ФИЗИКА Час број 11 Понедељак, 5. децембар, Електричне и магнетне појаве. Електростатика. Електростатика

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ФИЗИКА Час број 11 Понедељак, 5. децембар, Електричне и магнетне појаве. Електростатика. Електростатика"

Transcript

1 Електростатика ФИЗИКА Час број 11 Понедељак, 5. децембар, Електричне и магнетне појаве Електростатика Раздвајање наелектрисања у атомима Проводници и изолатори. Наелектрисање контактном и индукцијом Електрична струја Магнети Електромагненти таласи 2 античка грчка, 500 п.н.е. ћилибар привлачи комаде сламе када се протрља трењеђоноваобућеовуненитепих сушење веша у машинама кесе у продавници балони када се протрљају лепе се за зид у свим појавама имамо посла са статичким електрицитетом наелектрисањима објашњење: у супстанци постоје наелектрисања постоје два типа позитивно (стакло када се протрља свиленом тканином) и негативно (свилена тканина након трљања о стакло) истоимена се одбијају а разноимена привлаче сила између њих опада са растојањем Електростатика 3 1

2 Наелектрисања, електрони, протони Износи масе и нелектрисања електрона су били непознати све до краја 19 века. m = q = e= e e q m m e p p = q m 31 n p kg 19 C = 1836m e 1C (Coulomb=Кулон)= 6.25 x електрона!!!!!!. Неутрони нису наелектрисани 4 Раздвајање наелектрисања у атомима Атом је неутралан Раздвајање наелектрисања трењем у батеријама услед хемијских процеса битно је да се не креирају ни уништавају већ само одвајају закон одржања: укупна количина наелектрисања је константна да ли овај закон важи увек? 5 У акцелераторима креирање електронскопозитронског пара иобрнуто алииутим процесима се одржава нелектрисање! 6 2

3 Проводници и изолатори проводник има слободне носиоце електрицитета који могу да се крећу кроз њега изолатор нема слободне носиоце... полупроводник има али не толико колико има проводник суперпроводник проводи наелектрисања без губитака проводници метали проводници прве врсте проводници електролити и гасови проводници друге врсте? 7 Наелектрисање контактом Електроскоп 8 Наелектрисање индукцијом. Поларизација наелектрисање без додира први начин 9 3

4 Наелектрисање индукцијом. Поларизација наелектрисање бездодира други начин 10 Кулонов закон 11 Електростатичка и гравитациона сила Електростатика Гравитациона сила Дватипанелектрисања(q): позитивно и негативно Један тип масе (m): позитивна маса!!! Привлачна (код разноимених наелектрисања) или одбојна (истоимена наелектрисања) Привлачна (за сва масивна тела у свемиру) F: q1q 2 F = k 2 r 9 2 k = N m / C F: 2 m1m2 F = G 2 r 11 2 G = N m / kg

5 Кулонова сила и гравитација водоников атом растојање честица 0,530x10 10 m али Кулонова је и привлачна и одбојна а гравитација само привлачна на великој скали је доминантна ипак гравитација 13 Електрично поље тела не морају да буду у контакту да би интераговала интерагују путем поља поље Кулонове силе? тело наелектрисања Q делује на друго тело наелектрисања q на растојању r од њега. 14 Електрично поље Јачина електричног поља је дефинисана преко односа силе и позитивног пробног наелектрисања на које делује 15 5

6 Линије електричног поља Линије електричног поља : a. Смер је у смеру E у свакој тачки. E је тангента на линију. b. Почињу од () или бесконачности и имају крај у () или бесконачности c. Број линија је пропорционалан јачини електричног поља d. За хомогено поље, линије су паралелне и на једнаким растојањима e. Линије електричног поља се не секу. то значи да једнозначно дефинишу електрично поље 16 тачкасто наелектрисање тачкасто наелектрисање Линије поља су Усмерене радијално од наелектрисање Централно симетричне у односу на наелектрисање Растојање суседних линија расте са повећањем растојања од наелектрисања (поље постаје слабије) Линије поља су 17 Eлектрично поље два позитивна тачкаста наелектрисања 18 6

7 Eлектрично поље једног позитивног и једног негативног тачкастог наелектрисања 19 Проводници и електрично поље у стању статичке равнотеже проводници имају слободна наелектрисања ако се у неком делу појаве у вишку или се пак проводник нађе у спољашњем електричном пољу она се прерасподеле тако да то компензују успоставља се електростатичка равнотежа

8 22 Проводник у електростатичкој равнотежи има следеће особине Електрично поље је једнако нули унутар њега Линије електричног поља ван проводника су нормалне у односу на његову површину, почињу и завршавају се на наелектрисањима на површини проводника наелектрисања било које врсте, акосуувишкуу проводнику, распоређују се равномерно по његовој површини. 23 Проводник у електричном пољу E r = 0 r r r E = E E' 0 E = E E' 0 E r ' E r 0 E индуковано електрично поље Овопољерастесведокпотпуно не компензује спољње ел. поље, тако да је унутар проводника Е=0 (фарадејев кавез) 24 8

9 Електрично поље за велику равномерно наелектрисану плочу Линије поља су праве Под правим углом усмерене према споља Простор између суседних је константан (поље је константно тј. униформно) 25 Електрично поље велике равномерно наелектрисане плоче 26 Електрично поље пара паралелних супротно наелектрисаних плоча 27 9

10 28 да ли је поље између две наелектрисане плоче баш скроз хомогено? 29 Расподела наелектрисања на неуниформном проводнику 30 10

11 штојешиљаквећијачеје и поље око тог дела проводника тела са шиљком громобрани 31 Примене електростатике Ксерографија машине за фотокопирање пречишћавање дима, електростатичко чишћење ваздуха

12 34 Електрични потенцијал и напон електрично поље убрзава наелектрисање оно добија кинетичку енергију механичка аналогија 35 Електрични потенцијал и напон Кулонова сила је конзервативна постоји потенцијална енергија рад је једнак њеној негативној промени рад ће зависити од величине наелектрисања ако желимо величину која неће зависити од њега треба поделити потенцијалну енергију наелектрисањем 36 12

13 Електрични потенцијал и напон добија се електрични потенцијал напон је једнак разлици потенцијала 37 Електрон волт енергија за преношење једног електрона кроз проводник је мала у макроразмерама на микроскопској скали то је значајна вредност зато се уводи нова величина за енергију као енергија коју стекне електрон када га убрза потенцијална разлика 1 волта 38 Електрон волт Шта се изражава у електронволтима? енергија везе електрона у атомима енергије везе у молекулима стога је енергија која је потребна да би се разорила веза у неким органским молекулима око 5 ev. 30 kev поседује протон убрзан напоном од 30 kv 500 MeV се ослобађа у нуклеарним распадима 7ТeV (10 12 ) у CERNу има протонски сноп 39 13

14 Електрични потенцијал у униформном електричном пољу постоји веза напона и енергије да ли постоји и веза напона и јачине електричног поља? 40 Електрични потенцијал у униформном електричном пољу рад који изврши електростатичка сила при померању наелектрисања из тачке АутачкуВуниформногпољаје 41 Кондензатори уређаји за складиштење наелектрисања (радио апарати, компјутери, блицеви, за дефибрилацију у медицини,...) електронеутрални су у целини од чега зависи количина електрицитета на плочама? од напона од физичких карактеристика самог кондензатора 42 14

15 Кондензатори одчегазависи Q на облогама кондензатора? од јачине поља, јер свака линија полази са наелектрисања а завршава се на наелектрисању, E~Q како је U=Ed следи да је U~E, односно Q~U за исти напон Q зависи и од физичких особина кондезнатора што се описује његовом капацитивношћу капацитивност је количина наелектрисања која се ускладишти на облогама кондензатора при промени његовог напона за један волт. Јединица је Фарад 43 Равни кондензатори диелектрична пропустљивост (константа, пермеабилност) вакуума 44 Диелектрици На плоче кондензатора се може нагомилати лимитирана количина електрицитета при напону од 3х10 3 V/mm долази до пражњења у ваздуху па ће се кондензатор између чијих плоча је ваздух спонтано испразнити (пробијање) како да му повећамо капацитет? даље смањење растојања плоча доводи до лакшег пробијања решење између плоча се убацује диелектрик па је капацитивност већа 45 15

16 Диелектрици 46 Диелектрици повећање капацитивности кондензатора поларизација молекули диелектрика се поларизују. диелектрик смањује услед услед тога се на површини диелектрика поларизације јачину поља између ближој облогама кондензатора формира плоча кондензатора смањује се и слој супротних наелектрисања услед чега напон између њих при истој количини на плоче долазе додатна наелектрисања наелектрисања на плочама. следи да 5Дец10 повећава јој се капацитивност Физика, има већу капацитивност Објашњење поларизација 48 16

17 Енергија ускладиштена у кондензатору Потенцијална енергија честице у електричном пољу је E p =qu како напон расте од 0 до U не може да се примени ова формула одмах треба га усредњити U sr =(0U)/2 енергија кондензатора је 49 Енергија плочастог кондезатора густина енергија електричног поља кондензатора 50 Електрична струја настаје услед кретања слободних носиоца електрицитета кроз проводну средину примери акумулатор аутомобила, џепни калкулатор битна разлика? у броју наелектрисања која се у јединици времена пренесу стога се уводи величина под називом јачина електричне струје I 51 17

18 Јачина електричне струје јединица 1 А (Ампер) 52 Просто струјно коло 53 Физичкиитехничкисмерструје 54 18

19 Брзина дрифта електрони у проводнику врше две врсте кретања термално хаотично и усмерено под дејством спољашњег поља дрифт брзина преношења електричних сигнала је скоро па једнака брзини светлости 10 8 m/s абрзинадрифтаизноси свега 10 4 m/s како то?

20 Брзина дрифтанаставак ако је концентрација слободних наелектрисања у проводнику n, њихов број у осенченом делу проводника је N=nSx како сваки од њих носи наелектрисање q, у том делу проводника се налази Q=qN=qnSx јачина струје је 58 Брзина дрифтанаставак Брзина дрифта је у типичним проводницима реда 10 4 м/с! То је изузетно мала вредност 59 Омов закон Каквајевезаизмеђуелектричногнапона примењеног у колу (U), струје која протиче кроз њега (I) и отпора (R)? I = U R ; [ U ] [ I] = ; [ R] V A = Ω Georg Simon Ohm ( ) 60 20

21 Смисао Омовог закона U I = ; R [ U ] [ I] = ; [ R] V A = Ω 1. Електрична струја и напон су пропорционални једно другом. 2. Да ли Омов закон може да се примени на све отпорнике? НЕ. Нису сви отпорници омски! 61 Коло са два отпорника збир пада напона на отпорницима је једнак напону извора његовој електромоторној сили 62 Специфична отпорност L R = ρ S Ω m [ρ] = m 2 = Ω m 1 ρ = σ R L L = ρ = S σs ρ Специфична отпорност σ Специфична проводност Специфична отпорност (ρ) је карактеристика материјала. Специфична отпорност неког материјала (у SI) је отпор жице дужине 1 m попречног пресека 1 m 2 направљеној од њега

22 64 Температурна зависност отпорности ρ ρ = ρ T [ α ] 1 = o C [ α ( T T )] K ρ 0 t α температурски коефицијент отпорности. Tемпературска зависност отпорности се користи у отпорним термометрима, у термисторима и у другим уређајима где је потребно да се измери мала промена температуре

23 Суперпроводност Испод критичне температуре T C отпорност неких метала постаје нула. Tај феномен се зове СУПЕРПРОВОДНОСТ. Нулта отпорност значи да бесконачно велика струја може да протиче кроз такав проводник чак иако је примењени напон релативно мали. BSSCO Бизмут Стронцијум Калцијум Бакар Оксид Температура кључања T C течног азота је 77 K, неки суперпроводници имају Tc изнад K! Електрична снага и енергија све сијалице у кући раде на напону од 220 Волти али немају исту снагу енергија коју наелектрисања стекну у електричном пољу зависи и од величине наелектрисања и од напона а снага је однос енергије и времена брзина преношења енергије јединица Ват= 1 Волт х 1 Ампер потрошња и цена електричне енергије? 68 Наизменична струја батерије извор једносмерне струје константан напон и струја све док се батерија не испразни у кућној мрежи имамо наизменичну напон варира са временом нпр као синусоидна функција 69 23

24 Наизменична струја 70 Потенцијална разлика између полова извора наизменичног напона флуктуира као на слици 71 Снага и ефективне вредности струје и напона ако флуктуира напон, флуктуира и светлост сијалица. како да то не видимо? па превише је често да би наше око то регистровало алитозначидаиснагафлуктуира 72 24

25 Снага и ефективне вредности струје и напона 73 Електромоторна сила када заборавимо фарове на колима упаљене након неког времена ће се лагано угасити када се акумулатор испразни зашто се не угасе одједном? закључујемо да се напон који даје акумулатор смањује са временом ако га оптеретимо паралелном везом више сијалицапотрошача брже ће се испразнити закључујемо да му се напон смањује брже када је оптерећен са више потрошача две основне караткеристике акумулатора он је извор електричне енергије и има унутрашњи отпор 74 Батерије као извор електричне енергије постоје различити извори ел. енергије у погледу тога шта изазива разлику потенцијала у њима (соларне ћелије,...) разлика потенцијала која се направи је веома битна величина уводи се појам електромоторне силе = потенцијална разлика извора када нема протока струје у колу у коме се он налази Скраћеница EMS аознакаε 75 25

26 Унутрашњи отпор извора Отпорност коју протоку наелектрисања пружа сам извор струје 76 Галвански елементи Батерије металне плочице потопљене у електролит долази до хемијских реакција услед којих се одвајају наелектрисања и ствара потенцијална разлика пример плочица од цинка потопљена у воду или неки њен раствор киселина, база или соли (електролит) ствара се двојни електрични слој 77 у решетци цинка налазе се његови (2) јони које привлаче поларни молекули воде и одваја их од метала плочица постане негативна а околина позитивна ствара се контактни напон 78 26

27 вредност контактног напона зависиод комбинације метала и електролита 79 27

Флукс, електрична енергија, електрични потенцијал

Флукс, електрична енергија, електрични потенцијал Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,

Διαβάστε περισσότερα

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

Електроскоп. ФИЗИКА Час број 14 Понедељак, 22. децембар, колоквијум. Две врсте електрицитета. Електростатика - посматрања

Електроскоп. ФИЗИКА Час број 14 Понедељак, 22. децембар, колоквијум. Две врсте електрицитета. Електростатика - посматрања . колоквијум ФИЗИКА Час број 14 Понедељак,. децембар, 8 16.1.9. године, од 9. Електростатика 1 Електростатика посматрања Област физике Проучава интеракције између наелектрисаних тела која мирују Талес

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Eлектричне силе и електрична поља

Eлектричне силе и електрична поља Eлектричне силе и електрична поља 1 Особине наелектрисања Постоје две врсте наелектрисања Позитивна и негативна Наелектрисања супротног знака се привлаче, а различитог знака се одбијају Основни носиоц

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Кондензатор је уређај који се користи

Кондензатор је уређај који се користи Kондензатори 1 Кондензатор Кондензатор је уређај који се користи у великом броју електричних кола Капацитет, C, кондензатора се дефинише као количник интензитета наелектрисања на његовим плочама и интернзитета

Διαβάστε περισσότερα

Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је:

Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је: Три кондензатора познатих капацитивности 6 nf nf и nf везани су као на слици и прикључени на напон U Ако је позната количина наелектрисања на кондензатору капацитивности одредити: а) Напон на који је прикључена

Διαβάστε περισσότερα

брзина којом наелектрисања пролазе кроз попречни пресек проводника

брзина којом наелектрисања пролазе кроз попречни пресек проводника Струја 1 Електрична струја Кад год се наелектрисања крећу, јавља се електрична струја Струја је брзина којом наелектрисања пролазе кроз попречни пресек проводника ΔQ I Δtt Јединица за струју у SI систему

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Осми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. ЕЛЕКТРИЧНО

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

Наставна средства физике

Наставна средства физике Наставна средства физике Класификација 3 прилагођена обради у оквиру предмета основна наставна средства очигледна дводимензионална и тродимензионална наставна средства помоћна лабораторијска опрема наставна

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ. Томсонов ефекат. семинарски рад. Нови Сад, 2010.

УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ. Томсонов ефекат. семинарски рад. Нови Сад, 2010. УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Томсонов ефекат семинарски рад професор: Светлана Р. Лукић студент: Драгиња Прокић87/06 Нови Сад, 00. Термоелектричне

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004 РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

ОСНОВE ЕЛЕКТРОТЕХНИКЕ 1

ОСНОВE ЕЛЕКТРОТЕХНИКЕ 1 ОСНОВ ЕЛЕКТРОТЕХНИКЕ 1 - примери испитних питања за завршни испит - Електростатика Временски константне струје Напомене: - ово су само примери, али не и потпуни списак питања, - на испиту се не морају

Διαβάστε περισσότερα

ДВАДЕСЕТПРВО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА

ДВАДЕСЕТПРВО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТПРВО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ПРВОГ

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

C кплп (Кпндензатпр у кплу прпстпперипдичне струје)

C кплп (Кпндензатпр у кплу прпстпперипдичне струје) C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед

Διαβάστε περισσότερα

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност, Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Галваномагнетни ефекти

Галваномагнетни ефекти УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Владимир Голуб Миљић Јована Ивана Антић Галваномагнетни ефекти семинарски рад Нови Сад, 2010. Садржај 1 Предговор

Διαβάστε περισσότερα

ФИЗИКА Час број 12 Понедељак, 27. децембар 2010

ФИЗИКА Час број 12 Понедељак, 27. децембар 2010 Магнетне појаве ФИЗИКА Час број 12 Понедељак, 27. децембар 2010 1 10.1. (понедељак) 2011., 2. колоквијум 21. 1.2011. ухх.хх поправни колоквијум 24.01.2011. у 09.00, испит 2 Магнети Откриће магнета-магнезија

Διαβάστε περισσότερα

R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2

R 2. I област. 1. Реални напонски генератор електромоторне силе E. и реални напонски генератор непознате електромоторне силе E 2 I област. Реални напонски генератор електромоторне силе = 0 V и унутрашње отпорности = Ω и реални напонски генератор непознате електромоторне силе и унутрашње отпорности = 0, 5 Ω везани су у коло као на

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

P = 32W. Колика је укупна снага Џулових губитака у овом колу када је I = I = 2Ig?

P = 32W. Колика је укупна снага Џулових губитака у овом колу када је I = I = 2Ig? (1) I област 1. Када је у колу сталне струје приказаном на слици 1 I = I = Ig, укупна снага Џулових губитака је P = 3W. Колика је укупна снага Џулових губитака у овом колу када је I = I = Ig? () Решење:

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање

ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање ФИЗИКА Час број Понедељак, 8. децембар, 008 Једначина стања идеалног и реалног гаса Притисак и температура гаса Молекуларно кинетичка теорија идеалног гаса Болцманова и Максвелова расподела Средњи слободни

Διαβάστε περισσότερα

1 Поларизација диелектрика и врсте поларизације

1 Поларизација диелектрика и врсте поларизације Поларизација диелектрика и врсте поларизације Диелектрични материјали су изолатори са специфичном отпорношћу од 6 Ωm до 8 Ωm Код њих се електрони и на температури апсолутне нуле налазе искључиво у валентној

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача.

ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ШКОЛСКЕ 2012/2013. ГОДИНЕ. која се троши на његово загревање након затварања прекидача. ШКОЛСКЕ 0/03. ГОДИНЕ. Друштво физичара Србије VIII Министарство просвете, науке и технолошког РАЗРЕД развоја Републике Србије ЗАДАЦИ. Отпорности у струјном колу приказаном на слици износе R.8, R и R 3.

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕХНИКЕ

ОСНОВА ЕЛЕКТРОТЕХНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ПЕТНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕХНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 3

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање

МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ Понедељак, 29. децембар, 2010 Хуков закон Период и фреквенција осциловања Просто хармонијско кретање Просто клатно Енергија простог хармонијског осцилатора Веза са униформним кретањем

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010

ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010 ФИЗИКА Час број 12 Понедељак, 11. јануар, 2010 Магнетне појаве 1 16.1.2010. у 09.00 2. колоквијум 21. 1.2010. у 17.00 поправни колоквијум 25.01.2010. у... испит 2 1 Магнети Откриће магнета-магнезија (Мала

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

I област. 1. Када је у колу сталне струје приказаном на слици 1 I g1. , укупна снага Џулових губитака је. Решење: a) P Juk

I област. 1. Када је у колу сталне струје приказаном на слици 1 I g1. , укупна снага Џулових губитака је. Решење: a) P Juk I област. Када је у колу сталне струје приказаном на слици I g = Ig = Ig, укупна снага Џулових губитака је P Juk = 5 W. Колика је укупна снага Џулових губитака у колу када је I g = Ig = Ig? Решење: a)

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

Температура. везана за топло и хладно ово није једнозначно у субјективном смислу

Температура. везана за топло и хладно ово није једнозначно у субјективном смислу ФИЗИКА 2010 Понедељак, 15. новембар и 22. новембар 2010 Температура Топлотно ширење чврстих тела и течности Закони који важе за идеални гас Кинетичка теорија Фазне трансформације Влажност, испаравање,

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА

4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА 4. 1. ГУБИЦИ У ГВОЖЂУ О губицима у гвожђу

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Крагујевац, 02. jул Пријемни испит и начин бодовања

Крагујевац, 02. jул Пријемни испит и начин бодовања Универзитет у Крагујевцу ПРИРОДНО-МАТЕМАТИЧКИФАКУЛТЕТ Институт за физику Радоја Домановића 12, 34000 Крагујевац, Србија University оf Kragujevac FACULTY OF SCIENCE Department of Physics Radoja Domanovića

Διαβάστε περισσότερα

ТАЛАСИ У МАГНЕТОСФЕРАМА ПУЛСАРА

ТАЛАСИ У МАГНЕТОСФЕРАМА ПУЛСАРА ТАЛАСИ У МАГНЕТОСФЕРАМА ПУЛСАРА ПУЛСАРИ Настанак, структура и својства МАГНЕТОСФЕРА ПУЛСАРА Структура електромагнетног поља МАГНЕТОСТАТИЧКО ПОЉЕ ~ ~ МАГНЕТОСФЕРА ПУЛСАРА Структура електромагнетног поља

Διαβάστε περισσότερα

П Р Е Д Г О В О Р. У Београду, септембра године Аутор

П Р Е Д Г О В О Р. У Београду, септембра године Аутор Садржај ПРЕДГОВОР 4 ПИТАЊА И ЗАДАЦИ 5 ОСЦИЛАТОРНО И ТАЛАСНО КРЕТАЊЕ 6 Питања 6 Одговори 7 Задаци 8 СВЕТЛОСНЕ ПОЈАВЕ 6 Питања 6 Одговори 7 Задаци 8 ЕЛЕКТРИЧНО ПОЉЕ 6 Питања 6 Одговори 7 Задаци 9 ЕЛЕКТРИЧНА

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ

3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ 3.5. МЕРЕЊЕ СИЛЕ ДИНАМОМЕТРОМ Подсетимо се. Шта је сила еластичности? У ком смеру она делује? Од свих еластичних тела која смо до сада помињали, за нас је посебно интересантна опруга. Постоје разне опруге,

Διαβάστε περισσότερα

g 10m/s. (20 п) . (25 п)

g 10m/s. (20 п) . (25 п) II РАЗРЕД Група П 5. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ /. ГОДИНЕ. Друштво Физичара Србије Министарство Просвете и Науке Републике Србије ЗАДАЦИ. На дугачком глатком хоризонталном

Διαβάστε περισσότερα

Теорија линеарних антена

Теорија линеарних антена Теорија линеарних антена Антене су уређаји који претварају електричну енергију у електромагнетну (предајне антене) и обрнуто (пријемне антене) Према фреквентном опсегу, антене се деле на каналске (за узан

Διαβάστε περισσότερα

ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА

ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА Ивана Љубојевић ЕЛЕКТРИЧНА СТРУЈА РЈЕШАВАЊА ЗАДАТАКА 0. Садржај: Улога и значај рјешавања задатака из физике... Класификација задатака... 4 Методика рјешавања задатака... 5 Квантитативни задаци... 6 Квалитативни

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

T. max Т / [K] p /[ 10 Pa] 1,01 1,23 1,74 2,39 3,21 4,42 5,87 7,74 9,35 11,60

T. max Т / [K] p /[ 10 Pa] 1,01 1,23 1,74 2,39 3,21 4,42 5,87 7,74 9,35 11,60 II РАЗРЕД 49. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ /. ГОДИНЕ Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ ФИЗИЧКИ ФАКУЛТЕТ БЕОГРАД 9.4... Малу плочицу,

Διαβάστε περισσότερα

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2.

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2. МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање.3 тракасти транспортери, капацитет учинак, главни отпори кретања Капацитет Капацитет представља полазни параметар при прорачуну транспортера задаје се пројектним

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 2 ТРОФАЗНИ ПУНОУПРАВЉИВИ МОСТНИ ИСПРАВЉАЧ СА ТИРИСТОРИМА 1. ТЕОРИЈСКИ УВОД

Διαβάστε περισσότερα

. Одредити количник ако је U12 U34

. Одредити количник ако је U12 U34 област. У колу сталне струје са слике познато је = 3 = и =. Одредити количник λ = E/ E ако је U U34 =. Решење: а) λ = b) λ = c) λ = 3 / d) λ = g E 4 g 3 3 E Слика. област. Дата је жичана мрежа у облику

Διαβάστε περισσότερα

Писмени испит из Метода коначних елемената

Писмени испит из Метода коначних елемената Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан

Διαβάστε περισσότερα

Реализована вежба на протоборду изгледа као на слици 1.

Реализована вежба на протоборду изгледа као на слици 1. Вежбе из електронике Вежба 1. Kондензатор три диоде везане паралелно Циљ вежбе је да ученици повежу струјно коло са три диоде везане паралелно од којих свака има свој отпорник. Вежба је успешно реализована

Διαβάστε περισσότερα