Univerza v Ljubljani - Fakulteta za kemijo in kemijsko tehnologijo KATEDRA ZA TEHNIŠKO VARNOST. Varnost delovnih priprav in naprav TEORIJA ZAŠČITE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Univerza v Ljubljani - Fakulteta za kemijo in kemijsko tehnologijo KATEDRA ZA TEHNIŠKO VARNOST. Varnost delovnih priprav in naprav TEORIJA ZAŠČITE"

Transcript

1 Univerza v Ljubljani - Fakulteta za kemijo in kemijsko tehnologijo KATEDRA ZA TEHNIŠKO VARNOST Varnost delovnih priprav in naprav doc. dr. Boris Jerman, univ. dipl. inž. str. TEORIJA ZAŠČITE Kazalo podpoglavij 1. Zaščita delovnih sredstev 2. Dejavniki, ki vplivajo na izbor in učinkovitost varnostnih naprav za stroje 3. Tipične nevarnosti pri strojih 4. Ocena tveganja, zmanjševanje tveganja in izbor varnostnih naprav 1

2 Nevarnosti zaradi delov strojev in delovne opreme Opis nekaterih od nevarnosti, ki se pojavijo pri strojih. Slikovni prikaz nekaterih nevarnosti in primeri zaščite. Uporabljen posamični pristop k zaščiti. Rotacijsko gibanje Gladka gred Hitro vrteče se gredi je potrebno vedno zaščititi zaradi nevarnosti povleka: z namestitvijo varovala, če je to možno; z uporabo proste objemke, nameščene po celotni dolžini vrteče se gredi. Varovalo (SIST EN : 1996) je del stroja, katerega funkcija je zagotovljena z uporabo fizične ovire. Glede na konstrukcijsko izvedbo je varovalo lahko zaščitni okrov, pokrov, zaslon, vrata, oklep itd. 2

3 Gladka gred 0 notranja energija (tlak) + kinetična energija (hitrost) + potencialna energija (položaj) = celotna energija = const p = p + p celotni statičta = p statičta celotni p p hitrost hitrost p hitrost ρ 2 2 v Negladka gred Nevarnosti: nevarnost povleka; nevarnost udarca. Zaščita: obvezno v celoti zapreti z varovalom. 3

4 Nasproti vrteči se valji Nevarnosti: nevarnost povleka (prsti, roka, celotno telo); nevarnost zmečkanin. Zaščita: zapiranje nevarnega mesta z varovalom. Vlečni valji So nasproti vrteči se valji, ki se jih ne da ščititi na prej opisan način. Dodatna nevarnost: operator mora delati v bližini nevarnega mesta Zaščita: zapiranje nevarnega mesta z varovalom (oblika!). 4

5 Valjčni transporter, ki nima gnanih vseh valjčkov Nevarnost vkleščenja: reža med gnanim valjem in sosednjim valjem, ki ni gnan. (Če so gnani vsi valji, nevarnosti vkleščenja ni.) Dodatna težava: zgornji del valjev mora biti prost Zaščita: vstavljanje varovala med valja. Aksialni ventilatorji Nevarnost: vrtenje lopatic ventilatorja Zaščita: vgradnja v prezračevalno cev; uporaba mrežastega varovala (v celoti obdati; ustrezno oblikovati; ohraniti funkcijo ventilatorja). 5

6 Radialni ventilatorji Nevarnost: vrtenje lopatic ventilatorja Zaščita: vgradnja v prezračevalno cev; uporaba cevnega nastavka zmrežastim varovalom. Zobniki v uprijemu Nevarnost: mnogo mehanskih nevarnosti, kot so: zmečkanine, odrgnine, povlek, ukleščenje,.. Zaščita: vgradnja v ohišje stroja; zaprtje z varovalom v celoti. 6

7 Kolesa z naperami Nevarnost: če se vrtijo ob avtomatskem delovanju stroja; Zaščita: zapolnitev praznin med naperami; uporaba sklopke. Brusna kolesa Nevarnosti: mehanske nevarnosti; prah; Zaščita: zaprtje z varovalom v celoti (razen v delovni točki); označbe (smer in hitrost vrtenja). 7

8 Translatorno gibanje Rezila Robovi rezil (za: papir, plastiko, blago, kovino, itd.), so izredno ostri in predstavljajo veliko tveganje. Izpostavljen naj bo le minimalen, nujno potreben del. Škarje za rezanje morajo biti narejene tako, da se rezilo ne more začeti spuščati, dokler niso roke operatorja na varnem. Za izvzemanje rezila zaradi vzdrževalnih del in ostrenja, mora biti pripravljena posebna priprava, za lažje in varnejše rokovanje ter predpisana uporaba osebnih varovalnih sredstev. Tračne brusilne mize Zaščita: trak se giblje od operatorja; izpostavljen le nujno potreben del traku; zaščita tudi s strani (mesto operatorja). 8

9 Nevarnost stisnitve ob nepomično konstrukcijo translatorno premične mize itd. ; vsaj 450 mm prostora. Nevarno gibanje protiuteži gibanje predstavlja tveganje (tudi nepredvidljivost); zaščita z okrovom po celotni poti gibanja: podaljšek okrova do tal oz. nepomičnih delov stroja (padec uteži, zmečkanine). 9

10 Rezila tračnih žag uporaba nastavljivega varovala; izpostavljen naj bo le minimalen del rezila. Spenjalni stroji (za žične spone) in stroji za kovičenje operater mora držati obdelovanec zelo blizu mesta, ki ga spaja; posebna pomična varovala za zaznavo prisotnosti prstov. Žebljalniki in orodja z eksplozivnimi naboji izstrelitev žebljev različnih oblik z veliko hitrostjo; opremljenost z varnostnim mehanizmom, (dovoli aktiviranje le, ko je izstopna odprtina tesno pritisnjena ob ciljni predmet). Tiskarski stroji zapiranje tiskarskih plošč in nihanje protiuteži ročno upravljanje; zapiranje z velikimi silami; vztrajnost velike protiuteži na zapiralni ročici; nihanje te ročice lahko povzroči poškodbe glave. 10

11 Škarjasta dvižna miza Delovanje: nastanek škarij med robom mize in robom ploščadi ter v škarjastem mehanizmu; zaščita z navijalnimi (in drugačnimi) zavesami; namestitev letve z varnostnimi stikali pod robove mize (zavore!); zaščita z varnostnimi razdaljami. Škarjasta dvižna miza Vzdrževanje: nezaželjeno spuščanje ploščadi; vstavljanje t.i. cokle v mehanizem; POZOR! Prepovedano preprosto podpiranje dvižne mize!. 11

12 Verižne žage Nevarnosti: rezila na verigi (žaganje, pretrg verige); možnost da žaga odskoči (ovira, žaganje s konico meča); vibracije, hrup, povišana tempretura; padec drevesa, sprostitev upognjenih vej); okolica (zdrs, sonce, dež, klopi). Zaščita: dvoročnim vklopni stikali; nazobčano mirujoče rezilo; zaporno varovalo; ščitnik rok; protivibracijska (in ogrevana) ročaja; zaščitna oblačila, očala/vizir,čelada,... ; zaščita pred padajočim drevjem in vplivi okolice...? Dvigala (lifti) (Zagotavljanje varnosti med obratovanjem) Vzdrževalce v jaških ogrožajo predvsem gibanja kabine in protiuteži. Potrebno zagotoviti mesta v stenah jaška, za umik ali varen prostor na dnu jaška. Posebno poglavje so t.i.»paternoster«digala. Nevarno je ujetje delov telesa med robova tal v kabini in preklade vstopnih odprtin v zidu jaška. Preklade odprtin morajo biti opremljene s primernimi visečimi stikali. 12

13 Kombinirana gibanja Pogon zobata letev pastorek Tak pogon mora biti zaščiten z varovalom, ki v popolnosti pokriva pastorek in zobato letev. Kotaleča se kolesa nevarnost poškodb stopal zaradi koles (tovornjaki, viličarji, itd.); zaščita koles z ustreznimi (stalnimi!) varovali, ki kolo ustrezno zakrijejo. mostna dvigala (dostop do tirnic omejen) zaščita manj potrebna; običajno se uporablja. dela na ali blizu tirnic žerjava, ki obratuje (na drugem delovnem območju na istih tirnicah); namestitev prenosnih nastavljivih varoval na tirnice (odbojniki in končna stikala). 13

14 Kotaleča se kolesa Tekoči trak Nevarna mesta: kjer trak nateka na valje in hkrati spreminja smer gibanja; kjer trak potuje pod mirujočimi deli, kot so zbiralni lijaki za (pre)usmerjanje toka snovi na traku. 14

15 Tekoči trak V primeru dolgih in ravnih tekočih trakov je sprejemljiva zaščita tudi potezna žica za izklop traku, če je nameščena tako, da je dosegljiva vsakemu, ki bi bil ujet med trakom in valjem. Tekoči trak 15

16 Jermanski pogoni Nevarno mesto: kjer jermen nateka na jermenico; podvrženost tudi segrevanju zaradi spodrsavanja (trenje) varovalo mora dopuščati zračni tok; uporaba varjene mreže ali mreže iz ekspandirane pločevine (+podporni okvir). Veriga in verižnik Nevarno mesto: kjer nateka veriga na verižnik; zaradi nazobčane oblike verižnika varovati je potrebno tako vstopno stran, kot tudi izstopno stran verižnika. 16

17 Notranja in potencialna energija Potencialna energija protiuteži E P = m g h Način sprostitve potencialne energije: porušitev nosilne vrvi, verige, nosilca. Ustrezen okrov mora zakrivati celotno pot protiuteži. Akumulatorji stisnjenega zraka akumulator stisnjenega zraka lahko poči, če se tlak poviša; sprosti se vsebovana tlačna energija. Gumijaste cevi za zrak napačno usmerjen curek zraka lahko poškoduje kožo; nekontrolirano gibanje prostega konca gumijaste cevi, skozi katerega uhaja zrak. 17

18 Parni kotli in cevovodi Uhajajoča para je lahko izredno vroča in lahko povzroči resne opekline. Druge tlačne posode, cevovodi in oprema Uhajajoča snov; Možnost hitre sprostitve tlačne energije (eksplozija). Nepričakovan premik pnevmatičnih cilindrov Zaradi: vsebovanega zračnega tlaka; nenadnega delovanja povratne vzmeti. Notranja in potencialna energija Industrijski roboti in numerično krmiljeni stroji predstavljajo posebno nevarnost zaradi svojih nepričakovnih gibov (nadzorni signali, sekvenčna stikala). Vsebujejo lahko tudi akumulrano energijo, ki se lahko sprosti in povzroči nepričakovani gib. Varovanje mora obsegati popolno zaporo dostopa: z ustrezno visoko mehansko ogrado z zaščitenimi dostopnimi točkami kot so: - vrata z zaporno napravo - vstopne odprtine z optičnimi zavesami - tla prekrita z na pritisk občutljivimi preprogami 18

19 Roboti Roboti Posebna previdnost pri učnem načinu delovanja; učitelj prisoten v nevarnem območju med delovanjem robota; kontrolna plošča učitelja mora imeti ustrezna stikala; mora vsebovati tudi gumb za zaustavitev v sili. 19

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

STROJI ZA OBDELAVO LESA SLO

STROJI ZA OBDELAVO LESA SLO STROJI ZA OBDELAVO LESA SLO POTEZNE IN JERALNE ŽAGE Potezne in jeralne žage iz prodajnega programa Elektro Maschinen so precizne in prilagodljive s številnimi praktičnimi podrobnostmi. Razdeljene so v

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo ENERGETSKI STROJI Uvod Pregled teoretičnih osnov Volmetrični stroji Trbinski stroji Značilnosti Trikotniki hitrosti Elerjeva trbinska enačba Notranji izkoristek Energijska karakteristika Energetske naprave

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

VARNOSTNI ZNAKI in drugi znaki po naročilu in želji stranke. SPOLZKA TLA ter SAMOSTOJEČE TABLE PO NAROČILU IN ŽELJI STRANKE

VARNOSTNI ZNAKI in drugi znaki po naročilu in želji stranke. SPOLZKA TLA ter SAMOSTOJEČE TABLE PO NAROČILU IN ŽELJI STRANKE VARNOSTNI ZNAKI in drugi znaki po naročilu in želji stranke NUDIMO VAM TUDI MAGNETNE NALEPKE in NALEPKE S POHODNO FOLIJO ter:samostoječe TABLE POZOR! SPOLZKA TLA ter SAMOSTOJEČE TABLE PO NAROČILU IN ŽELJI

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Fizikalni principi eksplozije

Fizikalni principi eksplozije Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Varnost Električna oprema v eksplozijsko ogroženih

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

TEHNIČNI LIST E E A B C D

TEHNIČNI LIST E E A B C D lej poglavje OSNE RAZDALJE TRAKTORJA lej poglavje OSNE RAZDALJE TRAKTORJA H J F E E TEHNČN LST TEHNČN LST MERE TRAKTORJA A B C D Vse mere so podane v mm A razdalja med središčem prednje osi in standard

Διαβάστε περισσότερα

Pralni stroj Navodila za uporabo WMY 51222 PTYB3

Pralni stroj Navodila za uporabo WMY 51222 PTYB3 Pralni stroj Navodila za uporabo WMY 51222 PTYB3 številka dokumenta 2820524234_SL / 26-08-14.(15:35) 1 Pomembna navodila za varnost in okolje V tem delu so opisana varnostna navodila za zaščito pred tveganji

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

POPIS DEL IN PREDIZMERE

POPIS DEL IN PREDIZMERE POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.

Διαβάστε περισσότερα

Pralni stroj Navodila za uporabo Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη

Pralni stroj Navodila za uporabo Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη WMB 91465 ST Pralni stroj Navodila za uporabo Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη číslo dokumentu 2820523164_SL / 07-09-12.(12:50) 1 Pomembna navodila za varnost in okolje V tem delu so opisana varnostna

Διαβάστε περισσότερα

Zavod za varstvo pri delu d.d., Chengdujska cesta 25, 1260 Ljubljana Polje. VARNOSTNI ZNAKI in drugi znaki po naročilu in želji stranke

Zavod za varstvo pri delu d.d., Chengdujska cesta 25, 1260 Ljubljana Polje. VARNOSTNI ZNAKI in drugi znaki po naročilu in želji stranke VARNOSTNI ZNAKI in drugi znaki po naročilu in želji stranke NUDIMO VAM TUDI MAGNETNE NALEPKE in NALEPKE S POHODNO FOLIJO ter: SAMOSTOJEČE TABLE POZOR! SPOLZKA TLA ter SAMOSTOJEČE TABLE PO NAROČILU IN ŽELJI

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Slovensko NAMEN UPORABE LASERSKA VARNOST OCHRANA ŽIVOTNÉHO PROSTREDIA SIMBOLI

Slovensko NAMEN UPORABE LASERSKA VARNOST OCHRANA ŽIVOTNÉHO PROSTREDIA SIMBOLI Ochranný otočný kryt neupínajte. Nepoužívajte poškodené alebo deformované pílové ostrie. Opotrebovanú vložku taniera vymeňte. Nepoužívajte pílové ostria, ktoré nezodpovedajú kľúčovým údajom uvedeným v

Διαβάστε περισσότερα

L-400 TEHNIČNI KATALOG. Talni konvektorji

L-400 TEHNIČNI KATALOG. Talni konvektorji 30 50 30-00 TEHIČI KATAOG 300 Talni konvektorji TAI KOVEKTORJI Talni konvektorji z naravno konvekcijo TK Talni konvektorji s prisilno konvekcijo TKV, H=105 mm, 10 mm Talni konvektorji s prisilno konvekcijo

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Naziv: Prijemalo FTV panelov za vertikalne fasade Oznaka: PVF (60, 80, 100, 120, 133, 150, 172, 200 in 240 mm) NAVODILA ZA UPORABO

Naziv: Prijemalo FTV panelov za vertikalne fasade Oznaka: PVF (60, 80, 100, 120, 133, 150, 172, 200 in 240 mm) NAVODILA ZA UPORABO Naziv: Prijemalo FTV panelov za vertikalne fasade Oznaka: PVF (60, 80, 100, 120, 133, 150, 172, 200 in 240 mm) NAVODILA ZA UPORABO VSEBINA UVOD - SPLOŠNE INFORMACIJE 3 Namen navodil 3 Proizvajalec 3 Identifikacija

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Primeri: naftalen kinolin spojeni kinolin

Primeri: naftalen kinolin spojeni kinolin Primeri: naftalen kinolin spojeni kinolin 3 skupne strani 7 skupnih strani 5 skupnih strani 6 skupnih atomov 8 skupnih atomov 6 skupnih atomov orto spojen sistem orto in peri spojena sistema mostni kinolin

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

TOPLOTNA ČRPALKA ZRAK-VODA - BUDERUS LOGATHERM WPL 7/10/12/14/18/25/31

TOPLOTNA ČRPALKA ZRAK-VODA - BUDERUS LOGATHERM WPL 7/10/12/14/18/25/31 TOPLOTN ČRPLK ZRK-VOD - BUDERUS LOGTHERM WPL 7/0//4/8/5/ Tip Moč (kw) nar. št. EUR (brez DDV) WPL 7 7 8 7 700 95 5.6,00 WPL 0 0 7 78 600 89 8.9,00 WPL 7 78 600 90 9.78,00 WPL 4 4 7 78 600 9 0.88,00 WPL

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice Laboratorij za termoenergetiko Vodikove tehnologije in PEM gorivne celice Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

LADISK Laboratorij za dinamiko strojev in konstrukcij. Višja dinamika. Rešene naloge iz analitične mehanike. Dr. Janko Slavič. 22.

LADISK Laboratorij za dinamiko strojev in konstrukcij. Višja dinamika. Rešene naloge iz analitične mehanike. Dr. Janko Slavič. 22. Univerza v Ljubljani Fakulteta za strojništvo LADISK Laboratorij za dinamiko strojev in konstrukcij Višja dinamika Rešene naloge iz analitične mehanike Dr. Janko Slavič 22. avgust 2012 Zadnja različica

Διαβάστε περισσότερα

TEHNIČNI LIST MERE TRAKTORJA. Vse mere so podane v mm. AGT 830/835 AGT 835 T/S standard 1020 1010 prednja hidravlika 1170 1230

TEHNIČNI LIST MERE TRAKTORJA. Vse mere so podane v mm. AGT 830/835 AGT 835 T/S standard 1020 1010 prednja hidravlika 1170 1230 TEHNIČNI LIST MERE TRAKTORJA Vse mere so podane v mm A Razdalja med središčem prednje osi in končni točki prednjega dela AGT 830/835 standard 1020 1010 prednja hidravlika 1170 1230 B Medosna razdalja 1185

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

SI Električni kotliček

SI Električni kotliček SWK 1750SS SI Električni kotliček - 1 - SI Električni kotliček Pomembna varnostna navodila NATANČNO PREBERITE IN SHRANITE ZA KASNEJŠO UPORABO. Osebe s telesnimi ali duševnimi težavami, otroci stari 8 let

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Meritev karakteristik peltonove turbine Laboratorijska vaja

Meritev karakteristik peltonove turbine Laboratorijska vaja Univerza v Ljubljani Fakulteta za strojništvo Aškerčeva 6 1000 Ljubljana, Slovenija telefon: 01 477 12 00 faks: 01 251 85 67 www.fs.uni-lj.si e-mail: dekanat@fs.uni-lj.si Katedra za energetsko strojništvo

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

MOTORJI Z NOTRANJIM ZGOREVANJEM

MOTORJI Z NOTRANJIM ZGOREVANJEM MOTORJI Z NOTRANJIM ZGOREVANJEM Dvotaktni Štititaktni Motorji z notranjim zgorevanjem Motorji z zunanjim zgorevanjem izohora: Otto motor izohora in izoterma: Stirling motor izobara: Diesel motor izohora

Διαβάστε περισσότερα

13. poglavje: Energija

13. poglavje: Energija 13. poglavje: Energija 1. (Naloga 3) Koliko kilovatna je peč za hišno centralno kurjavo, ki daje 126 MJ toplote na uro? Podatki: Q = 126 MJ, t = 3600 s; P =? Če peč z močjo P enakomerno oddaja toploto,

Διαβάστε περισσότερα

Zaporedna in vzporedna feroresonanca

Zaporedna in vzporedna feroresonanca Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju

Διαβάστε περισσότερα

Knauf Insulation Polyfoam Izolacija iz ekstrudiranega polistirena XPS

Knauf Insulation Polyfoam Izolacija iz ekstrudiranega polistirena XPS www.knaufinsulation.si 2/2013 Knauf Insulation Polyfoam Izolacija iz ekstrudiranega polistirena XPS Knauf Insulation Polyfoam XPS Izdelke iz ekstrudiranega polistirena Polyfoam odlikuje poleg izjemne toplotne

Διαβάστε περισσότερα

OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine

OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine OSNOVE HIDROSTATIKE - vede, ki preučuje mirujoče tekočine HIDROSTATIKA Značilnost, da je sila na katero koli točko v tekočini enaka iz vseh smeri. Če ta pogoj o ravnovesju sil ne velja, se tekočina premakne

Διαβάστε περισσότερα

Krogelni ventil MODUL

Krogelni ventil MODUL Krogelni ventil MODUL Izdaja 0115 KV 2102 (PN) KV 2102 (PN) KV 2122(PN1) KV 2122(PN1) KV 2142RA KV 2142MA (PN) KV 2142TR KV 2142TM (PN) KV 2162 (PN) KV 2162 (PN) Stran 1 Dimenzije DN PN [bar] PN1 [bar]

Διαβάστε περισσότερα

CENIK IZDELKOV YTONG IN SILKA 2018 veljavnost cenika: do nadaljnjega

CENIK IZDELKOV YTONG IN SILKA 2018 veljavnost cenika: do nadaljnjega CENIK IZDELKOV YTONG IN SILKA 2018 veljavnost cenika: 11. 05. 2018 do nadaljnjega m2 /pal / 3831013476653 01194200 YTONG plošča P 5 625 50 200 3/0,45 0,108 150 18,75 591 / 1,36 YTONG večnamenske plošče

Διαβάστε περισσότερα

Meritve električnih inštalacij

Meritve električnih inštalacij Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Varnost Meritve električnih inštalacij predavatelj

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

za delo z nevarnimi kemičnimi snovmi I. SPLOŠNI UKREPI ZA VARNO DELO S KEMIČNIMI SNOVMI

za delo z nevarnimi kemičnimi snovmi I. SPLOŠNI UKREPI ZA VARNO DELO S KEMIČNIMI SNOVMI Na podlagi 14. člena pravilnika o varovanju delavcev pred tveganji zaradi izpostavljenosti kemičnim snovem pri delu (Uradni list RS, št. 100/01) izdaja minister za delo, družino in socialne zadeve P R

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Javljalnik CO in Pravilnik o zahtevah za vgradnjo kurilnih naprav 2

Javljalnik CO in Pravilnik o zahtevah za vgradnjo kurilnih naprav 2 Javljalnik CO in Pravilnik o zahtevah za vgradnjo kurilnih naprav Sedež podjetja: Stritarjeva cesta 9, SI-1290 Grosuplje Poslovni prostori: Polje 361 C, SI-1000 Ljubljana E-naslov: eko.dimnik@siol.net

Διαβάστε περισσότερα

MLADI ZA CELJE RAZISKOVALNA NALOGA

MLADI ZA CELJE RAZISKOVALNA NALOGA MLADI ZA CELJE RAZISKOVALNA NALOGA MAGNUSOV UČINEK AVTORJA: Gašper Bračun, 8. r Luka Marič, 8. r MENTOR: Jože Berk, prof. Osnovna šola Hudinja Področje: FIZIKA Celje, 2016 1 KAZALO KAZALO. 2 KAZALO SLIK...

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

Varnostna razsvetljava

Varnostna razsvetljava Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Varnostna razsvetljava predavatelj prof.

Διαβάστε περισσότερα

Pravilnik o zahtevah za vgradnjo kurilnih naprav glede javljalnikov CO,

Pravilnik o zahtevah za vgradnjo kurilnih naprav glede javljalnikov CO, REPUBLIKA SLOVENIJA MINISTRSTVO ZA OKOLJE IN PROSTOR DIREKTORAT ZA PROSTOR, GRADITEV IN STANOVANJA Pravilnik o zahtevah za vgradnjo kurilnih naprav glede javljalnikov CO, (Uradni list RS, št. 100/13, velja

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

FIN EST RUS GER HU SLO HR IT BIH SRB

FIN EST RUS GER HU SLO HR IT BIH SRB IN-ECO je prodajno-distribucijska družba, ki ponuja dobavo komponent oziroma delov tehnologij za čistilne naprave odpadnih vod, zdravilišča in wellness centre, vključno z vzdrževanjem in svetovanjem za

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

AGT 830 AGT 835 AGT 835 T/S

AGT 830 AGT 835 AGT 835 T/S AGT 830 AGT 835 AGT 835 T/S NAVODILA ZA UPORABO AGROMEHANIKA si pridržuje pravico, da spremeni dizajn, ali spremeni izdelek, brez kakršnekoli obveznosti do informiranja kupca pred in po vsaki spremembi.

Διαβάστε περισσότερα

4. DEL. Določbe za pakiranje in cisterne

4. DEL. Določbe za pakiranje in cisterne 4. DEL Določbe za pakiranje in cisterne POGLAVJE 4.1 UPORABA EMBALAŽE, TUDI VSEBNIKOV IBC IN VELIKE EMBALAŽE Uvodni opombi OPOMBA 1: Embalažne skupine Zaradi pakiranja so nevarne snovi vseh razredov,

Διαβάστε περισσότερα

NARAVOSLOVJE - 7. razred

NARAVOSLOVJE - 7. razred NARAVOSLOVJE - 7. razred Vsebina Zap. št. ZVOK 7.001 Ve, da predmeti, ki oddajajo zvok zvočila, zatresejo zrak in da take tresljaje imenujemo nihanje. 7.002 Ve, da sprejemnik zvoka zazna tresenje zraka

Διαβάστε περισσότερα

INTEGRALNE MERITVE DELOVNIH KARAKTERISTIK TURBINSKIH STROJEV NA ODPRTIH PRESKUŠEVALIŠČIH

INTEGRALNE MERITVE DELOVNIH KARAKTERISTIK TURBINSKIH STROJEV NA ODPRTIH PRESKUŠEVALIŠČIH INTEGRALNE MERITVE DELOVNIH KARAKTERISTIK TURBINSKIH STROJEV NA ODPRTIH PRESKUŠEVALIŠČIH ELEMENTI PRETOČNEGA TRAKTA ODPRTUH EKSPERIMENTALNIH POSTAJ V merjeni ventilator U- usmernik toka PV- omožni ventilator

Διαβάστε περισσότερα

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS

Mehanika. L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS Mehanika L. D. Landau in E. M. Lifšic Inštitut za fizikalne naloge, Akademija za znanost ZSSR, Moskva Prevod: Rok Žitko, IJS 2. januar 2004 Kazalo 1 Gibalne enačbe 4 1 Posplošene koordinate...............................

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Varnostna razsvetljava

Varnostna razsvetljava Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Varnostna razsvetljava predavatelj

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

VETRNE ELEKTRARNE PRIPRAVA. Za učitelje:

VETRNE ELEKTRARNE PRIPRAVA. Za učitelje: VETRNE ELEKTRARNE PRIPRAVA Za učitelje: 1. Cilji vaje 1.1 Pri vaji pridobljeno znanje in razumevanje Spoznajo kateri so obnovljivi viri Spoznajo, da je veter je obnovljiv vir energije. Spoznajo, da lahko

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Varnost opreme pod tlakom (2. del)

Varnost opreme pod tlakom (2. del) Univerza v Ljubljani - Fakulteta za kemijo in kemijsko tehnologijo KATEDRA ZA TEHNIŠKO VARNOST Delovne priprave in naprave II Varnost opreme pod tlakom (2. del) Boris Jerman Priloge PrPPOPT Priloga I -

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Obračalni pogoni SG SG Navodilo za uporabo AUMA NORM DIN ISO 9001/ EN Zertifikat-Registrier-Nr

Obračalni pogoni SG SG Navodilo za uporabo AUMA NORM DIN ISO 9001/ EN Zertifikat-Registrier-Nr Obračalni pogoni SG 051 - SG 121 Navodilo za uporabo AUMA NORM DIN ISO 9001/ EN 29001 Zertifikat-Registrier-Nr 12 100 4269 SG 051 - SG 121 Navodilo za uporabo Veljavnost tega navodila: To navodilo velja

Διαβάστε περισσότερα

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 28. maj 2010 SPLOŠNA MATURA

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 28. maj 2010 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M1017411* MEHANIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek, 8. maj 010 SPLOŠNA MATURA RIC 010 M101-741-1- PODROČJE PREVERJANJA A A1

Διαβάστε περισσότερα

Doc.dr. Matevž Dular N-4 01/

Doc.dr. Matevž Dular N-4 01/ soba telefon e-ošta reavatelja: Ir.rof.r. Anrej Seneačnik 33 0/477-303 anrej.seneacnik@fs.uni-lj.si Doc.r. Matevž Dular N-4 0/477-453 atev.ular@fs.uni-lj.si asistenta: Dr. Boštjan Drobnič S-I/67 0/477-75

Διαβάστε περισσότερα