Varnost opreme pod tlakom (2. del)
|
|
- ῾Ερμιόνη Καραβίας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Univerza v Ljubljani - Fakulteta za kemijo in kemijsko tehnologijo KATEDRA ZA TEHNIŠKO VARNOST Delovne priprave in naprave II Varnost opreme pod tlakom (2. del) Boris Jerman Priloge PrPPOPT Priloga I - Razvrstitev opreme pod tlakom glede na stopnjo nevarnosti (Diagrami T1 do T9 že predstavljeni) Priloga II - Minimalni pogoji, ki jih mora izpolnjevati organ za periodične preglede Priloga III Tabela rokov periodičnih pregledov za opremo pod tlakom s predpisanim programom pregledov (Že predstavljena) Priloga IV Evidenčni list opreme pod tlakom Priloga V Potrdilo o pregledu opreme pod tlakom 2 1
2 Priloga IV Evidenčni list opreme pod tlakom 3 Priloga IV Evidenčni list opreme pod tlakom 4 2
3 Priloga V Potrdilo o pregledu opreme pod tlakom 5 Priloga V Potrdilo o pregledu opreme pod tlakom 6 3
4 Priloge PrTO Priloga I - Bistvene varnostne zahteve Priloga II Tabele za ugotavljanje skladnosti (Že predstavljene) Priloga III Postopki ugotavljanja skladnosti Priloga IV Minimalni pogoji pri določanju priglašenih organov in imenovanih neodvisnih organov Priloga V Pogoji pri določevanju uporabnikovega notranjega nadzornega organa Priloga VI CE označevanje Priloga VII - ES izjava o skladnosti (vsebina) 7 Priloga I - Bistvene varnostne zahteve Uvodne opombe Proizvajalec mora analizirati nevarnosti in opredeli tiste, ki so povezane z njegovo opremo. Bistvene varnostne zahteve so obvezne glede nevarnosti, ki se pojavljajo pri namenski uporabi. Pri izpolnjevanju zahtev naj se upošteva stanje tehnike in obratovalne prakse v času načrtovanja in proizvodnje, kakor tudi tudi tehnične in gospodarske razloge, ki morajo biti združljivi z visoko stopnjo zdravstvene varnosti in zaščite. 8 4
5 Priloga I - Bistvene varnostne zahteve Splošno TO naj bo konstruirana, izdelana in preverjena, opremljena in nameščena tako, da je zagotovljena njena varnost. Načela se upošteva v naslednjem vrstnem redu: odprava/zmanjšanje nevarnosti, kolikor je izvedljivo uporaba varovalnih ukrepov pred preostal. nevar., obvestiti uporabnike o preostalih nevarnostih in opozoriti na nujnost sprejema posebnih ukrepov Čer so možnosti neustrezne uporabe znane TO načrtovana tako, da so tudi tedaj preprečene 9 nevarnosti. Priloga I - Bistvene varnostne zahteve Načrtovanje TO mora biti načrtovana tako, da je zagotovljena njena varnost v celotni predvideni življenjski dobi. Načrtovanje mora vključevati ustrezne varnostne faktorje in uporabo vsestranskih metod, za katere je znano, da dosledno vključujejo ustrezne varnostne dodatke za vse možnosti porušitve. 10 5
6 Priloga I - Bistvene varnostne zahteve Načrtovanje za ustrezno trdnost TO mora biti načrtovana glede na obremenitve, značilne za njeno predvideno uporaboi: notranji/zunanji tlak, temp. okolice in obratovalne temp., statični tlak in masa vsebine (obratovanje/preskusi), obremenitve prometa, vetrov in potresov, reakcije na podporah, priključkih, ceveh itd., korozija in erozija, utrujenost itd., razpad nestabilnih fluidov. Preučiti je treba sočasnost različnuh obremenitev. 11 Priloga I - Bistvene varnostne zahteve Načrtovanje za ustrezno trdnost mora temeljiti na: v splošnem na računski metodi, ali na metodi načrtovanja s preskušanjem brez izračunov, če je PS V<6000 bar l ali PS DN<3000 bar. Prikazan bo primer opredelitve računske metode. 12 6
7 Računska metoda a) Tlačna trdnost in drugi vidiki obremenitev Dopustne napetosti morajo biti omejene. Zato morajo biti uporabljeni varnostni faktorji. Računske metode morajo dosledno zagotavljati zadostne varnostne dodatke, kjer je potrebno. Uporabi se ene od naslednjih metod, lahko kombinirano z drugimi metodami: načrtovanje z empiričnimi enačbami, načrtovanje z analitskimi postopki, načrtovanje z lomno mehaniko. 13 Računska metoda b) Odpornost Ustrezni konstrukcijski izračuni morajo dokazovati (1/3): v računih upoštev. tlaki najviši dopustni obratov. tl. -če je več komor, mora biti delilna stena načrtovana na podlagi največjega možnega tlaka v določeni komori in najmanjšega možnega tlaka v sosednji komori. računske temp. morajo upoštevati varnostne dodatke, potrebno je upoštevati vse možne kombinacije temperature in tlaka, dejanske napetosti morajo biti v varnih mejah, 14 7
8 Računska metoda b) Odpornost Ustrezni konstrukcijski izračuni morajo dokazovati (2/3): upoštevati je dokumentirane lastnosti materiala in ustrezne varnostne dodatke: meja plastičnosti glede na temperaturo, natezna trdnost, časovno odvisna trdnost ali t.i. trdnost pri lezenju, dinamični trdnostni podatki, razteznost, modul elastičnosti E, udarna trdnost, faktorji spojev, lomna žilavost, 15 Računska metoda b) Odpornost Ustrezni konstrukcijski izračuni morajo dokazovati (3/3): načrtovanje mora primerno upoštevati vse predvidljive mehanizme poteka propadanja (npr. korozija, lezenje, utrujanje, obraba ) lezenje: načrtovano število obratovalnih ur pri T obrat, utrujenost: št. nihajev pri določenih napetostih, korozije: pribitek za korozijo 16 8
9 Računska metoda c) Vidiki stabilnosti Kadar izračunana debelina stene ne zagotavlja zadostne stabilnosti konstrukcije, je potrebno izvesti ustrezne ukrepe, ob upoštevanju tveganj, ki se pojavljajo pri transportu opreme in rokovanju z njo. 17 SIST EN :2009 Neogrevane* tlačne posode - 1. del: Splošno SIST EN :2009 SIST EN :2009 SIST EN :2009 SIST EN :2009 Neogrevane tlačne posode - 2. del: Materiali Neogrevane tlačne posode - 3. del: Konstruiranje Neogrevane tlačne posode - 4. del: Proizvodnja Neogrevane tlačne posode - 5. del: Kontrola in preskušanje SIST EN :2009 Neogrevane tlačne posode - 6. del: Zahteve za konstruiranje in proizvodnjo tlačnih posod in tlačnih delov posode iz nodularne litine SIST EN :2009 Neogrevane tlačne posode - 8. del: Dodatne zahteve za tlačne posode iz aluminija in aluminijevih zlitin *... slab prevod (unfired = nekurjene) 18 9
10 Debelina stene tlačne posode 19 Koeficient spoja z, glede na testno skupino, ki jo izberemo za tlačno posodo Testna skupina Primer določitve računske (dopustne) napetosti za neavstenitna jekla: 20 10
11 Debelina cilindričnega dela: ali Nadtlak P v posodi (tlak): Tlak pri znani geometriji: Debelina sferičnega dela: Tlak pri znani geometriji: ali 21 Valjasti del: Sferični del: 22 11
12 Izgle torisferičnega dna: 23 Spoj med valjastim in stožčastim delom: a) brez prehoda b) s toroidnim prehodom 24 12
13 Valjasti del, podprt z dnoma: Izbere se e a ; Izračuna se: Lupine pod zunanjim nadtlakom: kjer se ε odčita iz grafa. S pomočjo razmerja P m /P y se določi P r. Na koncu mora veljati: kjer je P zunanji nadtlak in S varnost. 25 Lupine pod zunanjim nadtlakom: Taki valji imajo pogosto sunanj ojačitvene obroče: 26 13
14 Grelni kanali / tuljava kot ojačitve: a) ločeni b) prekrivajoči se 27 Odprtine v plašču posode: Samostojna odprtina v valjastem delu s povečano debelino pločevine
15 Odprtine v plašču posode: Samostojna odprtina v sferičnem delu s povečano debelino pločevine. 29 Odprtine v plašču posode: Samostojna odprtina v valjastem delu z ojačitveno pločevino
16 Odprtine v plašču posode: Samostojna odprtina v valjastem delu z ojačitvenim obročem. 31 Odprtine v plašču posode: Samostojna odprtina v valjastem delu s cevnim nastavkom a) na pločevini in b) v odprtini
17 Drugi zanimivi detajli: 33 Drugi zanimivi detajli: 34 17
18 Drugi zanimivi detajli: 35 Položaj lukenj in ojačitvenih pločevin ali cevnih nastavkov: 36 18
19 Bližnje odprtine: 37 Ravno dno z razbremenilnim utorom: 38 19
20 Varjena prirobnica s ploščatim tesnilom: 39 Prirobnica iz celega s tesnilom v obliki O-obroča: 40 20
21 Toplotni izmenjevalniki: 41 Kompenzatorji temperaturnih raztezkov: a) Neojačani mehovi U-oblike b) Ojačani mehovi U-oblike 42 21
22 Kompenzatorji temperaturnih raztezkov: Delovanje mehov: kompenzacija linearnih premikov Kompenzacija stranskih premikov 43 Kompenzatorji temperaturnih raztezkov: Delovanje mehov: kompenzacija zasukov 44 22
23 Dvižna ušesa: 45 Dvižna ušesa: Postavitev dvižnih ušes: 46 23
24 Dviganje z dvižnimi ušesi: 47 Dviganje s pomožnimi bremenskimi sredstvi: 48 24
25 Prikaz zahtev produktnega Dviganje s pritrditvijo za podporne konzole: 49 Podpore: (simetrična in nesimetrična tlačna posoda) F 2 >F
26 Valjasti deli plašča brez ojačitvenega obroča: 51 Valjasti deli plašča brez ojačitvenega obroča: 52 26
27 Valjasti deli plašča z ojačitvenim obročem: a) obroč podprt po širini posode; b) v 2 točkah (npr. nogi) 53 Valjasti deli plašča z ojačitvenim obročem, položeni na sedlasto podporo: 54 27
28 Valjasti deli plašča s konzolo: Vrste konzol: 55 Valjasti deli plašča s konzolo: 56 28
29 Pokončna posoda, podprta z nogami na dnu posode: 57 Pokončna posoda, podprta z nogami na dnu posode: 58 29
30 Pokončna posoda, podprta s podpornim obročem na dnu posode: 59 Nosilnost na utrujanje: (časovno spremenljive napetosti nihajo za vrednost σ R ) 60 30
31 Odpoved 61 Odpoved 62 31
32 Odpoved 63 Odpoved 64 32
33 Odpoved 65 Odpoved 66 33
34 Odpoved 67 34
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Aksialne obremenitve DOPUSTNE NAPETOSTI IN DIMENZIONIRANJE
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
POPIS DEL IN PREDIZMERE
POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
PRILOGA VI POTRDILO O SKLADNOSTI. (Vzorci vsebine) POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA
PRILOGA VI POTRDILA O SKLADNOSTI (Vzorci vsebine) A POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA Stran 1 POTRDILO O SKLADNOSTI ZA VOZILO HOMOLOGIRANEGA TIPA (1) (številka potrdila o skladnosti:)
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Zaporedna in vzporedna feroresonanca
Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Naziv: Prijemalo FTV panelov za vertikalne fasade Oznaka: PVF (60, 80, 100, 120, 133, 150, 172, 200 in 240 mm) NAVODILA ZA UPORABO
Naziv: Prijemalo FTV panelov za vertikalne fasade Oznaka: PVF (60, 80, 100, 120, 133, 150, 172, 200 in 240 mm) NAVODILA ZA UPORABO VSEBINA UVOD - SPLOŠNE INFORMACIJE 3 Namen navodil 3 Proizvajalec 3 Identifikacija
Osnove sklepne statistike
Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
KOVINSKI KOMPENZATORJI
KOVINSKI KOMPENZATORJI d.o.o. Podjetje za proizvodnjo, notranjo in zunanjo trgovino 1000 Ljubljana, Brnčičeva 7/h, SLOVENIJA Tel.: +386 (0)1 561-34-25 Fax: +386 (0)1 561-32-73 +386 (0)1 561-32-33 +386
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev
IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
POPOLNA PALETA NA UDARCE ODPORNE PVC PREVLEKE ZA PROFESIONALNO UPORABO, KI JO JE MOGOČE ENOSTAVNO ČISTITI
Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) POPOLNA PALETA NA UDARCE ODPORNE PVC PREVLEKE ZA PROFESIONALNO UPORABO, KI JO JE MOGOČE ENOSTAVNO ČISTITI Dolga življenjska doba Brez zmanjšanja
Zgodba vaše hiše
1022 1040 Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-22 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
1. člen (vsebina) 2. člen (pomen izrazov)
Na podlagi 64.e člena Energetskega zakona (Uradni list RS, št. 27/07 uradno prečiščeno besedilo in 70/08) in za izvrševanje četrte alinee tretjega odstavka 42. člena Zakona o spremembah in dopolnitvah
Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom
D. Beg, študijsko gradivo za JK, april 006 KK FGG UL Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom Nosilnost na bočno zvrnitev () Elemente, ki niso bočno podprti in so upogibno
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
6.0 SPOJI. prof. dr. Darko Beg Sodelavec: Blaž Čermelj. Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Katedra za metalne konstrukcije JEKLENE KONSTRUKCIJE I 6.0 SPOJI prof. dr. Darko Beg Sodelavec: Blaž Čermelj Spoji Spoji so v jeklenih konstrukcijah
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA
Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA Seminar pri predmetu Razdelilna in industrijska omrežja Maja Mikec Profesor: dr. Grega Bizjak Študijsko leto
STANDARD1 EN EN EN
PRILOGA RADIJSKE 9,000-20,05 khz naprave kratkega dosega: induktivne aplikacije 315 600 khz naprave kratkega dosega: aktivni medicinski vsadki ultra nizkih moči 4516 khz naprave kratkega dosega: železniške
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
1. STROJNI ELEMENTI, PODSKLOPI, SKLOPI, GONILA
1. STROJNI ELEMENTI, PODSKLOPI, SKLOPI, GONILA Strojni elementi vgrajeni v stroj ali napravo, morajo biti sposobni prenesti zahtevano obremenitev. Zato morajo imeti dovolj veliko trdnost in togost. Na
Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo
Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
IZJAVA O LASTNOSTIH. 5. Po potrebi ime ali naslov pooblaščenega zastopnika, katerega pooblastilo zajema naloge, opredeljene v členu 12(2): -
SL IZJAVA O LASTNOSTIH DoP št. Hilti HUS3 0672-CPD-0361 1. Enotna identifikacijska oznaka tipa proizvoda: Vijačno sidro Hilti HUS3 2. Tip, serijska ali zaporedna številka ali kateri koli drug element,
Krogelni ventil MODUL
Krogelni ventil MODUL Izdaja 0115 KV 2102 (PN) KV 2102 (PN) KV 2122(PN1) KV 2122(PN1) KV 2142RA KV 2142MA (PN) KV 2142TR KV 2142TM (PN) KV 2162 (PN) KV 2162 (PN) Stran 1 Dimenzije DN PN [bar] PN1 [bar]
POPOLN POLIETILENSKI IZOLACIJSKI PAKET ZA UČINKOVITO VARČEVANJE Z ENERGIJO IN AKUSTIČNO ZAŠČITO
POPOLN POLITILNSKI IZOLACIJSKI PAKT ZA UČINKOVITO VARČVANJ Z NRGIJO IN AKUSTIČNO ZAŠČITO Powered by TCPDF (www.tcpdf.org) Kompletna paleta termičnih in akustičnih izolacijskih proizvodov iz P Izpolnjuje
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper
24 The Thermal Comfort Properties of Surgical Gown Fabrics 1 1 2 1 2 Termofiziološke lastnosti udobnosti kirurških oblačil za enkratno in večkratno uporabo december 2008 marec 2009 Izvleček Kirurška oblačila
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Novilon. Najboljša alternativa kovinskim strojnim elementom iz inženirske ali tehnične plastike.
AKRIPOL Novilon Novilon Najboljša alternativa kovinskim strojnim elementom iz inženirske ali tehnične plastike. NOVILON-liti poliamid so inženirske ali tehnične plastike. Zaradi svojih odličnih mehansko-fizikalnih
Fizikalni principi eksplozije
Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Varnost Električna oprema v eksplozijsko ogroženih
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
EURO sončni kolektor tip C20/C22 TI 7
EURO sončni kolektor tip C20/C22 TI 7 Visoko transmitivno ali antirefleksno varnostno steklo EPDM gumijasto tesnilo z vulkaniziranim kotnim spojem Eloksirani aluminijasti okvir Selektivni nanos Ultrazvočno
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Nosilne konstrukcije. Nosilne konstrukcije. Nosilne konstrukcije. Obseg predmeta (4 ECTS): predavanja: 30 ur; seminar: 0 ur; vaje: 30 ur.
Univerza v Ljubljani - Fakulteta za strojništvo KKTS - LASOK Nosilne konstrukcije doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: objava na vratih pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
2742/ 207/ /07.10.1999 «&»
2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,
Varjenje polimerov s polprevodniškim laserjem
Laboratorijska vaja št. 5: Varjenje polimerov s polprevodniškim laserjem Laserski sistemi - Laboratorijske vaje 1 Namen vaje Spoznati polprevodniške laserje visokih moči Osvojiti osnove laserskega varjenja
MOTORJI Z NOTRANJIM ZGOREVANJEM
MOTORJI Z NOTRANJIM ZGOREVANJEM Dvotaktni Štititaktni Motorji z notranjim zgorevanjem Motorji z zunanjim zgorevanjem izohora: Otto motor izohora in izoterma: Stirling motor izobara: Diesel motor izohora
SPECIFIKACIJA MALT ZA ZIDOVE 1.del Malta za grobi in fini omet (malta za zunanji in notranji omet prevod avtorja izvlečka)
SIST EN 998-1 (januar 2004, angl) (izvleček) SPECIFIKACIJA MALT ZA ZIDOVE 1.del Malta za grobi in fini omet (malta za zunanji in notranji omet prevod avtorja izvlečka) 1. Obseg in področje uporabe EN 998-1
Knauf Insulation Polyfoam Izolacija iz ekstrudiranega polistirena XPS
www.knaufinsulation.si 2/2013 Knauf Insulation Polyfoam Izolacija iz ekstrudiranega polistirena XPS Knauf Insulation Polyfoam XPS Izdelke iz ekstrudiranega polistirena Polyfoam odlikuje poleg izjemne toplotne
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
diferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Javljalnik CO in Pravilnik o zahtevah za vgradnjo kurilnih naprav 2
Javljalnik CO in Pravilnik o zahtevah za vgradnjo kurilnih naprav Sedež podjetja: Stritarjeva cesta 9, SI-1290 Grosuplje Poslovni prostori: Polje 361 C, SI-1000 Ljubljana E-naslov: eko.dimnik@siol.net
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
LANCI & ELEMENTI ZA KAČENJE
LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE
TOPLOTNO ENERGETSKI SISTEMI TES d.o.o. GREGORČIČEVA 3 2000 MARIBOR IN PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE Saša Rodošek December 2011, Hotel BETNAVA, Maribor TES d.o.o. Energetika Maribor
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()