Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο
|
|
- Ἀριστομάχη Βλαστός
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο
2 Η Mathematica είναι ένα ολοκληρωμένο μαθηματικό πακέτο με πάρα πολλές δυνατότητες σε σχεδόν όλους τους τομείς των μαθηματικών (Άλγεβρα, Θεωρία συνόλων, Ανάλυση, διαφορικές εξισώσεις, Στατιστική κ.α.). Αυτό την κάνει χρήσιμη σε πάρα πολλά πεδία των θετικών επιστημών όπως Υπολογιστές, Φυσική, Χημεία, Βιολογία, Γεωλογία, Στατιστική, Ηλεκτρολογία, Μηχανολογία κ.α.
3 Με δύο λόγια, μπορούμε να πούμε ότι η Mathematica είναι ένα πρόγραμμα που το χρησιμοποιούμε για να κάνουμε αναλυτικούς και αριθμητικούς υπολογισμούς αλλά και γραφικά, με τη χρήση ηλεκτρονικού υπολογιστή, συνεπώς είναι ένα ανεκτίμητο εργαλείο για κάθε έναν που κάνει τακτικά πολύπλοκους μαθηματικούς υπολογισμούς.
4 Το βασικό πλεονέκτημα του προγράμματος είναι ότι δίνει τη δυνατότητα και σε κάποιον που δεν γνωρίζει προγραμματισμό, να παράγει εντυπωσιακά αποτελέσματα, με λίγες εντολές που είναι πολύ λογικές μια και ακολουθούν τρόπο που σκεπτόμαστε. Αντίθετα το βασικό «μειονέκτημα» του προγράμματος, όταν κάποιος ξεκινά να δουλεύει με αυτό, είναι ότι περιέχει χιλιάδες εντολές σημαντικές- που ο νέος χρήστης νομίζει ότι πρέπει να μάθει πριν ξεκινήσει.
5 Περιλαμβάνει λοιπόν, έναν μεγάλο αριθμό εσωτερικών συναρτήσεων και έτοιμων υποπρογραμμάτων που είναι ενσωματωμένα σε μια Κάθε μία από το πλήθος αυτό των υποπρογραμμάτων και ενσωματωμένων συναρτήσεων μπορεί να χρησιμοποιηθεί είτε αυτόνομα οπότε ο χρήστης πληκτρολογεί την εντολή και παίρνει άμεσα την απάντηση, είτε να ενσωματωθεί στα πλαίσια προγραμμάτων στο περιβάλλον της Mathematica, που εκτελούν μαζικά σειρά εντολών.
6 30 άδειες για το ΑΠΘ: έκδοση 4.3, διαθέσιμες στους υπολογιστές του εργαστηρίου και στις νησίδες ελεύθερης πρόσβασης
7
8 Το Mathics είναι ένα σύστημα άλγεβρας υπολογιστών γενικής χρήσης. Έχει ως στόχο να είναι μια ελεύθερη, εναλλακτική ελαφριά παραλλαγή της Mathematica. Είναι δωρεάν, τρέχει τόσο σε δικτυακό περιβάλλον, αλλά είναι επίσης δυνατό να τρέξει και τοπικά. Η γλώσσα προγραμματισμού του Mathics έχει ως στόχο να μοιάσει με τη Mathematica όσο το δυνατόν περισσότερο παρόλο που το Mathics δεν υποστηρίζεται από τη Mathematica. Το Mathics μπορεί να μην ανταγωνίζεται τη Mathematica σε βιομηχανικές εφαρμογές αλλά αποτελεί μια ενδιαφέρουσα εναλλακτική λύση για εκπαιδευτικούς σκοπούς.
9 ειδικός σύνδεσμος: ΟΧΙ από Internet Explorer - Download Mathics 0.6 Windows Installer (PyPy based)
10 Υπάρχει και ειδικός σύνδεσμος ΟΧΙ από Internet Explorer
11 Download the Windows self-installing executable: - Download Mathics 0.6 Windows Installer (PyPy based)
12
13 Η Mathematica έχει την δυνατότητα να πραγματοποιεί (μέσα από εκατοντάδες συναρτήσεις - functions) κυρίως τρεις κατηγορίες εντολών: 5+7 3^100 Ν [Pi^2, 50] Integrate [x^4/(x^2-1), x] Plot[Sin[x], {x,0,2*pi}]
14 το πακέτο αποτελείται από δύο μέρη. τον πυρήνα (Kernel) ο οποίος περιέχει τον κώδικα επεξεργασίας των εντολών και το Notebook interface μέσα από το οποίο επικοινωνεί ο χρήστης με τον πυρήνα. Μόλις ξεκινά το πρόγραμμα, ο χρήστης έχει μπροστά του ένα άδειο Notebook στο οποίο μπορεί εισάγει μία εντολή ή ένα σύνολο από εντολές (μετά το In[1]:=...). Πατώντας SHlFT + ENTER οι εντολές αυτές στέλνονται στον πυρήνα ο οποίος τις εκτελεί μία- μία με τη σειρά και στέλνει τα αποτελέσματα ξανά πίσω στο Notebook (μετά το Out[1]:=...). με απλό ENTER απλώς πάμε στην επόμενη γραμμή, από όπου μπορούμε αν θέλουμε να γράψουμε νέα εντολή.
15
16 Αρχικά ο πυρήνας δεν είναι ενεργοποιημένος αλλά ενεργοποιείται την πρώτη φορά που θα εκτελέσουμε κάποια εντολή. Εάν υπάρχει κάτι μη αποδεκτό από τη Mathematica στο In, τότε στο Out εμφανίζεται κάποιο προειδοποιητικό μήνυμα.
17 Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός * ή διάκενο Διαίρεση / Ύψωση σε δύναμη (x n ) Τριγωνομετρικές συναρτήσεις Εκθετικό, Λογάριθμος Υπερβολικές συναρτήσεις Αντίστροφες τριγωνομετρικές ή υπερβολικές συναρτήσεις Απόλυτη τιμή του x Πρόσημο του x (=1 αν x>0, -1 αν x<0) x^n Sin[x], Cos[x], Tan[x], Exp[x], Log[x] Sinh[x], Cosh[x], Tanh[x], ArcSin[x], ArcTan[x], ArcSinh[x], ArcTanh[x], Abs[x] Sign[x]
18 e π i Ln(x) Log(x) E Pi Infinity I Log[x] Log[10,x] Τι κάνουν οι παρακάτω εντολές; 1/0, Infinity-Infinity, Infinity/Infinity
19 Οι εντολές της Mathematica συντάσσονται ως εξής: Function[argument, parameter] Κάποιες εντολές δέχονται περισσότερα του ενός ορίσματα ή παραμέτρους: Function[{arg1, arg2, }, {par1, par2, }] Integrate [f[x], {x, a, b}] D [ f[x], x ] Sum [ f[n], {n, n min,n max }] Plot [f[x], {x, a, b}] Ολοκλήρωσε τη συνάρτηση f(x) ως προς x από α έως b Παραγώγισε τη συνάρτηση f(x) ως προς x Άθροισε τη συνάρτηση f(n) (της ακέραιας μεταβλητής n) ως προς n από n min έως n max Σχεδιάζει τη γραφική παράσταση της συναρτήσεως f(x) για x από a έως b Υπάρχει και εναλλακτικός τρόπος σύνταξης των συναρτήσεων που τον χρησιμοποιούμε συνήθως στην εντολή Ν(Numerate) Argument//Command π.χ. Cos[Pi]//Ν ή Pi//Cos//N
20
21 H Mathematica εκτός από τις εντολές μπορεί να δεχθεί και κείμενο, τίτλους, σχόλια, εξισώσεις που δεν υπολογίζονται απλά περιγράφουν το πρόβλημα. Αν θέλω να γράψω σχόλια σε εντολές Input αυτό γίνεται αν τα κλείσω μέσα σε (* και *), οπότε ο πυρήνας δεν τα λαμβάνει υπόψη του στους υπολογισμούς. 3,4] π
22 Απλοποιήσεις αλγεβρικών εκφράσεων έκφραση: Αναπτύσσει τα γινόμενα και τις δυνάμεις που υπάρχουν σε μία In[1]:=Expand[(x+y)^2] Out[1]:=x 2 +2xy+y 2 Παραγοντοποιεί μια συγκεκριμένη έκφραση In[2]:=Factor[%] Out[2]:=(x+y) 2 Αθροίζει αλγεβρικά κλάσματα και απλοποιεί κοινούς παράγοντες μεταξύ αριθμητή και παρονομαστή In[4]:=Together[1/(x+1)+x/(x^2-1)] Out[4]:= Χωρίζει ένα αλγεβρικό κλάσμα σε άθροισμα μερικών κλασμάτων με απλούστερους παρονομαστές In[5]:=Apart[%] Out[4]:= 1 2x ( 1 x)(1 x) 1 3 2( 1 x) 2(1 x) Ποια η διαφορά των παρακάτω εντολών; Expand[(x-1) 2 /(x+1) 2 ] ExpandAll[(x-1) 2 /(x+1) 2 ]
23 Απλοποιήσεις αλγεβρικών εκφράσεων Απλοποιεί κοινούς παράγοντες μεταξύ αριθμητή και παρονομαστή σε ένα αλγεβρικό κλάσμα In[5]:=Cancel[(x^2+4 x)/(x^2-x)+(x^2+3 x-4)/(x^2-1)] Out[5]:= 4 x 1 x 4 1 x x Εκτελεί μια σειρά από αλγεβρικούς μετασχηματισμούς στη συγκεκριμένη έκφραση και επιστρέφει το απλούστερο αποτέλεσμα In[6]:=Simplify[18+39 x + 29 x^2 +9 x^3+x^4] Out[6]:= (3+x) 2 (2+3x+x 2 ) Παρόμοια εντολή με την Simplify αλλά εκτελεί μια μεγαλύτερη ομάδα μετασχηματιστών In[6]:=FullSimplify[18+39 x + 29 x^2 +9 x^3+x^4] Out[6]:= (1+x)(2+x)(3+x) 2
24 Χρησιμοποιώντας λίγη βοήθεια Τι κάνει η εντολή ; Να εφαρμόσετε την παραπάνω εντολή στους αριθμούς και για να βρείτε το μέγιστο κοινό διαιρέτη και το ελάχιστο κοινό πολλαπλάσιο τους
25 Στη Mathematica υπάρχουν 2 βασικοί τύποι αριθμητικών δεδομένων. Οι ακριβείς αριθμοί ( ) και οι προσεγγιστικοί ( ) Οι ακέραιοι, οι ρητοί αριθμοί και οι σταθερές είναι ακριβείς αριθμοί Οι προσεγγιστικοί αριθμοί είναι οι δεκαδικοί αριθμοί. Οι υπολογισμοί στους προσεγγιστικούς αριθμούς γίνονται με 16 σημαντικά ψηφία ενώ 6 ψηφία εμφανίζονται στην απάντηση. Για να αλλάξετε το πλήθος των ψηφίων που εμφανίζονται σε μια απάντηση: NumberForm[N[Pi],10] Εναλλακτικός τρόπος γραφής μεγάλων ή μικρών αριθμών: ScientificForm[{ , ,123.45}] { , , } Για να αλλάξετε το πλήθος των ψηφίων που συμμετέχουν σε ένα υπολογισμό: Ν[Pi/3, 16]
26
27 N[Pi] N[Pi,$MachinePrecision] N[Pi,30] 3, FindRoot[x^2-2,{x,1},WorkingPrecision 60] {x } FindRoot[x^2-2,{x,1}, WorkingPrecision 2 MachinePrecision] Πόσα δεκαδικά ψηφία χρειάζονται για τον ακριβή υπολογισμό του 15!
28 Χρήση προηγούμενων αποτελεσμάτων
29 Solve: Αναλυτικός Υπολογισμός NSolve: Αριθμητικός Υπολογισμός
30 FindRoot[f,{x,x 0 }] βρίσκει μια αριθμητική ρίζα της f, ξεκινώντας από το σημείο x=x 0. FindRoot[lhs==rhs,{x, x 0 }] βρίσκει μια αριθμητική λύση της εξίσωσης lhs==rhs. FindRoot[{f 1,f 2, },{{x,x 0 },{y,y 0 }, }] βρίσκει μια κοινή αριθμητική ρίζα όλων των f i. FindRoot[{eqn 1,eqn 2, },{{x,x 0 },{y,y 0 }, }] βρίσκει μια κοινή αριθμητική λύση του συνόλου των εξισώσεων eqn i.
31 Πράξεις με μεταβλητές Στη Mathematica όπως και στην Άλγεβρα μπορούμε να κάνουμε πράξεις με μεταβλητές. Το όνομα μιας μεταβλητής μπορεί να περιέχει ένα ή περισσότερα γράμματα ή αριθμούς αλλά το πρώτο στοιχείο πρέπει απαραίτητα να είναι ή γράμμα ή το σύμβολο $. Επίσης μέσα στο όνομα δεν επιτρέπεται να περιλαμβάνονται κενά, τα δε ονόματα πρέπει να χωρίζονται μεταξύ τους με κάποιο κενό από τα σύμβολα των πράξεων. Ορισμός Τιμής Διαγραφή Τιμής
32
33 Ορισμός συναρτήσεων O ορισμός μιας συνάρτησης στη Mathematica γίνεται με την παρακάτω εντολή: Στη συνέχεια μπορώ να υπολογίσω τιμές τις συνάρτησης με τους παρακάτω τρόπους
34 Πλευρικά Όρια Limit[συνάρτηση, x x o, Direction 1] Limit[1/x, x->0, Direction->1] Limit[συνάρτηση, x x o, Direction -1] Limit[1/x, x->0, Direction->-1]
35 Sum, Product: Αναλυτικός Υπολογισμός NSum, NProduct: Αριθμητική προσέγγιση
36 Αλγεβρική Παράσταση Δυναμοσειρά Series[f(x), {x, x o, τάξη}] Series[f[x],{x,a,3}] O ut[1]= x x 3 2 x 5 24 x Series[Exp[x],{x,0,10}] 1+x+x 2 /2+x 3 /6+x 4 /24+x 5 /120+x 6 /720+x 7 /5040+x 8 /40320+x 9 / x 10 / O[x] 11
Πρώτη επαφή με το μαθηματικό πακέτο Mathematica
Πρώτη επαφή με το μαθηματικό πακέτο Mathematica Με δύο λόγια, μπορούμε να πούμε ότι η Mathematica είναι ένα πρόγραμμα που το χρησιμοποιούμε για να κάνουμε αναλυτικούς και αριθμητικούς υπολογισμούς αλλά
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο. ε την COMPUTATION MEETS KNOWLEDGE
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Εργασία ε την Α λοί υ ολογισ οί 1 Επίσημη ιστοσελίδα Για τρεις δεκαετίες, η Mathematica έχει καθορίσει την κατάσταση της τεχνολογίας στον τομέα της εφαρμοσμένης
Παρουσίαση του Mathematica
Παρουσίαση του Mathematica Εργαστήριο Σκυλίτσης Θεοχάρης Καλαματιανός Ρωμανός Καπλάνης Αθανάσιος Ιόνιο Πανεπιστήμιο (www.ionio.gr)( Εισαγωγή Σύμβολα πράξεων ή συναρτήσεων: Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός
1. Εισαγωγή στο Sage.
1. Εισαγωγή στο Sage. 1.1 Το μαθηματικό λογισμικό Sage Το Sage (System for Algebra and Geometry Experimentation) είναι ένα ελεύθερο (δωρεάν) λογισμικό μαθηματικών ανοιχτού κώδικα που υποστηρίζει αριθμητικούς
Εισαγωγή στο Mathematica
Εισαγωγή στο Mathematica Συντακτικοί κανόνες, βασικές συναρτήσεις και σύμβολα Το Mathematica είναι ένα λογισμικό το οποίο εγκαθιστά στον υπολογιστή ένα διαδραστικό μαθηματικό περιβάλλον. Το περιβάλλον
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ 1 Τύποι δεδομένων Η γλώσσα προγραμματισμού C++ υποστηρίζει τους παρακάτω τύπους δεδομένων: 1) Ακέραιοι αριθμοί (int). 2) Πραγματικοί αριθμοί διπλής ακρίβειας
Pascal, απλοί τύποι, τελεστές και εκφράσεις
Pascal, απλοί τύποι, τελεστές και εκφράσεις 15 Νοεμβρίου 2011 1 Γενικά Στην standard Pascal ορίζονται τέσσερις βασικοί τύποι μεταβλητών: integer: Παριστάνει ακέραιους αριθμούς από το -32768 μέχρι και το
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό
Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Τύποι δεδομένων Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
http://users.auth.gr/~ppi/mathematica
http://users.auth.gr/~ppi/mathematica ΜΑΘΗΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΡΙΘΜΗΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Γλώσσες Προγραμματισμού Fortran, C++, Java,. ΑΛΓΕΒΡΙΚΟΙ ή ΣΥΜΒΟΛΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Computer Algebra Systems Mathematica,
ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Συναρτήσεις στη Visual Basic 6.0
Προγραμματισμός & Εφαρμογές Υπολογιστών Μάθημα 4ο Συναρτήσεις στη Visual Basic 6.0 Κ. Κωστοπούλου Σειρά εκτέλεσης των πράξεων Όταν ορίζετε μια ακολουθία αριθμητικών πράξεων είναι δυνατόν να προκύψει αμφισημία.
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο. Τι θα τυπωθεί στον παρακάτω κώδικα;
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Χωρίς να αλλάξουμε τον τύπο των a,b,
Εισαγωγή στη Matlab Βασικές Συναρτήσεις
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας Εισαγωγή στη Matlab Βασικές Συναρτήσεις 2016-2017 Εισαγωγή στη Matlab Matlab
Εισαγωγή στο Πρόγραμμα Maxima
Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί
Εργαστήριο Μαθηματικής Ανάλυσης Ι. Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις. Πανεπιστήμιο Θεσσαλίας. Σχολή Θετικών Επιστημών
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Εργαστήριο Μαθηματικής Ανάλυσης Ι Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις Εισαγωγή στη
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
Σύντομες εισαγωγικές σημειώσεις για την. Matlab
Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και
Συμβολικές Γλώσσες Προγραμματισμού με το MATHEMATICA.
Συμβολικές Γλώσσες Προγραμματισμού με το MATHEMATICA http://users.auth.gr/~ppi/mathematica mathematica.math.auth@gmail.com Εκκίνηση του Mathematica Start -> Wolfram Mathematica-> Wolfram Mathematica 11
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Συμβολικές Γλώσσες Προγραμματισμού με το MATHEMATICA.
Συμβολικές Γλώσσες Προγραμματισμού με το MATHEMATICA http://users.auth.gr/~ppi/mathematica mathematica.math.auth@gmail.com ΜΑΘΗΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΡΙΘΜΗΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Γλώσσες Προγραμματισμού Fortran,
Γνωρίστε το Excel 2007
Εισαγωγή τύπων Γνωρίστε το Excel 2007 Πληκτρολογήστε το σύμβολο της ισότητας (=), χρησιμοποιήστε ένα μαθηματικό τελεστή (+,-,*,/) και πατήστε το πλήκτρο ENTER. Πρόσθεση, διαίρεση, πολλαπλασιασμός και αφαίρεση
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ
Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Χρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB
Χρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Εργασία Παραγωγίζοντας και ολοκληρώνοντας
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Παραγωγίζοντας και ολοκληρώνοντας 1 1 Ακρότατα συνάρτησης Οι εντολές και Plot[x Cos[x],{x,0,20}] O ut[2 ]= FindMinimum[x Cos[x],{x,2}] {-3.28837,{x 3.42562}}
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Ακρότατα συνάρτησης FindMinimum[f,{x, x 0 }] :βρίσκει ένα τοπικό ελάχιστο της f, ξεκινώντας από το σημείο x=x 0. FindMinimum[f,{x, x0}, {y, y 0 }], ] : τοπικό
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΕΡΓΑΣΤΗΡΙΟ 2: Εκφράσεις, πίνακες και βρόχοι 14 Απριλίου 2016 Το σημερινό εργαστήριο
ΛΧ1004 Μαθηματικά για Οικονομολόγους
ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL
Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Δυνατότητα ανάπτυξης, μεταγλώττισης και εκτέλεσης προγραμμάτων στη PASCAL. Κατανόηση της σύνταξης των προτάσεων της PASCAL. Κατανόηση της εντολής εξόδου για
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB
Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού
Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης
3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι
Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe
Υπολογισμός αθροισμάτων
Υπολογισμός αθροισμάτων Τα αθροίσματα θα τα δημιουργούμε σαν συναρτήσεις και θα τα αποθηκεύουμε σε αρχείο (m-file) με την ίδια ονομασία με τη συνάρτηση. Για να δημιουργήσουμε ένα άθροισμα ξεκινάμε μηδενίζοντας
1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ. Δρ. Π. Νικολαΐδου
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Δρ. Π. Νικολαΐδου Προγραμματίζοντας στη γλώσσα R Εισαγωγή ( 1 ο Μάθημα ) Βασικές εντολές - λειτουργίες Μπορούμε να διαγράψουμε το περιεχόμενο της R κονσόλας επιλέγοντας Edit>Clear
Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr
11 ΟΗΓΙΕΣ 1. Το ebook περιέχει εργασίες δραστηριότητες για µαθητές που θα πάνε στη Γ Λυκείου και θα επιλέξουν µαθηµατικά κατεύθυνσης ή γενικής παιδείας.. Για την επίλυση θα χρειαστούν όλα τα βιβλία µαθηµατικών
Εισαγωγή στην Tcl. Τί είναι η Tcl;
1 Εισαγωγή στην Tcl Τί είναι η Tcl; Το αρκτικόλεξο Tcl προέρχεται από τις λέξεις «Tool Control Language». Η Tcl είναι μια γλώσσα προγραμματισμού για scripts γενικής χρήσεως, τα οποία επίσης μπορούν να
Φίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια, φίλε μαθητή, Το βιβλίο αυτό απευθύνεται στους μαθητές της Α Λυκείου που θέλουν ένα μεθοδικό και πλήρες βοήθημα στην Άλγεβρα. Το μάθημα αυτό αποτελεί τη γέφυρα ανάμεσα στο γυμνάσιο και το
EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ
EΞΩΤΕΡΙΚΑ ΑΡΧΕΙΑ ΕΙΣΑΓΩΓΗ Ε ΟΜΕΝΩΝ ηµιουργία ενός m-αρχείου Εισαγωγή των δεδοµένων στο αρχείο Αποθήκευση του αρχείου Καταχώρηση των δεδοµένων του αρχείου από το λογισµικό Matlab, γράφοντας απλά το όνοµα
ΠΕΡΙΕΧΟΜΕΝΑ. ΚΕΦΑΛΑΙΟ 1 Γνωριμία με τη Mathematica 11. ΚΕΦΑΛΑΙΟ 2 Βασικές αρχές 34. ΚΕΦΑΛΑΙΟ 3 Λίστες 74. ΚΕΦΑΛΑΙΟ 4 Δισδιάστατα γραφικά 101
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Γνωριμία με τη Mathematica 11 1.1 Συμβολισμοί και Συμβάσεις 1. Ο Πυρήνας και η Εμπροσθοφυλακή 1.3 Οι Ιδιοτροπίες της Mathematica 1.4 Η Mathematica Δίνει Ακριβή Αποτελέσματα 1.5 Βασικές
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα
2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ 2.1 Αριθμητικά συστήματα Κάθε πραγματικός αριθμός χ μπορεί να παρασταθεί σε ένα αριθμητικό σύστημα με βάση β>1 με μια δυναμοσειρά της μορφής, -οο * = ± Σ ψ β " (2 1) η - ν
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα
Περιεχόμενα. Μέρος 1: Βασικές έννοιες Πληροφορικής και επικοινωνιών Μέρος 2: Χρήση υπολογιστή και διαχείριση αρχείων Πρόλογος...
Περιεχόμενα Πρόλογος...11 Μέρος 1: Βασικές έννοιες Πληροφορικής και επικοινωνιών... 13 1.1 Εισαγωγή στους υπολογιστές... 15 1.2 Μονάδες μέτρησης... 27 1.3 Οι βασικές λειτουργίες ενός ηλεκτρονικού υπολογιστή...
ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας
Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους
Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων
Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Μαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Απλοί αναλυτικοί - αριθμητικοί υπολογισμοί Γραφικά Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό
4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66
Περιεχόμενα Ευρετήριο Πινάκων... 7 Ευρετήριο Εικόνων... 8 Εισαγωγή... 9 Κεφάλαιο 1-Περιβάλλον Εργασίας - Στοιχεία Εντολών... 13 1.1 Το Πρόγραμμα... 14 1.2.1 Εισαγωγή Εντολών... 22 1.2.2 Εισαγωγή Εντολών
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Αριθμητική Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Δεύτερο Πρόγραμμα 1 / * Second Simple Program : add 2 numbers * / 2
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α. Σπυρόπουλος Α. Μπουντουβής
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α Σπυρόπουλος Α Μπουντουβής Αθήνα, 2015 v13_061015 Στον οδηγό αυτό θα χρησιμοποιηθούν
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
ΓΛΩΣΣΑ ΑΛΦΑΒΗΤΟ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΣΤΑΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ
ΓΛΩΣΣΑ ΑΛΦΑΒΗΤΟ Κεφαλαία και μικρά γράμματα ελληνικού αλφαβήτου: Α Ω και α ω Κεφαλαία και μικρά γράμματα λατινικού αλφαβήτου: A Z και a z Αριθμητικά ψηφία: 0 9 Ειδικοί χαρακτήρες: + - * / =. ( ),! & κενός
Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 1: Βασικές Γνώσεις Άλγεβρας Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Πατώντας το πλήκτρο Enter ή το κουμπί Enter από την γραμμή τύπων εκτελείται η μαθηματική πράξη και παρουσιάζει το αποτέλεσμα του κελιού.
ΜΑΘΗΜΑ 4 ΣΤΟΧΟΙ: 1. Δημιουργία Μαθηματικών Τύπων 2. Τελεστές (Operators) 3. Τιμές (Value) 4. Τιμές Σφάλματος 5. Συναρτήσεις 6. Συνάρτηση Sum 7. Συνάρτηση Max 8. Συνάρτηση Min 9. Συνάρτηση Average 10. Συνάρτηση
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
x y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.
1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες
1 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΑΘΑΙΝΟΝΤΑΣ ΤΟ MATLAB, ΜΕΡΟΣ Α Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται
επιµέλεια Θοδωρής Πιερράτος
Βασικές έννοιες προγραµµατισµού Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως,
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές. Δρ. Γιώργος Λαμπρινίδης 23/10/2015 Η - Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές Δρ. Γιώργος Λαμπρινίδης amprinidis@pharm.uoa.gr 1 Αριθμητικοί Τελεστές + πρόσθεση - αφαίρεση * πολλαπλασιασμός / διαίρεση Προσοχή! Διαίρεση
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ Καλλιόπη Μαγδαληνού ΕΠΙΚΕΦΑΛΙΔΑ ΠΡΟΓΡΑΜΜΑΤΟΣ ΔΗΛΩΣΕΙΣ ΣΤΑΘΕΡΩΝ ΔΗΛΩΣΕΙΣ ΜΕΤΑΒΛΗΤΩΝ ΕΝΤΟΛΕΣ πρόγραμμα τεστ σταθερές π = 3.14 μεταβλητές πραγματικές : εμβαδό, ακτίνα αρχή
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python
ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής
Συναρτήσεις. Υποπρόγραμμα
Συναρτήσεις Υποπρόγραμμα Ένα σύνολο από εντολές που κάνουν κάτι συγκεκριμένο, έχουν στενή σχέση/εξάρτηση μεταξύ τους, έχουν «χαλαρή» σύνδεση με τον υπόλοιπο κώδικα, μπορεί να εξαχθεί από το πρόγραμμά μας
ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004)
8 ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004) ιάλεξη 2 2.1 ΜΕΤΑΒΛΗΤΕΣ (ΜΕΡΟΣ Β) Στην προηγούµενη διάλεξη µάθαµε ότι µπορούµε να χρησιµοποιούµε τη ρητή ή την αυτονόητη δήλωση µεταβλητών
1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Εγχειρίδιο Χρήστη. Μεταφρασμένο από την Τραχανοπούλου Θεοδώρα.
Εγχειρίδιο Χρήστη Μεταφρασμένο από την Τραχανοπούλου Θεοδώρα Μάθετε περισσότερα για τη σχεδίαση γραφικών παραστάσεων, πινάκων δεδομένων, μελέτη εξισώσεων, διερεύνηση μετασχηματισμών, και πολλά άλλα! Αν
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί
1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.