Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
|
|
- Τιμοθέα Μπουκουβαλαίοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator, osciloskop)
2 Naloga 1. Umerjanje senzorja z optičnimi vlakni za merjenje mehanskega pomika (linearnost, merilno območje, vpliv odbojnosti merjenca) 2. Praktična uporaba senzorja merjenje frekvenčne karakteristike zvočnika
3 Teorija delovanja SVETLOBNI IZVOR SPREJEMNA FOTODIODA oddajno vlakno n o w(2 D) 2ρ θ Ν Α r 2ρ n j D sprejem no vlakno 2 D ODDAJNO VLAKNO SPREJEMNO VLAKNO SONDA ZRCALNA POVRŠINA -3 Razmerje moči [10 ] - kot svetlobnega stožca (θ) je odvisen od numerične odprtine vlakna - površina prečnega prereza svetlobnega stožca je odvisna od oddaljenosti vlakna od tarče (D), skladno se spreminja svetlobna intenziteta - delež odbite svetlobe v sprejemno vlakno zaznavamo s fotodiodo (merjeni signal) A B Oddajno vlakno w(2d) D [mm] A B C r = 2,4 mm r = 1 mm C Sprejemno vlakno
4 simulacija pomika površine (mikrometerski vijak, 10µm/razdelek) senzor (konica optičnega vlakna) tarča (površina merjenca) 1. naloga: umerjanje senzorja POSTOPEK: -nastavimo zrcalno tarčo (zrcalo) oziroma disperzijsko tarčo (bel papir) pod senzorjem - nastavimo senzor tako, da se konica vlakna DOTAKNE tarče - z mikrometerskim vijakom POVEČUJEMO razdaljo med tarčo in konico vlakna in beležimo detektirani signal (odčitek na voltmetru). Inkrement pomika naj bo 1/20 območja zaznavnih sprememb signala (20 odčitkov) - narišemo odvisnost signala [V] od odmika vlakna [mm] - določimo aktualno merilno območje (ma. občutljivost in linearnost) Signal fotodiode spremljamo z voltmetrom Signal fotodiode [V] uporabno merilno območje? linearnost? Odmik [mm]
5 2. naloga: merjenje frekvenčne karakteristike zvočnika nastavitev merilnega območja (mikrometerski vijak, 10µm/razdelek) Signal fotodiode spremljamo z osciloskopom senzor (konica optičnega vlakna) tarča (membrana zvočnika) nihanje membrane zvočnika generiramo s signal generatorjem (sinusno vzbujanje) POSTOPEK: - nastavimo tarčo na membrani zvočnika pod senzorjem - senzor nastavimo na odmik, ki pogojuje linearno merilno območje (merimo AC sinusno nihanje) - nastavimo frekvenco in amplitudo vzbujanja membrane zvočnika (signal generator) in opazujemo odgovor senzorja (osciloskop glej navodilo o ravnanju). Frekvenčno območje meritve naj bo okoli 1. lastne frekvence membrane (približno 20 meritev). - narišemo odvisnost amplitude signala [V] od frekvence vzbujanja [Hz] - glede na umeritev (1. naloga) izračunamo dejanske amplitude nihanja membrane [mm]
6 2. naloga: merjenje frekvenčne karakteristike zvočnika Amplituda signala fotodiode [V] frekvenca [Hz] Amplituda pomika membrane [mm] frekvenca [Hz] UMERITVENA KRIVULJA SENZORJA
7 Delitev nalog po skupinah: 1. Umerjanje senzorja na disperzijski beli tarči (bel papir), merjenje frekvenčne karakteristike zvočnika v območju 20 do 150 Hz (korak 10 Hz, izračun amplitud pomika [mm]), 2. Umerjanje senzorja na disperzijski beli (bel papir) in disperzijski srebrni (Al folija) tarči (primerjava!), meritev amplitude nihanja membrane [mm] pri frekvenci 100 Hz, 3. Umerjanje senzorja na disperzijski beli (bel papir) in zrcalni (zrcalo) tarči (primerjava!), meritev amplitude nihanja membrane [mm] pri frekvenci 50 Hz,
8 Navodilo o ravnanju z osciloskopom Drsnik za odčitavanje amplitude Graf signala Odčitek amplitude Vklop/izklop osciloskopa Gumb za avtomatsko proženje Gumb za ustavitev proženja Nastavljanje višine drsnika za odčitavanje amplitude
9 Navodilo o ravnanju s signal-generatorjem Prikaz nastavljene vrednosti Oblika signala (sinusni) Izbira vrednosti (frekvenca ali amplituda Gumbi za vnos vrednosti Vnos (enter) Zvezno spreminjanje vrednosti
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI Spoznavanje osnovnih vlakensko-optičnih (fiber-optičnih) komponent, Vodenje svetlobe po optičnem vlaknu, Spoznavanje načela delovanja in praktične uporabe odbojnostnega
CO2 + H2O sladkor + O2
VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)
Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom
VSŠ Velenje ELEKTRIČNE MERITVE Laboratorijske vaje Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom Vaja št.2 M. D. Skupina A PREGLEDAL:. OCENA:.. Velenje, 22.12.2006 1. Besedilo naloge
Polarizacija laserske svetlobe
Polarizacija laserske svetlobe Optični izolator izvedba z uporabo λ/4 retardacijske ploščice Odboj polarizirane svetlobe na meji zrak-steklo; Brewster-ov kot Definicija naloge predstavitev teoretičnega
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Svetlobni merilniki odbojnosti
13. Seminar Optične Komunikacije Laboratorij za Sevanje in Optiko Fakulteta za Elektrotehniko Ljubljana, 1. - 3. februar 2006 Svetlobni merilniki odbojnosti Matjaž Vidmar Seznam prosojnic: Slika 1 Meritev
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Gradniki elektronskih sistemov laboratorijske vaje. Vaja 1 Lastnosti diode. Ime in priimek: Smer:.. Datum:... Pregledal:...
Gradniki elektronskih sistemov laboratorijske vaje Vaja 1 Lastnosti diode Ime in priimek:. Smer:.. Datum:... Pregledal:... Naloga: Izmerite karakteristiko silicijeve diode v prevodni smeri in jo vrišite
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Navodila za laboratorijske vaje. Navodila za opravljanje laboratorijskih vaj OSNOVE MERJENJA ELEKTRIČNIH VELIČIN
Navodila za opravljanje laboratorijskih vaj OSNOVE MERJENJA ELEKTRIČNIH VELIČIN KAZALO 1. Uvod...3 2. Vrste in lastnosti električnih merilnih instrumentov...3 3. Konstanta instrumenta...4 4. Nekaj splošnih
Označevalni laserski sistem
Označevalni laserski sistem 1. UVOD 2. VSEBINA 3. PRIPRAVA 4. IZVEDBA 1. UVOD Namen laboratorijske vaje je: predstavitev kratkopulznega Nd:YAG laserskega izvora YAG 22 (FOTONA), predstavitev označevalnega
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.
VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do
Merjenje deformacij in umerjanje dinamometra
Univerza v Ljubljani FAKULTETA ZA STROJNIŠTVO Eksperimentalne metode 005/06 Vaja 3: Merjenje deformacij in umerjanje dinamometra UNV Sk9. 0.01.06 Kazalo 1 Namen vaje...3 Cilj vaje...3 3 Opis merilnega
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
Višja dinamika: laboratorijske vaje 2. stopnja RR
Višja dinamika: laboratorijske vaje 2. stopnja RR Dr. Janko Slavič, Špela Bolka, Luka Knez 3. april 2013 1 Vibracijsko testiranje izdelkov 2 2 Karakterizacija sistema z več prostostnimi stopnjami 9 3 Lastne
MERITVE LABORATORIJSKE VAJE
UNIVERZA V MARIBORU FAKULTETA ZA ELEKTROTEHNIKO, RAČUNALNIŠTVO IN INFORMATIKO 2000 Maribor, Smetanova ul. 17 Študij. leto: 2011/2012 Skupina: 9 MERITVE LABORATORIJSKE VAJE Vaja št.: 8.1 Uporaba elektronskega
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
MERITVE LABORATORIJSKE VAJE
UNIVERZA V MARIBORU FAKULTETA ZA ELEKTROTEHNIKO, RAČUNALNIŠTVO IN INFORMATIKO 000 Maribor, Smetanova ul. 17 Študijsko leto: 011/01 Skupina: 9. MERITVE LABORATORIJSKE VAJE Vaja št.: 10.1 Merjenje z digitalnim
LASTNOSTI FERITNEGA LONČKA. 330 kω. 3400pF
Ime in priimek: Šolsko leto: Datum: ASTNOSTI FEITNEGA ONČKA Za tuljavo s feritnim lončkom določite: a) faktor induktivnosti A in kvaliteto izdelane tuljave z meritvijo resonance nihajnega kroga. b) vrednosti
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Meritve v optičnih komunikacijah
17. Seminar Optične Komunikacije Laboratorij za Sevanje in Optiko Fakulteta za Elektrotehniko Ljubljana, 27.-29. januar 2010 Meritve v optičnih komunikacijah Matjaž Vidmar ... Seznam prosojnic:... Slika
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
MERJENJE DEFORMACIJ IN UMERJANJE DINAMOMETRA
UNIVERZA V LJUBLJANI FAKULTETA ZA STROJNIŠTVO LABORATORIJ ZA TEHNIČNO KIBERNETIKO, OBDELOVALNE SISTEME IN RAČUNALNIŠKO TEHNOLOGIJO & LABORATORIJ ZA PROIZVODNO KIBERNETIKO IN EKSPERIMENTALNE METODE EKSPERIMENTALNE
KONČNA STIKALA. Seminarska naloga Merilni pretvorniki. Aleš Jeglič. Miha Hlebanja
KONČNA STIKALA Seminarska naloga Merilni pretvorniki Aleš Jeglič Miha Hlebanja 21. 4. 2011 Kazalo 1. Uvod...3 2. Vrste končnih stikal...4 3. Izbira končnega stikala glede na potrebe in ostale vplive...4
Fizikalne količine zapisujemo kot zmnožek številske vrednosti in ustrezne enote.
Fizikalne količine zapisujemo kot zmnožek številske vrednosti in ustrezne enote. Včasih je potrebno poznati enoto za količino, za katero ne poznamo enote, poznamo pa relacijo med količinami, kot npr. da
- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
ELEKTRONSKA VEZJA. Laboratorijske vaje Pregledal: 6. vaja FM demodulator s PLL
Ime in priimek: ELEKTRONSKA VEZJA Laboratorijske vaje Pregledal: Datum: 6. vaja FM demodulator s PLL a) Načrtajte FM demodulator s fazno sklenjeno zanko za signal z nosilno frekvenco f n = 100 khz, frekvenčno
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Michelsonov interferometer
Michelsonov interferometer Namen vaje: Spoznavanje valovnih značilnosti laserske svetlobe Spoznavanje načela delovanja interferometra Brezdotično merjenje kratkih pomikov Eksperimentalne naloge 1. Sestaviti
METRIX OX 530 Osciloskop
NAVODILO ZA UPORABO APARATA METRIX OX 530 Osciloskop Kratka navodila za rokovanje z instrumentom. Pred uporabo dobro preberi tudi originalna navodila, posebej za uporabo vseh možnih funkcij! Navodila za
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
VAJA 1 : MERILNI INSTRUMENTI
DIGITALNA TEHNIKA Ime : Priimek : VAJA 1 : MERILNI INSTRUMENTI a) Nastavite na funkcijskem generatorju signal s frekvenco f = 10 khz, kot ga kaže slika 1.6 a. b) Kompenzirajte delilno sondo osciloskopa
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
S53WW. Meritve anten. RIS 2005 Novo Mesto
S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)
INTEGRALNE MERITVE DELOVNIH KARAKTERISTIK TURBINSKIH STROJEV NA ODPRTIH PRESKUŠEVALIŠČIH
INTEGRALNE MERITVE DELOVNIH KARAKTERISTIK TURBINSKIH STROJEV NA ODPRTIH PRESKUŠEVALIŠČIH ELEMENTI PRETOČNEGA TRAKTA ODPRTUH EKSPERIMENTALNIH POSTAJ V merjeni ventilator U- usmernik toka PV- omožni ventilator
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Effect of Fibre Fineness on Colour and Reflectance Value of Dyed Filament Polyester Fabrics after Abrasion Process Izvirni znanstveni članek
Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe 8 Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe barvanih poliestrskih filamentnih tkanin po drgnjenju July November
1. Merjenje toka in napetosti z AVO metrom
1. Merjenje toka in napetosti z AVO metrom Cilj: Nariši karakteristiko Zenerjeve diode in določi njene parametre, pri delu uporabi AVO metre za merjenje napetosti in toka ter vir spremenljive napetosti
UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO LABORATORIJ ZA SEVANJE IN OPTIKO ELEKTRODINAMIKA LABORATORIJSKE VAJE
UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO LABORATORIJ ZA SEVANJE IN OPTIKO ELEKTRODINAMIKA LABORATORIJSKE VAJE LEON PAVLOVIČ TOMAŽ KOROŠEC MATJAŽ VIDMAR LJUBLJANA, 2016 KAZALO LABORATORIJSKIH VAJ
Pretvorniki, sestavni deli: ojačevalniki, filtri, modulatorji, oscilatorji, integrirana
Sestava merilnega inštrumenta: 1. Analogni pretvornik (pretvorimo električne (napetost, tok, upornost...) in neelektrične veličine (tlak, temperaturo,...) v enosmerno napetost. 2. Analogno-digitalni pretvornik
Dinamika togih teles
Univerza v Ljubljani Fakulteta za strojništvo LADISK Laboratorij za dinamiko strojev in konstrukcij Dinamika togih teles 3. letnik, RRP Laboratorijske vaje Luka Knez, Janko Slavič 20. september 2017 1
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Fizikalne osnove svetlobe in fotometrija
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe
Fotometrija mersko vrednotenje svetlobe
Fotometrija mersko vrednotenje svetlobe Svetloba kot del EM spektra Pri fotometriji svetlobo obravnavamo kot del elektromagnetnega spektra, ki se nahaja med mikrovalovi in rentgenskimi žarki. Ima pa tudi
reologija Andreja Zupančič Valant UL FKKT Katedra za kemijsko biokemijsko in ekološko inženirstvo
reologija Andreja Zupančič Valant UL FKKT Katedra za kemijsko biokemijsko in ekološko inženirstvo 1 Modul 2 Viskoelastično obnašanje strukturiranih tekočin Določanje viskoelastičnih lastnosti tekočin in
11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune
11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih
Fotometrija mersko vrednotenje svetlobe
EDC Kranj - višja strokovna šola Kumunala Javna razsvetljava Fotometrija mersko vrednotenje svetlobe 4. poglavje predavatelj doc. dr. Grega Bizjak, u.d.i.e. Javna razsvetljava: Fotometrija 2 Svetloba kot
11. Vaja: BODEJEV DIAGRAM
. Vaja: BODEJEV DIAGRAM. Bodejev diagram sestavljata dva grafa: a) amplitudno frekvenčni diagram in b) fazno frekvenčni diagram Decibel je enota za razmerje dveh veličin. Definicija: B B 0log0 A A db Bodejeve
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
EKSPERIMENTALNE METODE
EKSPERIMENTALNE METODE Alojzij Sluga Univerza v Ljubljani Fakulteta za strojništvo Katedra za kibernetiko, mehatroniko in proizvodno inženirstvo 2005/2006 LAKOS 2005 1 EKSPERIMENTALNE METODE 2005/2006
LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA
L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER
L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Meritve. Vprašanja in odgovori za 2. kolokvij GregorNikolić Gregor Nikolić.
20 Meritve prašanja in odgovori za 2. kolokvij 07.2.20 3.0.20 Kazalo vsebine 29. kateri veličini pretvarjamo z D pretvorniki analogno enosmerno napetost v digitalno obliko?... 3 2 30. Skicirajte blokovno
IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev
IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja
Fotometrija. Področja svetlobe. Mimogrede
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo Izbirni predmet - 10142 Svetlobna tehnika Fotometrija predavatelj prof. dr. Grega Bizjak, u.d.i.e. Mimogrede
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.
Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
LOKALNE ČASOVNO SPREMENLJIVE VELIČINE
LOKALNE ČASOVNO SPREMENLJIVE VELIČINE Eksperimentalne metode merjenja hitrostnih in temperaturnih LDA anemometrija, -HW anemometrija -kinetične metode -vizualizacijske metode -termovizija -HW anemometrij
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Geometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
Izpitna vprašanja za prvi del izpita (1. kolokvij)
TEHNIŠKE MERTIVE Izpitna vprašanja za prvi del izpita (1. kolokvij) 1. Osnovni pravili merjenja. Merjena veličina mora biti nedvoumno definirana; pri fizikalnih veličinah to vedno velja. Referenčna veličina
Za boljšo rabo osciloskopa
Za boljšo rabo osciloskopa Gradivo za Elektronski praktikum Dušan Ponikvar Fakulteta za matematko in fiziko Ljubljana, Slovenija Oktober 2007 1 Osciloskop Predgovor Sledeči tekst je namenjen tistim, ki
Uvod v senzorsko in merilno tehniko
Uvod v senzorsko in merilno tehniko V človekovi naravi je da želi vse kar zazna s svojimi čutili kvantitativno in kvalitativno ovrednotiti oziroma izmeriti. Merjenje je postopek pri katerem poskušamo objektivno
PIEZO SENZORJI Merjenje rezalnih sil pri struženju
Univerza v Ljubljani FAKULTETA ZA STROJNIŠTVO Eksperimentalne metode 2005/06 Vaja V: PIEZO SENZORJI Merjenje rezalnih sil pri struženju UNV S9. 21.01.06 Kazalo 1 Namen...3 2 Definicija naloge...3 3 Merilni
Varjenje polimerov s polprevodniškim laserjem
Laboratorijska vaja št. 5: Varjenje polimerov s polprevodniškim laserjem Laserski sistemi - Laboratorijske vaje 1 Namen vaje Spoznati polprevodniške laserje visokih moči Osvojiti osnove laserskega varjenja
5 Merjenje toplote in specifična toplota snovi
5 Merjenje toplote in specifična toplota snovi Pri tej vaji se bomo seznanili z merjenjem temperature s termočlenom, z merjenjem toplote in s kalorimetričnim določanjem specifične toplote. Snov lahko segrejemo