ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
|
|
- Χαρά Πανταζής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΙ ΠΕΙΡΑΙΑ -ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ ΧΕΙΜΕΡΙΝΟ ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1. ΕΥΑΙΣΘΗΣΙΑ Ενα κύκλωµα, το οποίο κάνει µια συγκεκριµένη λειτουργία εκφραζόµενη από την συνάρτηση µεταφοράς του, θα πρέπει να εξακολουθεί να συµπεριφέρεται καλά, ακόµα και όταν η τιµή ενός ή περισσοτέρων εξαρτηµάτων αποκλίνει, για διαφόρους λόγους, από την ονοµαστική. Οι τιµές των εξαρτηµάτων µπορεί να αποκλίνουν από τις ονοµαστικές για µια σειρά από λόγους, όπως για παράδειγµα λόγω γήρανσης (aging), µεταβολής της θερµοκρασίας ή της υγρασίας. Η απόκλιση όµως µπορεί να οφείλεται και στην µέθοδο κατασκευής του κυκλώµατος. Είναι γνωστό ότι η µικροηλεκτρονική πραγµατοποίηση αντιστάσεων και πυκνωτών δεν είναι πολύ ακριβής και ακόµη ότι η ακριβής ρύθµισή τους έχει υψηλό κόστος. Στην κατασκευή εξάλλου ενός κυκλώµατος µε διακριτά στοιχεία, πολλές φορές βρισκόµαστε στην ανάγκη να χρησιµοποιήσουµε προσεγγιστικές τιµές. Για παράδειγµα, αν για µια αντίσταση οι υπολογισµοί µας δώσουν τιµή 4750 Ω, θα χρησιµοποιήσουµε την τυποποιηµένη τιµή 4700 Ω, βασιζόµενοι στο γεγονός ότι το κύκλωµα δεν είναι τόσο ευαίσθητο ώστε να αλλάξει τραγικά η συµπεριφορά του από την προσέγγιση αυτή. Θέλουµε εποµένως τα σχεδιαζόµενα κυκλώµατα να µην είναι ευαίσθητα στις αποκλίσεις από την ονοµαστική τιµή. Η ευαισθησία είναι ένα µετρούµενο και υπολογιζόµενο µέγεθος και αποτελεί πολλές φορές κριτήριο αξιολόγησης εναλλακτικών κυκλωµάτων, που υλοποιούν τις ίδιες προδιαγραφές. Οπως γνωρίζουµε η διαδικασία της σύνθεσης και σχεδίασης, οδηγεί σε πολλαπλές λύσεις και πολλές φορές επιλέγουµε ως "καλύτερη", αυτή που οδηγεί σε χαµηλότερες ευαισθησίες. ΟΡΙΣΜΟΣ ΤΗΣ ΕΥΑΙΣΘΗΣΙΑΣ Το µέτρο µε το οποίο µετράµε την ευαισθησία ονοµάζεται διαφορική ή κλασσική ή σχετική ευαισθησία ή ευαισθησία πρώτης τάξης ή ακόµα και ευαισθησία Bode και ορίζεται ως εξής: όπου Η(x) το µέγεθος του κυκλώµατος του οποίου µετρούµε τις µεταβολές σε αλλαγές του στοιχείου x. Φυσικά το Η πρέπει να είναι συνάρτηση του x, δηλ H(x). Η ευαισθησία µπορεί να γραφτεί και ως εξής: Είναι προφανές ότι το παραπάνω τελευταίο σκέλος της σχέσης ισχύει για µικρές αλλαγές του x, οπότε ΠΑΡΑ ΕΙΓΜΑ Ως παράδειγµα θα πάρουµε το παθητικό κύκλωµα του σχήµατος, µε συνάρτηση µεταφοράς και απόκριση πλάτους (απλό κέρδος): ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ - ΕΥΑΙΣΘΗΣΙΑ -1
2 Η ευαισθησία της απόκρισης πλάτους Η(ω) σε µεταβολές του L και του R θα είναι αντίστοιχα Προκειµένου να υπολογίσουµε την ευαισθησία ως προς L και ως προς R, αντικαθιστούµε όλα τα άλλα στοιχεία µε τις τιµές τους και αφήνουµε µόνον το στοιχείο ενδιαφέροντος για να διευκολύνουµε τους υπολογισµούς: Με τον υπολογισµό των παραγώγων και εφαρµογή των παραπάνω σχέσεων βρίσκουµε: Είναι προφανές ότι στην συχνότητα ω=0.5, αν η τιµή R µεταβληθεί κατά 5%, η απόκριση θα µεταβληθεί επίσης κατά 5%, αφού η ευαισθησία ως προς R στην συχνότητα αυτή είναι ίση µε ΒΑΘΥΠΕΡΑΤΑ ΦΙΛΤΡΑ 2ης ΤΑΞΗΣ Βαθυπερατά φίλτρα ή φίλτρα διελεύσεως χαµηλών συχνοτήτων ονοµάζονται τα κυκλώµατα εκείνα που επιτρέπουν την διέλευση των χαµηλοτέρων µιας συγκεκριµένης συχνότητος ω C σήµατα, ενώ κάθε συχνότητα µεγαλύτερη από την ω C, την συχνότητα αποκοπής, εξασθενείται σηµαντικά. Ενα κύκλωµα είναι τάξης Ν όταν η συνάρτηση µεταφοράς του είναι τάξης Ν. Εποµένως τα βαθυπερατά φίλτρα 2ης τάξης υλοποιούν συνάρτηση µεταφοράς 2ης τάξης, που στην γενική της περίπτωση είναι της µορφής: Οι πόλοι για Q> Η.Γ. ΗΜΟΠΟΥΛΟΣ
3 όπου Η συνάρτηση µεταφοράς έχει ένα ζευγάρι πραγµατικών ή µιγαδικών πόλων. Το ω 0 ονοµάζεται συχνότητα του πόλου και το Q συντελεστής ποιότητος των πόλων. Μια συνάρτηση βαθυπερατού φίλτρου 2ης τάξης έχει δύο πόλους (ρίζες του τριωνύµου του παρονοµαστή) που υπολογίζονται από την. Είναι προφανές ότι όταν το Q#0.5, οι πόλοι είναι πραγµατικοί ενώ γίνονται µιγαδικοί γιά Q>0.5. Στην περίπτωση αυτή το πραγµατικό µέρος είναι αντιστρόφως ανάλογο προς το Q και γιά µεγάλες του τιµές τείνει στο µηδέν, οπότε οι πόλοι τείνουν στον φανταστικό άξονα. Για µεγάλες τιµές του Q, το φανταστικό µέρος των πόλων γίνεται ±jω 0 και γιά τον λόγο αυτό το ω 0 ονοµάζεται συχνότητα του πόλου. Η καµπύλη απόκρισης (κέρδους) ενός βαθυπερατού φίλτρου 2ης τάξης θα είναι φυσικά η γραφική παράσταση της Η παράσταση της Η(ω) φαίνεται στo σχήµα γιά Α=1, ω 0 =1 και για διάφορες τιµές του Q. Η µέγιστη τιµή H max της Η(ω) υπάρχει µόνον όταν Q>0.707 και συµβαίνει γιά: Η τιµή του µεγίστου H max της Η(ω), όταν φυσικά το Q>0.707, υπολογίζεται ότι είναι: όπου Η ο είναι η τιµή της Η(ω) γιά ω=0 (συνεχές). Οι παραπάνω σχέσεις έχουν νόηµα γιά Q>0.707, τιµή µετά από την οποία αρχίζει να υπάρχει µέγιστο. Από τις παραπάνω σχέσεις γίνεται σαφές ότι γιά αρκετά µεγάλες τιµες του συντελεστή ποιότητος έχουµε Οσο µεγαλώνει ο συντελεστής ποιότητος Q, όσο δηλ. οι πόλοι πλησιάζουν στον άξονα jω, τόσο οξύτερη γίνεται η έξαρση της καµπύλης. ΠΑΘΗΤΙΚΟ BP ΦΙΛΤΡΟ LC 2ης ΤΑΞΗΣ Τα κυκλώµατα (α) και (β) του σχήµατος έχουν συνάρτηση µεταφοράς τύπου ΒΠ φίλτρου. Συγκεκριµένα το πρώτο έχει: ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ - ΕΥΑΙΣΘΗΣΙΑ -3
4 ΤΟ ΕΝΕΡΓΟ ΒΑΘΥΠΕΡΑΤΟ ΚΥΚΛΩΜΑ 2ης ΤΑΞΗΣ SALLEN and KEY Το βαθυπερατό κύκλωµα 2ης τάξης Sallen and Key είναι ένα ενεργό κύκλωµα µε έναν τελεστικό ενισχυτή σε σύνδεση θετικής ανατροφοδότησης, όπως φαίνεται στο σχήµα. Η συνάρτηση µεταφοράς του κυκλώµατος Sallen and Key υπολογίζεται ότι είναι: ΒΑΘΥΠΕΡΑΤΟ Sallen and Key όπου το k είναι πάντοτε µεγαλύτερο από την µονάδα και δίνεται από την σχέση Οι αντιστάσεις r A και r B ρυθµίζουν την αρνητική ανατροφοδότηση και το Q του κυκλώµατος ενώ δεν επηρεάζουν καθόλου την συχνότητα του πόλου: Οταν πρόκειται το κύκλωµα αυτό να πραγµατοποιεί µια δεδοµένη συνάρτηση µεταφοράς, τότε φυσικά έχουµε δεδοµένα το ω 0 και το Q, οπότε θα πρέπει να προσδιορίσουµε τις τιµές των στοιχείων του κυκλώµατος ώστε να δίνουν τα µεγέθη αυτά. Αυτό λέγεται σχεδίαση (design). Τα προς προσδιορισµό στοιχεία είναι 5 (δύο αντιστάσεις, δύο πυκνωτές και το k της αρνητικής ανατροφοδότησης) ενώ έχουµε µόνον τον περιορισµό του συγκεκριµένου ω 0 και του Q. Αυτό πρακτικά σηµαίνει ότι µπορούµε να ορίσουµε αυθαίρετα µερικά στοιχεία και να υπολογίσουµε τα υπόλοιπα. Γιά το κύκλωµα Sallen and Key υπάρχουν τρείς καθιερωµένοι τρόποι υπολογισµού των στοιχείων γιά δεδοµένο ω 0 και Q, που παρουσιάζονται παρακάτω. Σχεδίαση Ι: Θέτουµε k=1 (δηλ. r B =0) και R 1 =R 2 =R οπότε: απ' όπου υπολογίζεται ότι Σχεδίαση ΙΙ: Στην δεύτερη σχεδίαση θέτουµε C 1 =C 2 =C και R 1 =R 2 =R οπότε απ' όπου υπολογίζονται τα στοιχεία Από το γινόµενο RC που είναι πλέον γνωστό, επιλέγοντας µια επιθυµητή τιµή R, υπολογίζουµε το C ή αντίστροφα. Πρέπει να σηµειωθεί ότι γιά να είναι το k>1 πρέπει το Q>0.5 πράγµα που σηµαίνει ότι µε την επιλογή ίσων αντιστάσεων και πυκνωτών, έχουµε ελάχιστη τιµή στο Q του κυκλώµατος το 0.5. Σχεδίαση ΙΙΙ Η σχεδίαση αυτή οφείλεται στον W. Saraga και είναι αυτή που οδηγεί στο κύκλωµα ελάχιστης ευαισθησίας. Στην περίπτωση αυτή επιλέγουµε µια οποιαδήποτε τιµή γιά τον C 2, ρυθµίζουµε το 4- Η.Γ. ΗΜΟΠΟΥΛΟΣ
5 k=4/3 και διατηρούµε την σχέση των σταθερών χρόνου R 1 C 1 =3R 2 C 2. Κάτω από αυτές τις συνθήκες προκύπτει ότι: απ' όπου υπολογίζεται ότι: ΠΑΡΑ ΕΙΓΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΕΥΑΙΣΘΗΣΙΑΣ ΒΑΘΥΠΕΡΑΤΟΥ ΦΙΛΤΡΟΥ SALLEN and KEY Στο βαθυπερετό Sallen and Key του σχήµατος, έχουµε επιλέξει k=1, ίσες αντιστάσεις και ίσους πυκνωτές. Υπολογίζοντας την καµπύλη απόκρισης Η(ω), υπολογίζεται ότι οι ευαισθησίες ως προς τις αντιστάσεις είναι ίσες ενώ η ευαισθησία ως προς την τιµή των πυκνωτών είναι µεγαλύτερη. Συγκεκριµένα βρίσκουµε: ΕΡΓΑΣΙΕΣ 1. Επιβεβαιώστε µε το Mathcad την ορθότητα της σχέσης που δίνει την συνάρτηση µεταφοράς του βαθυπερατού ενεργού φίλτρου Sallen and Key. 2. Σχεδιάστε το ΒΠ κύκλωµα Sallen and Key ώστε να πραγµατοποιεί την και µε τις σχεδιάσεις ΙΙ και ΙΙΙ. (Μην ασχολείστε µε την σταθερά Α). 3. α) Κάτω από τον ορισµό των τιµών των στοιχείων της σχεδίασης ΙΙ, ορίστε την συνάρτηση µεταφοράς Η 2 (s):=... και την συνάρτηση απλού κέρδους G 2 (f):=... Σχεδιάστε την καµπύλη απόκρισης πλάτους του κυκλώµατος για την σχεδίαση αυτή και επιβεβαιώστε την τιµή του H(0), ω max και H max. β) Υπολογίστε την ευαισθησία του Q και του ω ο ως προς όλα τα στοιχεία του κυκλώµατος και συµπληρώστε την σχετική στήλη του ενός πίνακα ευαισθησίας σαν τον παρακάτω: ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ - ΕΥΑΙΣΘΗΣΙΑ -5
6 ΠΙΝΑΚΑΣ ΕΥΑΙΣΘΗΣΙΑΣ Q και ω ο ΒΑΘΥΠΕΡΑΤΟΥ SALLEN and KEY Σχεδίαση ΙΙ Σχεδίαση ΙΙΙ γ). Γράψτε την συνάρτηση µεταφοράς και κέρδους µε δεύτερη µεταβλητή το k. Η 2k (s,k):=... και G 2k (f,k):=... και ορίστε την συνάρτηση ευαισθησίας του κέρδους ως προς το k. δ) Παραστήστε γραφικά την παραπάνω ευαισθησία του κέρδους ως προς το k από 1 έως 100 khz µε βήµα 100 Hz (f:=1000, ) και σχολιάστε. 4. Επαναλάβετε το ερώτηµα 3 για την σχεδίαση ΙΙΙ. Ολοι οι δείκτες θα είναι τώρα 3 αντί 2 δηλαδή Η 3k (s,k):=... και G 3k (f,k):= Γιά να συγκρίνετε τις ευαισθησίες των κερδών των δύο κυκλωµάτων (από σχέδίαση ΙΙ και ΙΙΙ) συναρτήσει της συχνότητας, παραστήστε γραφικά τις αντίστοιχες ευαισθησίες των κερδών ως προς το k στο ίδιο διάγραµµα µε λογαριθµικό άξονα συχνοτήτων (f:=1000, ). Επιβεβαιώνεται το ότι η σχεδίαση ΙΙΙ παρουσιάζει µικρότερη ευαισθησία; 6. Πόσο επι τοις εκατό θα µεταβληθεί το κέρδος του κυκλώµατος στην συχνότητα f=5 khz αν το k ξεφύγει κατά +3% από την ονοµαστική τιµή; 6- Η.Γ. ΗΜΟΠΟΥΛΟΣ
Συναρτήσεις και κυκλώµατα 2ης τάξης
Συναρτήσεις και κυκλώµατα 2ης τάξης Περιεχόµενα ΗΡΑΚΛΗ Γ. ΔΗΜΟΠΟΥΛΟΥ: ΣΗΜΑΤΑ, ΣΥΣΤΗΜΑΤΑ & ΚΥΚΛΩΜΑΤΑ 8. Συναρτήσεις και κυκλώµατα ης τάξης 484 8.2 Ενεργά κυκλώµατα ης τάξης 486 8.2. Ενεργά κυκλώµατα ης
(s) V Ιn. ΘΕΜΑ 1 1. Υπολογίστε την συνάρτηση µεταφοράς τάσης του. του κυκλώµατος και χαρακτηρίστε το.
Θέµατα εξετάσεων Η/Ν Φίλτρων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί σε εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα δείχνουν το
Διάρκεια εξέτασης 2 ώρες
ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΠΕΙΡΑΙΑ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ B ΠΕΡΙΟΔΟΥ ΕΑΡΙΝΟΥ 007-08 Η/Ν ΦΙΛΤΡΑ Εξεταστής: Καθηγητής Ηρ. Γ. Δηµόπουλος Διάρκεια εξέτασης ώρες 0.09.008 ΖΗΤΗΜΑ (5 µονάδες Tο εικονιζόµενο κανονικοποιηµένο
Σχεδίαση Ενεργών-RC Φίλτρων (Μέρος Ι) (Σύνθεση της συνάρτησης µεταφοράς)
Κεφάλαιο 6 Σχεδίαση Ενεργών-RC Φίλτρων (Μέρος Ι) (Σύνθεση της συνάρτησης µεταφοράς) 6. Εισαγωγή Η σύνθεση ενός φίλτρου ξεκινάει από τις προδιαγραφές, οι οποίες περιγράφουν την συµπεριφορά πλάτους του φίλτρου
Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5γ. Σημειώσεις μαθήματος: E mail:
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Πολλές
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 04/02/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΘΕΜΑ 1 ο ( μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 1, 0.7, 00 kω, 4 kω, h e. kω και β h 100. (α) Να προσδιορίσετε τις τιμές των αντιστάσεων και ώστε το σημείο λειτουργίας Q (, ) του τρανζίστορ
Ενεργα - RC φίλτρα 2ης τάξης
Ενεργα - C φίλτρα 2ης τάξης Κεφάλαιο 5 5. Εισγωγή Είδαµε στο κεφάλαιο 3 ότι από τις προδιαγραφές ενός φίλτρου, µπορούµε να υπολογίσουµε µια πραγµατοποιήσιµη συνάρτηση µεταφοράς που τις ικανοποιεί. Εχοντας
ΜΕΡΟΣ Α: Απαραίτητες γνώσεις
ΜΕΡΟΣ Α: Απαραίτητες γνώσεις Φίλτρα RC Τα φίλτρα RC είναι από τις σπουδαίες εφαρμογές των πυκνωτών. Τα πιο απλά φίλτρα αποτελούνται από έναν πυκνωτή και μία αντίσταση σε σειρά. Με μια διαφορετική ματιά
3. ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ. Ε. ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΙΙ ΣΤΟΧΟΙ Ημερομηνία:.... /.... /...... Τμήμα:.... Ομάδα: 3. ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ η κατανόηση της αρχής λειτουργίας
Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 26/01/2017
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΔΙΔΑΣΚΩΝ: Λ ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 6/0/07 ΘΕΜΑ ο ( μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται:
Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος Thevenin
Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος hevenin Απόκριση στο πεδίο της συχνότητας
Σύνθεση και Σχεδίαση Παθητικών Φίλτρων LC
Κεφάλαιο 08 Σύνθεση και Σχεδίαση Παθητικών Φίλτρων LC 8. Προκαταρκτικά Στο κεφάλαιο 6 παρουσιάστηκε µια µέθοδος σχεδίασης ενεργών φίλτρων, κατά την οποία από τις προδιαγραφές υπολογίζεται αρχικά, µε µια
ΚΕΦΑΛΑΙΟ 2. Ανάλυση Ηλεκτρικού Σήµατος
ΚΕΦΑΛΑΙΟ Ανάλυση Ηλεκτρικού Σήµατος. Εισαγωγή Τα σήµατα εξόδου από µετρητικές διατάξεις έχουν συνήθως τη µορφή ηλεκτρικών σηµάτων. Πριν από την καταγραφή ή περαιτέρω επεξεργασία, ένα σήµα υφίσταται µια
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 06/02/2009 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΘΕΜΑ ο (.5 μονάδες): Για τον ενισχυτή του παρακάτω σχήματος δίνονται: V 0V, V E 0.7 V, kω, 00 kω, kω, 0 kω, β h e 00, h e.5 kω. (α) Να προσδιορίσετε το σημείο λειτουργίας Q (I, V E ) του τρανζίστορ. (β)
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
Όταν θα έχουµε τελειώσει το κεφάλαιο αυτό θα µπορούµε να: υπολογίσουµε το µετασχηµατισµό aplace στοιχειωδών σηµάτων. αναφέρουµε τις ιδιότητες του µετασχηµατισµού aplace. Σεραφείµ Καραµπογιάς 6. ΚΕΦΑΛΑΙΟ
ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1 Ο συντονισμός είναι μια κατάσταση κατά την οποία το φανταστικό μέρος της σύνθετης αντίστασης ενός κυκλώματος RCL μηδενίζεται. Αυτό συμβαίνει γιατί
Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
PWL REPEAT FOREVER ( m m m 0) ENDREPEAT
ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Μοντέλο ενός τελεστικού ενισχυτή Ο τελεστικός ενισχυτής είναι ένα κύκλωµα µε δύο εισόδους και µία έξοδο Στην έξοδο εµφανίζεται η διαφορά των εξόδων πολλαπλασιασµένη επί το κέρδος ανοιχτού
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Διδάσκων : Δημήτρης Τσιπιανίτης Γεώργιος Μανδέλλος
ΚΕΦΑΛΑΙΟ 14 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSEL-THOMSON
ΚΕΦΑΛΑΙΟ 4 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSELTHOMSON 4. ΚΑΘΥΣΤΕΡΗΣΗ ΦΑΣΗΣ ΚΑΙ ΚΑΘΥΣΤΕΡΗΣΗ ΣΗΜΑΤΟΣ Η χρονική καθυστέρηση συµβαίνει κατά την µετάδοση σε διάφορα φυσικά µέσα και αποτελεί ένα βασικό στοιχείο στην επεξεργασία
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS
ΚΕΦΑΛΑΙΟ 5 ο ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS Εισαγωγή Η μελέτη ενός ΣΑΕ μπορεί να γίνει με την επίλυση της διαφορικής εξίσωσης που το περιγράφει και είναι τόσο πιο δύσκολο, όσο μεγαλυτέρου βαθμού
Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής
3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς
ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ
Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά
ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V
Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Φάσμα συχνοτήτων. Πεδίο μιγαδικής μγ συχνότητας Πόλοι & μηδενικά
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 05/02/2013
ΘΕΜΑ ο (.5 μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: Β 90 kω, C kω, Ε E kω, kω, V CC V, V B 0.70 V και Ι Β 0 μα. Επίσης, για τα δύο τρανζίστορ του ενισχυτή δίνονται: β h e h e 00 και h
ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ
ΕΙΣΑΓΩΓΗ: Ο τελεστικός ενισχυτής είναι ένα προκατασκευασμένο κύκλωμα μικρών διαστάσεων που συμπεριφέρεται ως ενισχυτής τάσης, και έχει πολύ μεγάλο κέρδος, πολλές φορές της τάξης του 10 4 και 10 6. Ο τελεστικός
ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ
ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ ΕΠΩΝΥΜΟ ΟΝΟΜΑ Α.Μ. ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ:.... /..../ 20.. ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:.... /..../ 20.. ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΤΟΧΟΙ η κατανόηση
ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις -4 να βρείτε τη σωστή απάντηση. Α. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και
ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ
ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ Σ.Α.Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΕΚΕΜΒΡΙΟΣ 3 ) Αρχικό σήµα ( ) Στο παρακάτω σχήµα φαίνεται ένα περιοδικό σήµα ( ), το οποίο έχει ληφθεί από
Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων
2 1 η ΕΝΟΤΗΤΑ Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων 3 ο Εργαστήριο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 Άσκηση 3 η. 3.1 Φίλτρο διελεύσεως χαμηλών συχνοτήτων ή Χαμηλοπερατό φίλτρο με μία σταθερά χρόνου.
ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.
ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ R-C ΚΥΚΛΩΜΑΤΩΝ. Η θεωρία της άσκησης καλύπτεται από το βιβλίο του Εργαστηρίου. ( j
ΑΣΚΗΣΗ 07 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ - ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης είναι η μελέτη της συνάρτησης μεταφοράς ενός εν σειρά - κυκλώματος συναρτήσει της συχνότητας του σήματος εισόδου. Η θεωρία της άσκησης
Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα
Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Ένας πυκνωτής με μία αντίσταση σε σειρά αποτελούν ένα RC κύκλωμα. Τα RC κυκλώματα χαρακτηρίζονται για την απόκρισή τους ως προς τη συχνότητα και ως
Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις
ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι V 86
ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 86 ΑΣΚΗΣΗ. Ένα κύκλωµα RC αποτελείται από µια αντίσταση R 5Ω και έναν πυκνωτή χωρητικότητας C σε σειρά. Αν το ρεύµα προηγείται της τάσης κατά 6 ο και η κυκλική συχνότητα της πηγής είναι
Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα
Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα Εισαγωγή Μελέτη συστήµατος αιώρησης µαγνητικού τρένου. Τις προηγούµενες δύο δεκαετίες, κατασκευάστηκαν πρωτότυπα µαγνητικά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" ( ο εξάµηνο) Ακαδ. Έτος: - ο Τµήµα (Κ-Μ), ιδάσκων: Κ. Τζαφέστας Λύσεις ης Σειράς Ασκήσεων Άσκηση - (I-
Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1
Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1 ΑΝΑΛΟΓΙΚΑ ΦΙΛΤΡΑ ΚΑΝΟΝΙΚΟΠΟΙΗΜΕΝΗ ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 2 ΦΙΛΤΡΑ BUTTERWORTH: Τα βαθυπερατά φίλτρα έχουν
ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός
Σχήμα Χαμηλοδιαβατά φίλτρα:
ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας
Κεφάλαιο 4. Τελεστικοί ενισχυτές Σύνθετα κυκλώματα
Κεφάλαιο 4. Τελεστικοί ενισχυτές Σύνθετα κυκλώματα Σύνοψη Το κεφάλαιο αυτό αποτελεί συνέχεια του προηγούμενου και αφορά στη λειτουργία των τελεστικών ενισχυτών. Μελετώνται, σχεδιάζονται και υλοποιούνται
Σήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 6: Απόκριση Συχνότητας-Φίλτρα Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας,
Ειδικά Θέματα Ηλεκτρονικών 1
Ειδικά Θέματα Ηλεκτρονικών 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3...2 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ...2 3.1 Απόκριση συχνότητας ενισχυτών...2 3.1.1 Παραμόρφωση στους ενισχυτές...5 3.1.2 Πιστότητα των ενισχυτών...6 3.1.3
Παρατηρήσεις για το µετασχηµατισµό Laplace
Παρατηρήσεις για το µετασχηµατισµό plce Η συνάρτηση µεταφοράς, H, ενός ΓΧΑ συστήµατος είναι µία ρητή συνάρτηση, δηλαδή, µπορείναεκφραστείςλόγοςδύοπολυνύµντηςµεταβλητής. D N H Για να είναι ένα σύστηµα αιτιατό
ΚΕΦΑΛΑΙΟ 10. Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση
26 ΚΕΦΑΛΑΙΟ 0 Μελέτη ηλεκτρικών δικτύων στην Ηµιτονική Μόνιµη Κατάσταση 0. ) Γενικά για την Ηµιτονική Μόνιµη Κατάσταση ( Η.Μ.Κ.) Η µελέτη ενός ηλεκτρικού δικτύου γίνεται πρώτιστα στο στο πεδίο του χρόνου.
ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ
ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΠΑΡΑ ΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΠΟΚΡΙΣΕΩΝ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ Συµπλήρωµα στα παραδείγµατα που υπάρχουν στο Εγχειρίδιο του Μαθήµατος ρ. Α. Μαγουλάς
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: 10/02/2015
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ» ΗΜΕΡΟΜΗΝΙΑ: /0/0 ΘΕΜΑ ο (4 μονάδες) Για τον ενισχυτή του παρακάτω σχήματος, στον οποίο το τρανζίστορ πολώνεται στην ενεργό περιοχή λειτουργίας του με συμμετρικές
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών
Γ. Τσιατούχας. 1. Διαγράμματα Bode. VLSI systems and Computer Architecture Lab. Φροντιστήρια ΙV
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΦΡΟΝΤΙΣΤΗΡΙΑ ΙV Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Θέματα. Διαγράμματα Bode. Φίλτρα VLSI systems and Computer Architecture Lab Πρόβλημα:
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 8 Κυκλώματα RLC και Σταθερή Ημιτονοειδής Κατάσταση Λευκωσία, 2010 Εργαστήριο 8
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" ( ο εξάµηνο Ακαδ. Έτος: ιδάσκοντες: Τ. Κουσιουρής, Ν. Μαράτος, Κ. Τζαφέστας Λύση ου Θέµατος Κανονικής
ΘΕΜΑ 1 ο (3 μονάδες):
ΘΕΜΑ 1 ο ( μονάδες): Για τον ενισχυτή του παρακάτω σχήματος δίνονται: V 10V, V BE 0.7 V, Β 200 kω, 1 kω, 1 kω, β 100. (α) Να προσδιορίσετε το σημείο λειτουργίας Q (V E, I ) του τρανζίστορ. (1 μονάδα) (β)
ΕΝΕΡΓΟ CROSSOVER 3 ΔΡΟΜΩΝ
ΕΝΕΡΓΟ CROSSOVER 3 ΔΡΟΜΩΝ Μια απ' τις πρώτες ερωτήσεις που πρέπει ν' απαντήσει κανείς όταν αρχίσει ν' ασχολείται μ' ένα νέο σύστημα ηχείων είναι το είδος των φίλτρων κατανομής συχνοτήτων (crossover) που
Ηλεκτρικές Ταλαντώσεις: Εξαναγκασμένη Ηλεκτρική Ταλάντωση
Σκοπός της άσκησης Ηλεκτρικές Ταλαντώσεις: Εξαναγκασμένη Ηλεκτρική Ταλάντωση Να παρατηρήσουν οι μαθητές στην πράξη το φαινόμενο του συντονισμού στην εξαναγκασμένη ηλεκτρική ταλάντωση Να αντιληφθούν τον
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία
ΘΕΜΑ 1 ο (3 μονάδες):
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 9/0/00 ΘΕΜΑ ο ( μονάδες): Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 0, 0.7, kω, 0 kω, Ε kω, L kω, β fe 00, e kω. (α) Να προσδιορίσετε τις τιμές των αντιστάσεων,
2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.
2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των
ΔΙΔΑΣΚΩΝ: Λ. ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2015
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 8//5 ΘΕΜΑ ο (.5 μονάδες) Η έξοδος του αισθητήρα του παρακάτω σχήματος είναι γραμμικό σήμα τάσης, το οποίο εφαρμόζεται για χρονικό διάστημα
MOSFET. Shockley W L W L
MOSFET Χαρακτηριστικές εισόδου, εξόδου ιαγωγιµότητα Η λειτουργία του MOSFET στην ενεργό περιοχή περιγράφεται από την εξίσωση του Shockley I D = K V ( V ) 2 GS T όπου V Τ η τάση κατωφλίου και Κ σταθερά.
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2
Εργαστηριακές Ασκήσεις Ηλεκτρικών Κυκλωµάτων ΙΙΙ 1 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΑΝΑΛΥΣΗ, ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΑΝΑΛΟΓΙΚΩΝ ΠΑΘΗΤΙΚΩΝ ΦΙΛΤΡΩΝ ΣΚΟΠΟΣ Η άσκηση αυτή εξετάζει την ανάλυση παθητικών αναλογικών φίλτρων,
Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο
Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο 2015-16 Ονοµατεπώνυµο: ΚΑΡΑΜΗΤΡΟΣ ΘΕΜΙΣΤΟΚΛΗΣ ώστε τον Αριθµό Μητρώου σας εδώ ==> AM := 99999 Το φύλλο εργασίας αυτό δέχεται προδιαγραφές
1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση
Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος σε βηµατική και αρµονική διέγερση Μέρος Α : Απόκριση στο πεδίο
ΘΕΜΑ 1 ο (3.5 μονάδες) V CC R C1 R C2. R s. v o v s R L. v i I 1 I 2 ΛΥΣΗ R 10 10
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 0/0/0 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΝ ΕΦΑΡΜΟΓΝ0/0/0 ΣΕΙΡΑ B: 6:00 8:0 (Λ ΕΣ ) ΘΕΜΑ ο (.5 μονάδες) Οι -παράμεροι των τρανζίστορ του ενισχυτή του παρακάτω σχήματος είναι: e 5 k,
Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία
ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική Σχολείο: Ονόµατα των µαθητών της οµάδας 1) 2) 3) Επισηµάνσεις από τη θεωρία Παθητικό ηλεκτρικό δίπολο
Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων
Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 8 Κυκλώµατα RLC και Σταθερή Ηµιτονοειδής Κατάσταση Λευκωσία, 2015 Εργαστήριο 8
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 21/01/2011 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ /0/0 ΘΕΜΑ ο (5 μονάδες) Για τον ενισχυτή του παρακάτω σχήματος δίνονται: 0 Ω, Ε kω, Β 00 kω, 4 kω, L kω, e 5 kω και 00 (α) Να προσδιορίσετε την ενίσχυση τάσης (A
Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ασκήσεις Ενότητας: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής,
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΜΕΤΡΗΣΕΙΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΠΑΡΑΛΛΗΛΗ
ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΤΟ ΜΑΘΗΜΑ "ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ"
ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΤΟ ΜΑΘΗΜΑ "ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ" ΠΡΟΣΕΓΓΙΣH BUTTERWORTH G(Ω H o %β 2 Ω 2n 20log H o H C a max 20log H o H S a min 0 a min 0 & Ω n S H 2 o H 2 S Ω n S & β min #β# β max H 2 o H 2 C & 0 a max
Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος
Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος 1. Ένα σώµα εκτελεί εξαναγκασµένη ταλάντωση. Ποιες από τις επόµενες προτάσεις είναι σωστές; Να αιτιολογήσετε την απάντησή σας. ί) Η συχνότητα της ταλάντωσης είναι
Εξαρτημένες Πηγές και Τελεστικός Ενισχυτής
Ανάλυση Κυκλωμάτων Εξαρτημένες Πηγές και Τελεστικός Ενισχυτής Φώτης Πλέσσας fplessas@inf.uth.gr Εισαγωγή Οι εξαρτημένες πηγές είναι πολύ ενδιαφέροντα ηλεκτρικά στοιχεία, αφού αποτελούν αναπόσπαστα στοιχεία
Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)
Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική
4. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΜΕΣΗ ΣΥΖΕΥΞΗ
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΤΟΧΟΙ 4. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΜΕΣΗ ΣΥΖΕΥΞΗ Ημερομηνία:.... /.... /...... Τμήμα:.... Ομάδα: η κατανόηση της αρχής λειτουργίας ενός ενισχυτή δύο βαθμίδων με άμεση σύζευξη η εύρεση της περιοχής
ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ
Εργαστήριο Τεχνολογίας Υλικού & Αρχιτεκτονικής Υπολογιστών ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ 1.1 Τελεστικοί ενισχυτές 1.1.1 Εισαγωγή: Αντικείµενο της εργαστηριακής
Μετρήσεις µε παλµογράφο
Η6 Μετρήσεις µε παλµογράφο ΜΕΡΟΣ 1 ο ΠΑΛΜΟΓΡΑΦΟΣ Α. Γενικά Κατά την απεικόνιση ενός εναλλασσόµενου µεγέθους (Σχήµα 1), είναι γνωστό ότι στον κατακόρυφο άξονα «Υ» παριστάνεται το πλάτος του µεγέθους, ενώ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 20/02/2009 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΘΕΜΑ ο (3 μονάδες): Για τον ενισχυτή του παρακάτω σχήματος δίνονται: V 0V, V 0.73 V, 85 kω, 0 kω, kω, Ε 0.5 kω, β 00. (α) Να προσδιορίσετε το σημείο λειτουργίας Q (I, V ) του τρανζίστορ. (β) Nα χαράξετε
ΑΣΚΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΗΛΕΚΤΡΟΝΙΚΗ 5 ο ΕΞΑΜΗΝΟ ΗΜΜΥ ΑΣΚΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ 1 Ι. ΠΑΠΑΝΑΝΟΣ ΑΠΡΙΛΙΟΣ
Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2001
Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου 00 Ζήτηµα ο. Η εξίσωση της αποµάκρυνσης σε έναν απλό αρµονικό ταλαντωτή, πλάτους χ 0 και κυκλικής συχνότητας ω, δίνεται από τη σχέση: χ χ 0 ηµωt. Η εξίσωση
9.1 Παράµετροι και περιγραφή διθύρων Περιγραφή µε την µήτρα g 538
Δίθυρα κυκλώµατα ΗΡΑΚΛΗ Γ. ΔΗΜΟΠΟΥΛΟΥ: ΣΗΜΑΤΑ, ΣΥΣΤΗΜΑΤΑ & ΚΥΚΛΩΜΑΤΑ Περιεχόµενα 9. Παράµετροι και περιγραφή διθύρων 530 9... Περιγραφή µε την µήτρα Ζ 53 9..2. Περιγραφή µε την µήτρα Υ 533 9..3. Περιγραφή
Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ
Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο. Η εξίσωση της αποµάκρυνσης σε έναν απλό αρµονικό ταλαντωτή, πλάτους χ 0 και κυκλικής συχνότητας ω, δίνεται από τη σχέση: χ χ
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.
Υλοποιήσεις Ψηφιακών Φίλτρων
Ψηφιακή Επεξεργασία Σηµάτων 10 Υλοποιήσεις Ψηφιακών Φίλτρων Α. Εισαγωγή Οποιοδήποτε γραµµικό χρονικά αµετάβλητο σύστηµα διακριτού χρόνου χαρακτηρίζεται πλήρως από τη συνάρτηση µεταφοράς του η οποία έχει
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ:
ΑΠΟΚΡΙΣΗ ΙΚΤΥΟΥ R-L σε ΤΕΤΡΑΓΩΝΙΚΟ και ΤΡΙΓΩΝΙΚΟ ΠΑΛΜΟ
ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΑΠΟΚΡΙΣΗ ΙΚΤΥΟΥ R- σε ΤΕΤΡΑΓΩΝΙΚΟ και ΤΡΙΓΩΝΙΚΟ ΠΑΛΜΟ ρ. Α. Μαγουλάς Μάρτιος 2017 1 1. Εισαγωγή Στο παρακάτω σχήµα φαίνεται ένα απλό δίκτυο R. ιέγερση (είσοδος)
ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3)
ΑΣΚΗΣΗ 8 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ Αντικείμενο της άσκησης είναι να πραγματοποιήσετε μετρήσεις σε ένα L κύκλωμα σειράς έτσι ώστε α) να σχεδιάσετε την καμπύλη συντονισμού β) να προσδιορίσετε τις χαρακτηριστικές
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΝΕΡΓΩΝ ΦΙΛΤΡΩΝ. ΣΚΟΠΟΣ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΝΕΡΓΩΝ ΦΙΛΤΡΩΝ. ΣΚΟΠΟΣ Ένα ενεργό σύστηµα είναι ένα ηλεκτρικό κύκλωµα που αποτελείται από παθητικά στοιχεία και ελεγχόµενες πηγές. Ενεργή σύνθεση είναι η
5. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΡΝΗΤΙΚΗ ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ. Ε. ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΙΙ Ημερομηνία:.... /.... /...... Τμήμα:.... Ομάδα: 5. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΡΝΗΤΙΚΗ ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΣΤΟΧΟΙ η κατανόηση της επίδρασης
ΑΣΚΗΣΗ 2 η : ΟΡΓΑΝΑ ΚΑΙ ΣΥΣΚΕΥΕΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ
ΤΕΙ ΚΑΛΑΜΑΤΑΣ - ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΑΣΚΗΣΗ 2 η : ΟΡΓΑΝΑ ΚΑΙ ΣΥΣΚΕΥΕΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ:.. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ:.. Α. ΜΕΤΡΗΣΗ ΣΥΝΕΧΟΥΣ
Προτεινόμενες Ασκήσεις στις Εξαρτημένες Πηγές και στους Τελεστικούς Ενισχυτές
Προτεινόμενες Ασκήσεις στις Εξαρτημένες Πηγές στους Τελεστικούς Ενισχυτές από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωμάτων», Ν. Μάργαρη Πρόβλημα Να βρεθεί το κέρδος ρεύματος οι αντιστάσεις εισόδου εξόδου της
ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν
1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει
Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Άσκηση 1 ΛΥΣΗ. Το Q Στη χαρακτηριστική αντιστοιχεί σε ρεύµα βάσης 35 (Fig.2). Η πτώση τάσης πάνω στην : Στο Q έχω
ΕΝΙΣΧΥΤΕΣ ΙΣΧΥΟΣ Άσκηση 1 To κύκλωµα του Fig.1 χρησιµοποιεί τρανζίστορ Ge (αγνοείστε τη Vbe) και οι χαρακτηριστικές του δίδονται στο Fig.2. Να υπολογίσετε τις αντιστάσεις εκποµπού και συλλέκτη, έτσι ώστε