikoa EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA ISBN: 978-84-9860-672-0 Kimika rganikoa Eneritz Anakabe eta Sonia Arrasate EUSKAA ETA ELEANIZTASUNEK EEKTEDETZAEN SAE AGITALPENA Liburu honek UPV/EUko Euskara eta Eleaniztasuneko Errektoreordetzaren dirulaguntza

Διαβάστε περισσότερα

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK,

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK, Ikasgaia: KIMIKA GANIKAEN INAIAK, Urte Akademikoa: 2008-09 Titulazioa: Licenciatura en Química, Ingeniero Químico. Irakaslea: Jose Luis Vicario, (Kimika rganikoa II Saila) Ezaugarriak: Ikasgai honetan

Διαβάστε περισσότερα

(5,3-x)/1 (7,94-x)/1 2x/1. Orekan 9,52 mol HI dago; 2x, hain zuzen ere. Hortik x askatuko dugu, x = 9,52/2 = 4,76 mol

(5,3-x)/1 (7,94-x)/1 2x/1. Orekan 9,52 mol HI dago; 2x, hain zuzen ere. Hortik x askatuko dugu, x = 9,52/2 = 4,76 mol KIMIKA 007 Ekaina A-1.- Litro bateko gas-nahasketa bat, hasiera batean 7,94 mol hidrogenok eta 5,30 mol iodok osatzen dutena, 445 C-an berotzen da eta 9,5 mol Hl osatzen dira orekan, erreakzio honen arabera:

Διαβάστε περισσότερα

Konposatu Organikoak

Konposatu Organikoak 6. Ikasgaia. HIDRKARBURE MEKLATURA ETA FRMULAZIA ERRADIKALAK ETA FUTZI-TALDEAK Konposatu organikoen sailkapena Kate karbonoduna eta funtzio-taldeak Segida homologoak I.U.P.A.C. MEKLATURA-SISTEMA Izen arruntak,

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean?

1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean? 1. jarduera Zer eragin du erresistentzia batek zirkuitu batean? 1. Hastapeneko intentsitatearen neurketa Egin dezagun muntaia bat, generadore bat, anperemetro bat eta lanpa bat seriean lotuz. 2. Erresistentzia

Διαβάστε περισσότερα

ALKENOAK (I) EGITURA ETA SINTESIA

ALKENOAK (I) EGITURA ETA SINTESIA ALKENOAK (I) EGITURA ETA SINTESIA SARRERA Karbono-karbono lotura bikoitza agertzen duten konposatuak dira alkenoak. Olefina ere deitzen zaiete, izen hori olefiant-ik dator eta olioa ekoizten duen gasa

Διαβάστε περισσότερα

KIMIKA 2002-Uztaila. H o = 2 H o f O 2 + H o f N 2-2 H o f NO 2. (*O 2 eta N 2 -renak nuluak dira) Datuak ordezkatuz, -67,78 kj = H o f NO 2

KIMIKA 2002-Uztaila. H o = 2 H o f O 2 + H o f N 2-2 H o f NO 2. (*O 2 eta N 2 -renak nuluak dira) Datuak ordezkatuz, -67,78 kj = H o f NO 2 KIMIKA 2002-Uztaila Al- ndoko ekuazio termokimikoak emanda ( 25 C-tan eta 1 atm-tan): 2 N 2 (g) N 2 (g) 2 2 (g) H= -67,78 kj 2 N (g) 2 (g) 2 N 2 (g) H = -112,92 kj o determinatu ondoko hauen formazio-entalpia

Διαβάστε περισσότερα

9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko

9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko 9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomikoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 21 Laburpena 1 Espektroskopiaren Oinarriak 2 Hidrogeno Atomoa Espektroskopia Esperimentua

Διαβάστε περισσότερα

ARRAZOI TRIGONOMETRIKOAK

ARRAZOI TRIGONOMETRIKOAK ARRAZOI TRIGONOMETRIKOAK 1.- LEHEN DEFINIZIOAK Jatorri edo erpin berdina duten bi zuzenerdien artean gelditzen den plano zatiari, angelua planoan deitzen zaio. Zirkunferentziaren zentroan erpina duten

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10

Διαβάστε περισσότερα

MODULUA ARIKETAK PROBA BALIABIDEAK ETA PROGRAMAZIOA ERANTZUNAK ERANTZUNAK

MODULUA ARIKETAK PROBA BALIABIDEAK ETA PROGRAMAZIOA ERANTZUNAK ERANTZUNAK UNIBERTSITATERAKO SARBIDE PROBA 25 URTETIK GORAKOENTZAT FASE ESPEZIFIKOA KIMIKA MODULUA ARIKETAK ERANTZUNAK PROBA BALIABIDEAK ETA PROGRAMAZIOA ERANTZUNAK Modulua KIMIKA Gutxi gorabeherako iraupena: 90

Διαβάστε περισσότερα

KIMIKA 2003 Ekaina. ritxientziacopyleft

KIMIKA 2003 Ekaina. ritxientziacopyleft 5 KIMIKA 3 Ekaina A1 Ozpin komertzial baten botilaren etiketan adierazten da aziditatea %5koa dela, hau da, ozpin hori pisuehunekobeste horretan azido azetikoa dela. Baieztapen hori zuzena den ala ez egiaztatzeko,

Διαβάστε περισσότερα

C AUKERA: Esparru Zientifikoa KIMIKA

C AUKERA: Esparru Zientifikoa KIMIKA Goi Mailako Heziketa Zikloetarako Sarbide PROBA ATAL ESPEZIFIKOA KIMIKA MODULUA ARIKETAK PROBA BALIABIDEAK ETA PROGRAMAZIOA ERANTZUNAK ERANTZUNAK Modulua KIMIKA C AUKERA (Esparru zientifikoa) Oinarrizko

Διαβάστε περισσότερα

Banaketa normala eta limitearen teorema zentrala

Banaketa normala eta limitearen teorema zentrala eta limitearen teorema zentrala Josemari Sarasola Estatistika enpresara aplikatua Josemari Sarasola Banaketa normala eta limitearen teorema zentrala 1 / 13 Estatistikan gehien erabiltzen den banakuntza

Διαβάστε περισσότερα

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK

Διαβάστε περισσότερα

Aldehido eta Zetonak(II). Enolatoak eta Karbonilodun α,β-asegabeak

Aldehido eta Zetonak(II). Enolatoak eta Karbonilodun α,β-asegabeak Aldehido eta Zetonak(II). Enolatoak eta Karbonilodun α,β-asegabeak Konposatu Karbonilikoen α Hidrogenoen Azidotasuna: Enolatoak Karboniloarekiko α hidrogenoak ohi baino azidoagoak dira Sortzen den anioia

Διαβάστε περισσότερα

Amina primarioak izendatzerakoan alkonaren O atzizkia kendu eta AMINA eransten da" Izenda daitezke baita ere alkil amina bezela"

Amina primarioak izendatzerakoan alkonaren O atzizkia kendu eta AMINA eransten da Izenda daitezke baita ere alkil amina bezela Aminak t Nomenklatura Amina primarioak izendatzerakoan alkonaren O atzizkia kendu eta AMINA eransten da Izenda daitezke baita ere alkil amina bezela Amina sekundario eta tertziarioetan erradikal organikoari

Διαβάστε περισσότερα

Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak

Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak 5 Inekuazioak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Ezezagun bateko lehen eta bigarren mailako inekuazioak ebazten. Ezezagun bateko ekuaziosistemak ebazten. Modu grafikoan bi ezezaguneko lehen

Διαβάστε περισσότερα

9. K a p itu lu a. Ekuazio d iferen tzial arrun tak

9. K a p itu lu a. Ekuazio d iferen tzial arrun tak 9. K a p itu lu a Ekuazio d iferen tzial arrun tak 27 28 9. K A P IT U L U A E K U A Z IO D IF E R E N T Z IA L A R R U N T A K UEP D o n o stia M ate m atik a A p lik atu a S aila 29 Oharra: iku rra rekin

Διαβάστε περισσότερα

Mikel Lizeaga 1 XII/12/06

Mikel Lizeaga 1 XII/12/06 0. Sarrera 1. X izpiak eta erradiazioa 2. Nukleoaren osaketa. Isotopoak 3. Nukleoaren egonkortasuna. Naturako oinarrizko interakzioak 4. Masa-defektua eta lotura-energia 5. Erradioaktibitatea 6. Zergatik

Διαβάστε περισσότερα

DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA

DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA DBH MATEMATIKA 009-010 ikasturtea Errepaso. Soluzioak 1 ALJEBRA EKUAZIOAK ETA EKUAZIO SISTEMAK. EBAZPENAK 1. Ebazpena: ( ) ( x + 1) ( )( ) x x 1 x+ 1 x 1 + 6 x + x+ 1 x x x 1+ 6 6x 6x x x 1 x + 1 6x x

Διαβάστε περισσότερα

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm

Διαβάστε περισσότερα

2. ERDIEROALEEN EZAUGARRIAK

2. ERDIEROALEEN EZAUGARRIAK 2. ERDIEROALEEN EZAUGARRIAK Gaur egun, dispositibo elektroniko gehienak erdieroale izeneko materialez fabrikatzen dira eta horien ezaugarri elektrikoak dispositiboen funtzionamenduaren oinarriak dira.

Διαβάστε περισσότερα

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano KIMIKA 008 Ekaina A-1.- Formazio-enta pia estandar hauek emanda (kj/mol-etan): C (g) =-393,5 ; H 0 (l) = -85,4 ; C 4 H 10 (g) = -14,7 a) Datu hauek aipatzen dituzten erreakzioak idatzi eta azaldu. b) Kalkulatu

Διαβάστε περισσότερα

7. Gaia: Alkenoak 1.- Alkenoen ezaugarriak 2.- Alkenoen erreaktibitatea.

7. Gaia: Alkenoak 1.- Alkenoen ezaugarriak 2.- Alkenoen erreaktibitatea. 7. Gaia: Alkenoak 1.- Alkenoen ezaugarriak 1.1.- Funtzio-taldearen ezaugarriak 1.1.1.- Alkenoen egonkortasun erlatiboa. 1.2.- Alkenoen ezaugarri fisikoak. 2.- Alkenoen erreaktibitatea. 2.1.- idrogenazio

Διαβάστε περισσότερα

Aldagai Anitzeko Funtzioak

Aldagai Anitzeko Funtzioak Aldagai Anitzeko Funtzioak Bi aldagaiko funtzioak Funtzio hauen balioak bi aldagai independenteen menpekoak dira: 1. Adibidea: x eta y aldeetako laukizuzenaren azalera, S, honela kalkulatzen da: S = x

Διαβάστε περισσότερα

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu) UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko

Διαβάστε περισσότερα

Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra

Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Gaien Aurkibidea 1 Definizioa 1 2 Solido zurrunaren zinematika: translazioa eta biraketa 3 2.1 Translazio hutsa...........................

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: OPTIKA

SELEKTIBITATEKO ARIKETAK: OPTIKA SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa. Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar

Διαβάστε περισσότερα

KIMIKA EZORGANIKOAREN NOMENKLATURA

KIMIKA EZORGANIKOAREN NOMENKLATURA KIMIKA EZORGANIKOAREN NOMENKLATURA http://www.rsc.org/periodictable/ http://www.alonsoformula.com/ezorganikoa/tabla_periodica.htm SUSTANTZIA SINPLEAK A) HIDRUROAK ETA HIDROGENOAREN KONPOSATUAK BITARRAK

Διαβάστε περισσότερα

Bentzeno eta konposatu aromatikoen ordezkapen elektrozalea

Bentzeno eta konposatu aromatikoen ordezkapen elektrozalea Bentzeno eta konposatu aromatikoen ordezkapen elektrozalea Ordezkapen Elektrozale Aromatikoa Areno (Ar-H) hidrokarburu aromatikoen izen orokorra da Aril taldea (Ar) arenoak hidrogenoa galdu ondoren sortzen

Διαβάστε περισσότερα

EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK

EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK EREDU ATOMIKOAK Historian zehar, atomoari buruzko eredu desberdinak sortu dira. Teknologia hobetzen duen neurrian datu gehiago lortzen ziren atomoaren izaera ezagutzeko, Beraz, beharrezkoa da aztertzea,

Διαβάστε περισσότερα

PROGRAMA LABURRA (gutxiengoa)

PROGRAMA LABURRA (gutxiengoa) PROGRAMA LABURRA gutiengoa Batilergo Zientiiko-Teknikoa MATEMATIKA I Ignacio Zuloaga BHI Eibar IGNACIO ZULOAGA B.I. EIBAR Gutiengo programa Zientiiko-Teknikoa. maila Ekuaio esponentialak Ariketa ebatiak:

Διαβάστε περισσότερα

Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c

Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c ntzekotasuna NTZEKOTSUN IRUI NTZEKOK NTZEKOTSUN- RRZOI NTZEKO IRUIK EGITE TLESEN TEOREM TRINGELUEN NTZEKOTSUN-IRIZPIEK LEHEN IRIZPIE $ = $' ; $ = $' IGRREN IRIZPIE a b c = = a' b' c' HIRUGRREN IRIZPIE

Διαβάστε περισσότερα

ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu

ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu ESTATISTIKA ENPRESARA APLIKATUA (Praktika: Bigarren zatia) Irakaslea: JOSEMARI SARASOLA Data: 2013ko maiatzaren 31a. Iraupena: 90 minutu I. ebazkizuna Ekoizpen-prozesu batean pieza bakoitza akastuna edo

Διαβάστε περισσότερα

Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa

Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa 1 Zenbaki errealak Helburuak Hamabostaldi honetan hau ikasiko duzu: Zenbaki errealak arrazional eta irrazionaletan sailkatzen. Zenbaki hamartarrak emandako ordena bateraino hurbiltzen. Hurbilketa baten

Διαβάστε περισσότερα

6.1. Estatistika deskribatzailea.

6.1. Estatistika deskribatzailea. 6. gaia Ariketak. 6.1. Estatistika deskribatzailea. 1. Zerrenda honek edari-makina baten aurrean dauden 15 bezerok txanpona sartzen duenetik edaria atera arteko denbora (segundotan neurtuta) adierazten

Διαβάστε περισσότερα

ERDI MAILAKO HEZIKETA ZIKLOETARAKO SARBIDE MATEMATIKA ATALA MATEMATIKA ARIKETAK ERANTZUNAK PROGRAMAZIOA

ERDI MAILAKO HEZIKETA ZIKLOETARAKO SARBIDE MATEMATIKA ATALA MATEMATIKA ARIKETAK ERANTZUNAK PROGRAMAZIOA ERDI MAILAKO HEZIKETA ZIKLOETARAKO SARBIDE PROBA MATEMATIKA ATALA MATEMATIKA MODULUA ARIKETAK ERANTZUNAK BALIABIDEAK ETA PROGRAMAZIOA Modulua MATEMATIKA Oinarrizko Prestakuntza -. maila Erdi Mailako heziketa-zikloetarako

Διαβάστε περισσότερα

KIMIKA-2001 uztaila. c) Badakigu 7 litro gastatzen dituela 100 km-tan; beraz,

KIMIKA-2001 uztaila. c) Badakigu 7 litro gastatzen dituela 100 km-tan; beraz, KIMIKA-2001 uztaila Al Auto bat daukagu, zazpi litro gasolina C 8 H 18 (l) 100 km-ko gastatzen dituena. a) gasolinaren errekuntz erreakzioa, doituta, idatz ezazu. b) gasolinaren errekuntz entalpiaren balioa

Διαβάστε περισσότερα

Oxidazio-erredukzio erreakzioak

Oxidazio-erredukzio erreakzioak Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Elektroteknia: Ariketa ebatzien bilduma LANBDE EKMENA LANBDE EKMENA LANBDE EKMENA roiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): JAO AAGA, Oscar. Ondarroa-Lekeitio BH, Ondarroa

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

Zenbait fenolen eutsitako mintz likidoen zeharreko garraioaren azterketa

Zenbait fenolen eutsitako mintz likidoen zeharreko garraioaren azterketa Jakintza-arloa: Kimika Zenbait fenolen eutsitako mintz likidoen zeharreko garraioaren azterketa Egilea: GORKA ARANA MOMOITIO Urtea: 1996 Zuzendaria: Unibertsitatea: NESTOR ETXEBARRIA LOIZATE UPV-EHU ISBN:

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ZINEMATIKA KONTZEPTUAK: 1. Marraz itzazu txakurraren x/t eta v/t grafikoak, txakurrraren higidura ondoko taulan ageri diren araberako higidura zuzena dela

Διαβάστε περισσότερα

Zirkunferentzia eta zirkulua

Zirkunferentzia eta zirkulua 10 Zirkunferentzia eta zirkulua Helburuak Hamabostaldi honetan, hau ikasiko duzu: Zirkunferentzian eta zirkuluan agertzen diren elementuak identifikatzen. Puntu, zuzen eta zirkunferentzien posizio erlatiboak

Διαβάστε περισσότερα

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien

Διαβάστε περισσότερα

Antzekotasuna. Helburuak. Hasi baino lehen. 1.Antzekotasuna...orria 92 Antzeko figurak Talesen teorema Antzeko triangeluak

Antzekotasuna. Helburuak. Hasi baino lehen. 1.Antzekotasuna...orria 92 Antzeko figurak Talesen teorema Antzeko triangeluak 6 Antzekotasuna Helburuak Hamabostaldi honetan haue ikasiko duzu: Antzeko figurak ezagutzen eta marrazten. Triangeluen antzekotasunaren irizpideak aplikatzen. Katetoaren eta altueraren teoremak erakusten

Διαβάστε περισσότερα

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA 1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa

Διαβάστε περισσότερα

Ekuazioak eta sistemak

Ekuazioak eta sistemak 4 Ekuazioak eta sistemak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Bigarren mailako ekuazio osoak eta osatugabeak ebazten. Ekuazio bikarratuak eta bigarren mailako batera murriztu daitezkeen beste

Διαβάστε περισσότερα

1. MATERIALEN EZAUGARRIAK

1. MATERIALEN EZAUGARRIAK 1. MATERIALEN EZAUGARRIAK Materialek dituzten ezaugarri kimiko, fisiko eta mekanikoek oso eragin handia dute edozein soldadura-lanetan. Hori guztia, hainbat prozesu erabiliz, metal desberdinen soldadura

Διαβάστε περισσότερα

Biologia BATXILERGOA 2. Teoriek eta eskolek, mikrobioek eta globuluek, elkar jaten dute, eta borroka horri esker egiten du aurrera biziak.

Biologia BATXILERGOA 2. Teoriek eta eskolek, mikrobioek eta globuluek, elkar jaten dute, eta borroka horri esker egiten du aurrera biziak. Biologia BATXILERGA 2 Teoriek eta eskolek, mikrobioek eta globuluek, elkar jaten dute, eta borroka horri esker egiten du aurrera biziak. M. PRUST (1871-1922) 6. argitalpena Eusko Jaurlaritzako ezkuntza,

Διαβάστε περισσότερα

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a 1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI

Διαβάστε περισσότερα

BIZIDUNEN OSAERA ETA EGITURA

BIZIDUNEN OSAERA ETA EGITURA BIZIDUNEN OSAERA ETA EGITURA 1 1.1. EREDU ATOMIKO KLASIKOAK 1.2. SISTEMA PERIODIKOA 1.3. LOTURA KIMIKOA 1.3.1. LOTURA IONIKOA 1.3.2. LOTURA KOBALENTEA 1.4. LOTUREN POLARITATEA 1.5. MOLEKULEN ARTEKO INDARRAK

Διαβάστε περισσότερα

Jakintza-arloa: Kimika

Jakintza-arloa: Kimika Jakintza-arloa: Kimika Diodo-laser bidezko espektroskopia infragorria espantsio supertsonikoan: bentzenoaren eta C6H5X (X=F, C1, NH2) deribatu monoordezkatuen bibrazioerrotazioko espektroak Egilea: ARAITZ

Διαβάστε περισσότερα

ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi

ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi I. ebazkizuna (2.25 puntu) Poisson, esponentziala, LTZ Zentral

Διαβάστε περισσότερα

3. K a p itu lu a. Aldagai errealek o fu n tzio errealak

3. K a p itu lu a. Aldagai errealek o fu n tzio errealak 3 K a p itu lu a Aldagai errealek o fu n tzio errealak 13 14 3 K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 31 FUNTZIOAK:

Διαβάστε περισσότερα

1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP]

1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP] Ariketak Liburukoak (78-79 or): 1,2,3,4,7,8,9,10,11 Osagarriak 1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP] 2. Gorputz bat altxatzeko behar izan den energia 1,3 kwh-koa

Διαβάστε περισσότερα

EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA

EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA AIXERROTA BHI EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA 2012 uztaila P1. Urtebete behar du Lurrak Eguzkiaren inguruko bira oso bat emateko, eta 149 milioi km ditu orbita horren batez besteko erradioak.

Διαβάστε περισσότερα

Solido zurruna 2: dinamika eta estatika

Solido zurruna 2: dinamika eta estatika Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1

Διαβάστε περισσότερα

4. Hipotesiak eta kontraste probak.

4. Hipotesiak eta kontraste probak. 1 4. Hipotesiak eta kontraste probak. GAITASUNAK Gai hau bukatzerako ikaslea gai izango da ikerketa baten: - Helburua adierazteko. - Hipotesia adierazteko - Hipotesi nulua adierazteko - Hipotesi nulu estatistikoa

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 1. (2015/2016) 20 cm-ko tarteak bereizten ditu bi karga puntual q 1 eta q 2. Bi kargek sortzen duten eremu elektrikoa q 1 kargatik 5 cm-ra dagoen A puntuan deuseztatu

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

Energia-metaketa: erredox orekatik baterietara

Energia-metaketa: erredox orekatik baterietara Energia-metaketa: erredox orekatik baterietara Paula Serras Verónica Palomares ISBN: 978-84-9082-038-4 EUSKARAREN ARLOKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko Euskararen Arloko Errektoreordetzaren

Διαβάστε περισσότερα

Ordenadore bidezko irudigintza

Ordenadore bidezko irudigintza Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea

Διαβάστε περισσότερα

Aldehidoak eta Zetonak (I)

Aldehidoak eta Zetonak (I) Aldehidoak eta Zetonak (I) Nomenklatura Aldehidoak izendatzeko dagokion alkanoari O atzizkia aldatzen zaio AL atzizkiaz Aldehido funtzio-taldeko karbonoa (beti 1) ez dago zenbatu beharrik Ohizko izen batzuk

Διαβάστε περισσότερα

ESTATISTIKA ETA DATUEN ANALISIA. Azterketa ebatziak ikasturtea Donostiako Ekonomia eta Enpresa Fakultatea. EHU

ESTATISTIKA ETA DATUEN ANALISIA. Azterketa ebatziak ikasturtea Donostiako Ekonomia eta Enpresa Fakultatea. EHU ESTATISTIKA ETA DATUEN ANALISIA Azterketa ebatziak. 2018-2019 ikasturtea Donostiako Ekonomia eta Enpresa Fakultatea. EHU Egilea eta irakasgaiaren irakaslea: Josemari Sarasola Gizapedia gizapedia.hirusta.io

Διαβάστε περισσότερα

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π

Διαβάστε περισσότερα

Unibertsitaera sartzeko hautaprobak 1995.eko Ekaina

Unibertsitaera sartzeko hautaprobak 1995.eko Ekaina Unibertsitaera sartzeko hautaprobak 1995.eko Ekaina FISIKA Aukera itzazu probletna-niuítzo bar eta bi gaidera A MULTZOA (3p) 1.- 1.000 kg-tako suziri bat orbitaan jarri da Lurreko gaínazaletik 800 km-tara

Διαβάστε περισσότερα

ESTATISTIKA ETA DATUEN ANALISIA Irakaslea: Josemari Sarasola Data: 2017ko ekainaren 27a, 15:00 - Iraupena: Ordu t erdi. EBAZPENA

ESTATISTIKA ETA DATUEN ANALISIA Irakaslea: Josemari Sarasola Data: 2017ko ekainaren 27a, 15:00 - Iraupena: Ordu t erdi. EBAZPENA ESTATISTIKA ETA DATUEN ANALISIA Irakaslea: Josemari Sarasola Data: 2017ko ekainaren 27a, 15:00 - Iraupena: Ordu t erdi. I. ebazkizuna (2.5 puntu) EBAZPENA Kontxako hondartzan bainu-denboraldian zehar jasotako

Διαβάστε περισσότερα

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK

Διαβάστε περισσότερα

4. GAIA: Ekuazio diferenzialak

4. GAIA: Ekuazio diferenzialak 4. GAIA: Ekuazio diferenzialak Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia Fakultatea Euskal Herriko Unibertsitatea Aurkibidea 4. Ekuazio diferentzialak......................................

Διαβάστε περισσότερα

ELASTIKOTASUNAREN TEORIA ETA MATERIALEN ERRESISTENTZIA. Ruben Ansola Loyola

ELASTIKOTASUNAREN TEORIA ETA MATERIALEN ERRESISTENTZIA. Ruben Ansola Loyola ELSTIKOTSUNREN TEORI ET MTERILEN ERRESISTENTZI Ruben nsola Loyola Udako Euskal Unibertsitatea Bilbo, 005 HEZKUNTZ, UNIBERTSITTE ET IKERKET SIL DERTMENTO DE EDUCCIÓN UNIVERSIDDES E INVESTIGCIÓN «Liburu

Διαβάστε περισσότερα

GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK)

GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK) GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK) Recart Barañano, Federico Pérez Manzano, Lourdes Uriarte del Río, Susana Gutiérrez Serrano, Rubén EUSKARAREN

Διαβάστε περισσότερα

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2 Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,

Διαβάστε περισσότερα

DNAren nanoteknologia eta materia aktiboaren auto-antolakuntza. DNA nanotechnology and self-assembly of active matter

DNAren nanoteknologia eta materia aktiboaren auto-antolakuntza. DNA nanotechnology and self-assembly of active matter Ekaia, 2019, 35, 9-19 https://doi.org/10.1387/ekaia.19679 ekaia ZIENTZIA eta TEKNOLOGIA ALDIZKARIA ISSN 0214-9001 eissn 2444-3255 DNAren nanoteknologia eta materia aktiboaren auto-antolakuntza DNA nanotechnology

Διαβάστε περισσότερα

1 GEOMETRIA DESKRIBATZAILEA...

1 GEOMETRIA DESKRIBATZAILEA... Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren

Διαβάστε περισσότερα

Freskagarriak: hobe light badira

Freskagarriak: hobe light badira Freskagarriak: hobe light badira Ez dute kaloriarik, eta zaporea, antzekoa OHIKO FRESKAGARRIEK AZUKREA DUTE, ETA LIGHT DEITZEN DIRENEK, EZTITZAILE EDO EDULKORATZAILEAK DITUZTE, KALORIARIK GABEAK. HORI

Διαβάστε περισσότερα