TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TRDNOST (VSŠ) - 1. KOLOKVIJ ( )"

Transcript

1 TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem pomikov u = 4 [ (x z) e x + x y e y + ( z 2 y ) e z ]. Izračunajte: a) tenzor majhnih deformacij; b) specifično spremembo dolžine vlakna v točki ( 1, 1, 0) v smeri vektorja a = 3 e x e y + 2 e z ; c) spremembo pravega kota v točki ( 1, 1, 0) med vektorjema a in b = e x + 3 e y. 2. Na rob tanke kvadratne stene deluje normalna enakomerna površinska obtežba velikosti p, kot kaže slika. Privzemimo, da so napetosti po celotni prostornini stene konstantne. Določite velikost obtežbe pri kateri je specifična sprememba prostornine enaka nič (ε V = 0), če poznamo naslednje materialne parametre: ν = 0.2, E = kn/cm 2, α = 5 K 1, T = K. 3. Izračunajte geometrijske karakteristike (A, y T, z T, I y, I z, I yz, I T y, I T z, I T yz) lika na sliki! Podatki so v centimetrih Za konstrukcijo na sliki izračunajte vrednosti notranjih statičnih količin (N x, N z, M y ) v prerezu 1 1! Določite nekaj značilnih vrednosti in skicirajte diagrama normalne napetosti σ xx in strižne napetosti σ xz v tem prerezu! Podatki: a = 4 m, b = 6 m, q = 2 kn/m. Podatki za prerez so v centimetrih. 1 1 /

2 REŠITVE NALOG 1 1. a) y y 2 x z ; b) D aa ε aa = ; c) D ab 2ε aa = ; 2. σ xz = 0, σ yz = 0, σ zz = 0; σ xx = p, σ xy = 0, σ yy = p; ε xx = ε yy = ( p) 4, ε zz = ( p) 4 ; ε xx + ε yy + ε zz = 0 p = A x = , y T = 28.79, z T = 19.37; I y = , I z = , I yz = ; I T y = , I T z = , I T yz = N x = 9, N z = 6, M y = 27; A x = 1500, I T y = ; σ xx = z [ N/cm 2] ; z b Sy σ xz [ N/cm 2 ] [σ xx ] [σ xz ]

3 TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) Pazljivo preberite besedilo vsake naloge! Pišite čitljivo! Uspešno reševanje! 1. Tanka kvadratna ploščica z robom 3 cm se deformira, kot kaže slika. Točka A se ne premakne. Nove koordinate točke B so B (3.009, 0.006), točka C se premakne v C (3.018, 3.003), točka D pa v D (0, 2.997) Deformiranje je podano s poljem pomikov u = (axy + bx) e x + (cx + dy) e y. D D C C Izračunajte: a) konstante a, b, c in d; b) tenzor majhnih deformacij; c) specifično spremembo dolžine vlakna v točki C v smeri vektorja AC; d) spremembo pravega kota v točki C med vektorjema AC in BD. A=A' B B 2. V togo, nerazteglivo cev je postavljen valj iz izotropnega, linearno elastičnega materiala, kot kaže slika. Polmer valja je cm, razdalja med plaščem valja in cevjo pa 1 mm. Valj segrejemo za 60K in obtežimo z enakomerno površinsko obtežbo p na spodnji in zgornji ploskvi. Privzemimo, da so napetosti po celotni prostornini valja konstantne. a) Določite velikost obtežbe p, pri kateri se valj dotakne cevi! b) Valj obremenimo z obtežbo velikosti p = 500 kn/cm 2. Določite napetostni tenzor! Določite tudi specifično spremembo volumna. Podatki: ν = 0.3, E = kn/cm 2, α = 5 K 1, T = 60K. 3. Izračunajte geometrijske karakteristike (A, y T, z T, I y, I z, I yz, I T y, I T z, I T yz) lika na sliki! Podatki so v centimetrih

4 REŠITVE NALOG 1. a) a = 0.001, b = 0.003, c = 0.002, d = 0.001; 3 + y 1 + x 2 0 b) ε = 1 + x ; c) D AC ε AC = 0.005; d) D ab 2ε aa = 0.007; 2. a) p = 308 kn/cm 2 ; b) σ = , ε xx + ε yy + ε zz = 0.086; A x = 1905, y T = 4.72, z T =.45; I y = , I z = , I yz = ; I T y = , I T z = , I T yz =

5 TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) Pazljivo preberite besedilo vsake naloge! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem pomikov u = 4 ( 2y (x z), xy, x + y ). Izračunajte: a) tenzor velikih deformacij; b) tenzor majhnih deformacij in njegovo vrednost v točki T (0, 1, 1) ; c) specifično spremembo dolžine vlakna v točki T v smeri vektorja (1, 1, 0); d) spremembo pravega kota v točki T med vektorjema (1, 1, 0) in (1, b, 1). 2. Valjast vzorec iz izotropnega, linearno elastičnega materiala, višine h = 0 cm, je postavljen med dve togi nepomični plošči, kot kaže slika. Polmer valja je 5 cm, razdalja med valjem in zgornjo ploščo pa d = 1 mm. Valj obtežimo po plašču z enakomerno normalno površinsko obtežbo p. Privzemimo, da so napetosti po celotni prostornini valja konstantne. a) Določite velikost obtežbe p, pri kateri se valj dotakne zgornje plošče! b) Poleg obtežbe p vzorec še segrejemo. Določite spremembo temperature, pri kateri bo specifična sprememba volumna enaka 0. Podatki: ν = 0.3, E = kn/cm 2, α = K Izračunajte prečne sile N z in upogibne momente M y za konstrukcijo na sliki. Na mestu ekstremnih upogibnih momentov izračunajte in narišite potek normalnih napetosti σ xx. Na mestu ekstremnih prečnih sil izračunajte in narišite potek strižnih napetosti σ xz. Podatki: a = 2 m, q = kn/m. Podatki za prerez na sliki so v centimetrih

6

7

8

9

10 TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25% ). Uspešno reševanje! 1. Kvader na sliki ima stranice dolžin L = cm, b = h = 5 cm. Izmerjene spremembe dolžin stranic znašajo L = 0.2 mm, b = h = 0.1 mm. Telesna diagonala AD se je podaljšala za 0.8 mm, kot med osema y in z pa se ni spremenil. Spremembi pravih kotov med osema x in y ter x in z sta enaki. Izračunajte: a) tenzor majhnih deformacij; b) specifično spremembo volumna; c) spremembo dolžine diagonale BC. 2. V togo, nerazteglivo cev je postavljen valj iz izotropnega, linearno elastičnega materiala. Polmer valja je 5 cm, višina pa cm. Valj obremenimo z enakomerno površinsko obtežbo p na spodnji in zgornji ploskvi. Privzemimo, da so napetosti po celotni prostornini valja konstantne. Trenje med valjem in cevjo zanemarimo. a) Določite normalne napetosti med valjem in cevjo! b) Določite tudi spremembo višine valja. Podatki: ν = 0.2, E = 2 4 kn/cm 2, p = 3 kn/cm Izračunajte geometrijske karakteristike (A, y T, z T, I y, I z, I yz, I T y, I T z, I T yz ter glavna vztrajnostna momenta) lika na sliki! Podatki so v centimetrih Na mestu največjih in najmanjših upogibnih momentov konstrukcije na sliki izračunajte in narišite potek normalnih napetosti σ xx. Podatki: a = 2 m, q = 5 kn/m, F = kn. Podatki za prerez na sliki so v centimetrih

11

12

13

14 TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) Pazljivo preberite besedilo vsake naloge! Prva in četrta naloga sta vredni 30%, druga in tretja pa %. Uspešno reševanje! 1. Kocka s stranico dolžine a = 1 cm se deformira, kot kaže slika. Tako deformiranje opišemo s pomiki oblike u = (axz, byz, 0 ). Lege točk A, B, C, D in E se ne spremenijo. Nove koordinate točke F so F (1.001, 0, 1), točka H pa se premakne v H (0, 1.002, 1). Izračunajte: a) konstanti a in b; b) novo lego točke G; c) tenzor majhnih deformacij; d) spremembo dolžine diagonale AF ; e) spremembo pravega kota med AF in AD. = = = = = 2. Na rob tanke stene, ki leži pod kotom β = 60 glede na os x, deluje enakomerna površinska obtežba velikosti p = kn/cm 2 pravokotno na rob, kot kaže slika. Privzemimo, da so napetosti po celotni prostornini stene konstantne. Specifična sprememba dolžine v smeri osi x (ε xx ) pa je enaka nič. Določite napetostni tenzor! Podatki: ν = 0.3, E = 2 4 kn/cm Kroglico iz izotropnega linearno elastičnega materiala obtežimo po površini z enakomerno normalno površinsko obtežbo p. Privzemimo, da so napetosti po celotni prostornini kroglice konstantne. Določite spremembo temperature, pri kateri bo specifična sprememba volumna enaka 0. Podatki: ν = 0.2, E = kn/cm 2, α = K Izračunajte geometrijske karakteristike (A, y T, z T, I y, I z, I yz, I T y, I T z, I T yz ter glavna vztrajnostna momenta) lika na sliki! Podatki so v centimetrih

15 TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25% ). Uspešno reševanje! 1. V telesu na sliki vlada homogeno ravninsko deformacijsko stanje. Poznamo tri spremembe dolžin. Stranica AB se je podaljšala za 0.3 mm, stranica AD pa skrajšala za 0.1mm. Daljica AC se je podaljšala za 0.2 mm. Določite tenzor majhnih deformacij! Podatki: a = 30 cm, b = cm, c = cm. 2. V tanki enakostranični trikotni prizmi iz izotropnega, linearno elastičnega materiala vlada homogeno ravninsko napetostno stanje. Poznamo obtežbo vzdolž robu BC in specifično spremembo volumna ɛ V. a) Določite tenzor napetosti! b) Določite obtežbo na ostalih robovih! Podatki: ν = 0.3, E = 2 4 kn/cm 2, p = 3 kn/cm 2, ɛ V = Izračunajte geometrijske karakteristike (A, y T, z T, I y, I z, I yz, I T y, I T z, I T yz ter glavna vztrajnostna momenta) lika na sliki! Podatki so v centimetrih Izračunajte prečne sile N z in upogibne momente M y za konstrukcijo na sliki. Na mestu ekstremnih upogibnih momentov izračunajte in narišite potek normalnih napetosti σ xx. Na mestu ekstremnih prečnih sil izračunajte in narišite potek strižnih napetosti σ xz. Podatki: a = 2 m, q = kn/m. Podatki za prerez na sliki so v centimetrih

16

17

18 Knjiznica.nb T Ax = Sy = Sz = y T = z T = Iy = Iz = Iyz = Iy T = Iz T = Iyz T = α G = I1 = I2 =

19

20

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2

2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2 . VAJA IZ TRDNOSTI (tenzor napetosti) (napetostni vektor, transformacija koordinatnega sistema, glavne normalne napetosti, strižne napetosti, ravninsko napetostno stanje, Mohrovi krogi, ravnotežne enačbe)

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) 7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem

Διαβάστε περισσότερα

8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost)

8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost) 8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost) NALOGA 1: Eden izmed preizkusov za določanje mehanskih lastnosti materialov je strižni preizkus, s katerim določimo strižni modul G. Vzorec

Διαβάστε περισσότερα

4. VAJA IZ TRDNOSTI (linearizirana elastičnost, plastično tečenje)

4. VAJA IZ TRDNOSTI (linearizirana elastičnost, plastično tečenje) 4. VAJA IZ TRDNOSTI (linearizirana elastičnost, plastično tečenje) NALOGA 1: Eden izmed preizkusov za določanje mehanskih lastnosti materialov je strižni preizkus, s katerim določimo strižni modul G. Vzorec

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)

386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99) 386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da

Διαβάστε περισσότερα

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek. DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

primer reševanja volumskega mehanskega problema z MKE

primer reševanja volumskega mehanskega problema z MKE Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda

6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda 596 6 Geometrijska nelinearnost nosilcev varnost V E pa z enačbo V E = F E F dej 6.92) Z A x je označena ploščina prečnega prereza nosilca, količina i min je najmanjši vztrajnostni polmer, F dej pa je

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Glavni sistem:obremenjen s prvotno obtežbo: P. δ 10. 3 Pomik δ 10 :δ 10 = P (2L ) Reakciji pri levi in desni podpori: ΣV=0

Glavni sistem:obremenjen s prvotno obtežbo: P. δ 10. 3 Pomik δ 10 :δ 10 = P (2L ) Reakciji pri levi in desni podpori: ΣV=0 OGM Metoda sil. METODA SIL. OIS METODE Metoda sil se uporablja za račun statično nedoločenih konstrukcij. V njej kot neznanke nastopajo sile. Namenjena je predvsem ročnemu računanju konstrukcij, ki so

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

1.4 Glavne normalne napetosti v nosilcu 145. Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote

1.4 Glavne normalne napetosti v nosilcu 145. Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote 1.4 Glavne normalne napetosti v nosilcu 145 Smeri glavnih normalnih napetosti vzdolž osi nosilca Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote σ xx = M y z =

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA Š i f r a k a n d i d a t a : ržavni izpitni center *M0974* MEHNIK JESENSKI IZPITNI ROK NVOIL Z OCENJEVNJE Četrtek, 7. avgust 009 SPLOŠN MTUR RIC 009 M09-74-- POROČJE PREVERJNJ Pretvorite dane veličine

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2014/2015

TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2014/2015 TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 014/015 BF : Viskokošolski strokovni študij 6. 10. 14 KINEMATIKA IN DINAMIKA TOČKE Kinematika Položaj točke P, opazovalec O, kartezični koordinatni

Διαβάστε περισσότερα

Univerza v Ljubljani FS & FKKT. Varnost v strojništvu

Univerza v Ljubljani FS & FKKT. Varnost v strojništvu Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: srede med 9:00 in 11:30 pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si,

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Državni izpitni center *M * SPOMLADANSKI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sobota, 9. junij 2007 SPLOŠNA MATURA

Državni izpitni center *M * SPOMLADANSKI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sobota, 9. junij 2007 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M0774* SPOMLDNSKI ROK MEHNIK NVODIL Z OCENJEVNJE Sobota, 9. junij 007 SPLOŠN MTUR RIC 007 M07-74-- PODROČJE PREVERJNJ Navedene vrednosti veličin pretvorite

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

GEOMETRIJA V RAVNINI DRUGI LETNIK

GEOMETRIJA V RAVNINI DRUGI LETNIK GEOMETRIJA V RAVNINI DRUGI LETNIK 2 1 Geometrija v ravnini 1.1 Osnove geometrije Točka je tisto, kar nima delov. Črta je dolžina brez širine. Ploskev je tisto, kar ima samo dolžino in širino. Osnovni zakoni,

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 28. maj 2010 SPLOŠNA MATURA

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 28. maj 2010 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M1017411* MEHANIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek, 8. maj 010 SPLOŠNA MATURA RIC 010 M101-741-1- PODROČJE PREVERJANJA A A1

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ

UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ 1. UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ Vosnovnemtečaju mehanike trdnih teles smo izpeljali sistem petnajstih osnovnih enačb, s katerimi lahko načeloma določimo napetosti, deformacije in pomike

Διαβάστε περισσότερα

Tehniška mehanika 1 [N]

Tehniška mehanika 1 [N] Tehniška mehanika 1 Osnovni pojmi Togo in deformabilno telo, ter masno središče Obnašanje togega telesa lahko obravnavamo, kot obnašanje točke, v kateri je zbrana vsa masa telesa m. To točko imenujemo

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004 Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 29. avgust 2008 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 29. avgust 2008 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M087411* JESENSKI IZPITNI ROK MEHNIK NVODIL Z OCENJEVNJE Petek, 9. avgust 008 SPLOŠN MTUR RIC 008 M08-741-1- PODROČJE PREVERJNJ 1 Preračunajte spodaj

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Maks

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

1 3D-prostor; ravnina in premica

1 3D-prostor; ravnina in premica 1 3D-prostor; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru, ki nimata skupne

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom

Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom D. Beg, študijsko gradivo za JK, april 006 KK FGG UL Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom Nosilnost na bočno zvrnitev () Elemente, ki niso bočno podprti in so upogibno

Διαβάστε περισσότερα

Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut

Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut Š i f r a k a n d i d a t a : Državni izpitni center *M11140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M477* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 5. junij 04 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Dr`avni izpitni center MATEMATIKA. Izpitna pola. Sobota, 2. junij 2007 / 120 minut brez odmora

Dr`avni izpitni center MATEMATIKA. Izpitna pola. Sobota, 2. junij 2007 / 120 minut brez odmora [ifra kandidata: Dr`avni izpitni center *P071C10111* SPOMLADANSKI ROK MATEMATIKA Izpitna pola Sobota,. junij 007 / 10 minut brez odmora Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA NPZ

PONOVITEV SNOVI ZA NPZ PONOVITEV SNOVI ZA NPZ ENAČBE 1. naloga : Ugotovi ali sta dani enačbi ekvivalentni! 5x 5 = 2x 2 in 5 ( x - 1 ) = 2 ( x 1 ) da ne 2. naloga : Reši linearni enačbi in napravi preizkusa! a) 5 4x = 2 3x PR:

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Ponedeljek, 30. avgust 2010 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Ponedeljek, 30. avgust 2010 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M07* MEHNIK JESENSKI IZPITNI ROK NVODIL Z OCENJEVNJE Ponedeljek, 0. avgust 00 SPLOŠN MTUR RIC 00 M0-7-- PODROČJE PREVERJNJ Pretvorite podane veličine

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ

Ψηθιακά ςζηήμαηα - Διζαγωγή. ΣΔΙ Πάηπαρ, Σμήμα Ηλεκηπολογίαρ Καθ. Π. Βλασόποςλορ Ψηθιακά ςζηήμαηα - Διζαγωγή Καθ. Π. Βλασόποςλορ 1 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 2 Κςκλώμαηα Γιακοπηών και Λογικέρ Πύλερ Καθ. Π. Βλασόποςλορ 3 Κςκλώμαηα Γιακοπηών και Λογικέρ

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα